
A Environment Details540

A.1 Iterated Games541

In Iterated Games, agents’ episode length is 10. Action of each agent is a 1-dimensional vector,542

ai = {hj , j ∈ {0, 1}}, where hj = 0 denotes taking Stag action and hj = 1 denotes taking Hare543

action. Agents can condition their actions on past history. Similar like [12], we consider the history544

length 1. So the observation of each agent is actions taking by itself and its opponent in the last round.545

We initialize the observation at the first round as oi = [−1,−1] for both agents.546

A.2 Monster-Hunt547

In Monster-Hunt, agents’ episode length is 20. Each agent can choose to move one step in any of the548

four directions (Up, Down, Left, Right) or standstill, so the action of each agent is a 5-dimensional549

one-hot vector. The position of each agent can not exceed the border of 5-by-5 grid, where action550

execution is invalid. One Monster and two apples respawn in the different grids at the initialization.551

If an agent eats (move over in the grid world) an apple, it can gain 2 points. Sometimes, two agents552

try to eat the same apple, then they receive 2 points respectively. Catching the monster alone causes553

an agent lose 10 points, but if two agents catch the stag simultaneously, each agent can gain 5554

points. At each time step, the monster and apples will respawn randomly elsewhere in the grid world555

if they are wiped. In addition, the monster chases the agent closest to it at each timestep. Each556

agent’s observation oi is a 10-dimensional vector and formed by concatenating its own position pi557

, the other agent’s position p1−i , monster’s position pm and sorted apples’ position pa0 , pa1 , i.e.,558

oi = (pi, p1−i, pm, pa0 , pa1), i ∈ {0, 1} where p = (x, y) denotes the 2-dimensional coordinates in559

the gridworld.560

A.3 Escalation561

In Escalation, agents’ episode length is 30. Two agents appear randomly and one grid lights up at the562

initialization. If two agents step on the lit grid simultaneously, each agent can receive 1 point, and the563

lit grid will go out with an adjacent grid lighting up. Both agents can receive 1 point again if they564

step on the next lit grid together. But if one agent steps off the path, the other agent will lose 1.5L565

points, where L is the current length of stepping together, and the game is over. Another option is566

that two agents choose to step off the path simultaneously, neither agent will be punished, and the567

game continues. As the length L of stepping together increases, the cost of betrayal increases linearly.568

Each agent can choose to move one step in any of the four directions (Up, Down, Left, Right) or569

standstill, so the action of each agent is a 5-dimensional one-hot vector. The observation oi of agent570

i is composed of its own position pi, the other agent’s position p1−i and the lit grid’s position plit,571

i.e., oi = (pi, p1−i, plit), i ∈ {0, 1}, where p = (x, y) denotes the 2-dimensional coordinates in the572

gridworld.573

B Implementation Details574

B.1 Architecture575

We split the Q value network into two parts: feature extractor Eϕ and decision maker Dψa . The576

auxiliary opponent modeling task shares a common feature extractor Eϕ with the value network, and577

the supervised prediction head is Dψs
. The feature extractor Eϕ consists of three linear layers: the578

input and output layers and one hidden layer with ReLU activation function. The output from Eϕ is579

the input to both Dψa
and Dψs

. Both Dψa
and Dψs

consist of two linear layers: the input and output580

layers with ReLU activation function, respectively. The Eϕ’s output layer has 50 nodes while other581

hidden layers consist of 128 nodes. We use layer normalization on Eϕ’s outputs in Iterated Games582

and Escalation but ReLU activation in Monster-Hunt to stabilize training. We use Adam optimizer583

with learning rate 3× 10−4 for GRSP in all experiments.584
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Our codes can be found at this link: https://anonymous.4open.science/r/GRSP-8DEC.585

B.2 Baselines586

IAC IAC is a decentralized multi-agent policy gradient method in which each agent learns policy587

and value networks based on his local observations and treat other agents as part of the environment.588

The IAC implementation is based on the following well-known repository: https://github.com/589

ikostrikov/pytorch-a2c-ppo-acktr-gail/tree/master/a2c_ppo_acktr.590

LIAM LIAM[13] learns latent representations of the modeled agents from the local information591

of the controlled agent using encoder-decoder architecture. The modeled agent’s observations and592

actions are utilized as reconstruction targets for the decoder, and the learned latent representation593

conditions the policy of the controlled agent in addition to its local observation. The policy and594

model are optimized based on A2C algorithm. The LIAM implementation is based on its official595

open-sourced code: https://github.com/uoe-agents/LIAM.596

Centralized training and decentralized execution (CTDE) methods. MADDPG[30] and597

MAPPO[31] are two kinds of multi-agent policy gradient methods which improve upon decen-598

tralized RL by adopting an actor-critic structure and learning a centralized critic. We imple-599

ment the two algorithms based on their open-sourced codes and perform a limited grid-search600

over certain hyper-parameters, including learning rate, entropy bonus coefficient and buffer size601

(MADDPG). The MAPPO implementation is based on its official open-sourced code: https:602

//github.com/marlbenchmark/on-policy. The MADDPG implementation is based on its offi-603

cial open-sourced code: https://github.com/openai/maddpg. It is noteworthy that we do not604

use the gumbel-max trick to optimize the actor network, instead, the critic’s inputs contain the actor605

network’s outputs after soft-max activation, so we can update the actor network’s parameters using606

gradients from the critic loss, which empirically performs better in our experiments.607

B.3 Hyperparameters608

We detail all GRSP hyperparameters used in four multi-agent environments in Table 2 and Table 3.609

B.3.1 Iterated Games610

Table 2: GRSP hyperparameters used in Iterated Games.

Hyperparameters Value in ISH Value in IPD
quantile num 64 64
learning rate 3e-4 3e-4
learning rate (test time adaptation) 7e-3 7e-3
batch size 120 120
buffer size 40000 40000
discount rate (γ) 0.99 0.99
c1 20 10
c1 (test time adaptation) 5 5
c2 50 100
c2 (test time adaptation) 0 0
risk-level (λ) -0.9 -1.0
risk-level (λ) (test time adaptation) 0.5 0.2
n_step 1 1
update freq 1 1
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Table 3: GRSP hyper-parameters used in Grid-World.

Hyper-parameters Value in M-H Value in Esalation
quantile num 64 64
learning rate 3e-4 3e-4
learning rate (test time adaptation) 7e-3 7e-3
batch size 120 120
buffer size 10000 36000
discount rate (γ) 0.99 0.99
c1 80 10
c1 (test time adaptation) 5 5
c2 80 100
c2 (test time adaptation) 0 0
risk-level (λ) -0.9 -1.75
risk-level (λ) (test time adaptation) -0.5 -0.5
n_step 3 3
update freq 1 1

B.3.2 Grid-World Games611

C Additional Experiment Results612

C.1 Reward Shaping613

Figure 8: Mean evaluation returns for GRSP, IQR-DQN and IQR-DQN-SharedReward on four
multi-agent environments.

We further compare GRSP with IQR-DQN and its reward shaping version, as shown in Fig. 8.614

Specifically, IQR-DQN-SharedReward means that we utilize QR-DQN and global rewards, i.e.,615
1
N

∑N
i=1 ri, to train each agent. Global rewards can force the agent to consider its own and other616

agents’ payoffs equally at each time step, thus non-cooperative agents will be punished and prosocial617

agents have much higher probabilities to achieve mutual coordination [16]. Fig. 8 shows that618

agents with shared rewards converge to coordination strategy faster than GRSP agents in iterated619

games. However, in more complex grid-world games, GRSP outperforms other methods significantly620

in sample efficiency and asymptotic performance, indicating that compared with reward shaping,621

our risk-seeking bonus is a more stable and efficient way to encourage agents to achieve mutual622

coordination without restrictive assumptions.623
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C.2 Different Risk624

Figure 9: Mean evaluation returns for GRSP on four Iterated Stag Hunt environments which have
different punishments.

Fig. 9 shows mean evaluation returns for GRSP on four Iterated Stag Hunt environments which have625

different punishments, e.g., GRSP-10 means that if the agent chooses to hunt stag while the other626

agent hunts hare, he will receive a punishment reward of -10. Higher punishment means higher risk627

and smaller probabilities to converge to coordination strategies. As shown in Fig. 9, our method628

is robust to different risks in the environment, and it is noteworthy that we do not adjust any other629

hyperparameters.630
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