Ground-Compose-Reinforce: Grounding Language in
Agentic Behaviours using Limited Data

Andrew Li, Toryn Klassen!, Andrew Wang, Parand Alamdari’, Sheila McIlraith'
Department of Computer Science, University of Toronto
Vector Institute for Artificial Intelligence
T Schwartz Reisman Institute for Technology and Society
Toronto, Canada
{andrewli, toryn,andrewwang,parand, sheila}@cs.toronto.edu

Abstract

Grounding language in perception and action is a key challenge when building
situated agents that can interact with humans, or other agents, via language. In
the past, addressing this challenge has required manually designing the language
grounding or curating massive datasets that associate language with the environ-
ment. We propose Ground-Compose-Reinforce, an end-to-end, neurosymbolic
framework for training RL agents directly from high-level task specifications—
without manually designed reward functions or other domain-specific oracles,
and without massive datasets. These task specifications take the form of Reward
Machines, automata-based representations that capture high-level task structure
and are in some cases autoformalizable from natural language. Critically, we
show that Reward Machines can be grounded using limited data by exploiting
compositionality. Experiments in a custom Meta-World domain with only 350
labelled pretraining trajectories show that our framework faithfully elicits complex
behaviours from high-level specifications—including behaviours that never appear
in pretraining—while non-compositional approaches fail.

1 Introduction

Grounding language—connecting language with perception and action within an environment—is a
fundamental challenge when building robots and other agents that are interfaced through language.
One popular approach to addressing this challenge is to employ a manually-designed domain-specific
interpretation of language, such as a language-conditional reward function or success detector (e.g.
[1H4]). For instance, in the Baby Al benchmark [1]], successful execution of instructions like “go to
the red ball” can be evaluated programmatically in the environment simulator, providing a reward
signal for learning language-conditioned behaviours. Such instances of grounded language generalize
to arbitrary scenarios and controlled subsets of language by design, but are hard to hand-engineer in
complex, non-simulated settings based on raw perceptual inputs like pixels.

The recent advent of large language models (LLMs) has inspired an alternative pathway to grounding
language: training on diverse datasets that pair language descriptions with environment trajectories
(e.g., mo [, RT-2 [6], LIV [7], VPT [8]). While this obviates the need for manually designed
language groundings, it typically requires enormous datasets in order to capture the broad scope of
language usage within an environment [[1, 19, [10]]. For agentic applications that are data-intensive (e.g.
robotics) or where access to trajectory data is limited, such data-driven language models are prone to
failure on complex or out-of-distribution tasks [[L1-14].

We propose Ground-Compose-Reinforce, an end-to-end framework for training reinforcement
learning (RL) agents directly from high-level task specifications, without relying on manually

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

Pretraining

e .

v 1 X

N————] Supervised ! '
j i Truth value

Trajectorlgs Learning : th va :

. . .

: Proposition Progress !

Propositional labels ! i 0.2534 .

AT : hOIdmg. :

: . " . \ .
: holdingll holding il holding |l N e oo PR

. S Action: \
Self-generated ! / \ :
rewards 1 1

1 Agent Environment L.
1 & 1
—————— Reward Machine__ _ ____ R " !
! 1 — 1
! ! 1 1
:] 1 1
N ¢holding Jl],0> <holding [l,0> <holding i, 1 " R bservation S

__

Figure 1: Ground-Compose-Reinforce, a lightweight framework for training RL agents directly
from Reward Machine specifications, without oracles like reward functions or feature detectors. In
pretraining, we learn to map propositional symbols to context-specific truth values (“is the robot
holding the red block?”) and progress signals (“how close is the robot to holding the red block?”). To
elicit behaviours, we prompt the agent via a Reward Machine composed of these symbols (or via
natural language, if an autoformalizer is available). The agent then synthesizes its own dense reward
function and interacts with the environment to learn the desired behaviour via RL.

designed rewards or feature detectors. We represent tasks via Reward Machines (RMs) [[15,[16]], an
automata-based task specification language that exposes temporally extended task structure in terms
of a set of atomic propositional symbols. Specifically, our framework: (1) grounds these atomic
symbols in the environment by pretraining on a limited dataset of labelled trajectories; (2) composes
these symbols via RMs to express complex tasks; and (3) for any such task, trains an agent to solve that
task via RL on self-generated dense rewards based on its learned interpretation of the RM. Overall,
Ground-Compose-Reinforce enables the elicitation of a wide range of temporally and logically
structured behaviours expressed as RMs (specified directly or in some cases autoformalized from
natural language), requires minimal pretraining data, and does not rely on external, domain-specific
oracles for training or execution. In this paper, we present the following novel contributions:

1. A conceptual, end-to-end framework for compositionally grounding language in behaviours based
on Reward Machines and reinforcement learning (Figure I)). Critically, our framework requires
minimal labelled trajectory data for pretraining, and does not require external oracles like reward
functions, success detectors, or feature detectors.

2. A compositional reward shaping strategy for Reward Machine tasks that is critical for strong
performance in Meta-World [[L7]. Our strategy addresses propositional sparsity, where propositions
of interest (e.g. “pick up the block”) are rarely satisfied through random exploration.

3. Experiments across diverse Reward Machine tasks, including temporally extended gridworld
navigation and robotic manipulation in Meta-World. Our approach elicits diverse behaviours in
Meta-World (including out-of-distribution behaviours that never appear in the pretraining dataset)
from only 350 labelled pretraining trajectories while non-compositional approaches fail.

2 Related Work

Grounded Language Learning. Several past works have explored grounded language learning.
Hermann et al. [2] show that an RL agent in a 3-D environment can consistently navigate to target

objects described via language by being rewarded for successful trajectories. Hill et al. 3] show
that an agent can learn new word-object bindings and apply that knowledge to solve tasks within the
same episode. Liu et al. [[18]] show that a meta-RL agent indirectly learns to interpret language-based
advice embedded within an environment to improve its task performance. Chaplot et al. [4] propose
a neural architecture for grounded language learning in a 3-D Doom environment, considering both
RL with success-based rewards and imitation learning from an oracle policy. Chevalier-Boisvert et al.
[1] propose the BabyAl platform for learning a synthetic language in a 2-D gridworld, finding that
existing RL and imitation learning approaches are sample inefficient and generalize poorly. Unlike
our approach, these methods require significant manual design of reward functions or oracle policies.

Recent works learn grounded language from data, without domain-specific manual design. Black et al.
[S]], Zitkovich et al. [6] and Kim et al. [19] present vision-language-action models for robotics while
Baker et al. [8] and Lifshitz et al. [[13]] present models for playing MineCraft. Bahdanau et al. [20]]
and Ma et al. [7] learn language-conditioned reward functions from data. Works have also directly
leveraged vision-language models for rewards in vision-based environments [21H23]], but typically
do not leverage language compositionality and are prone to failure on complex or out-of-distribution
tasks. Shi et al. [[12], Yuan et al. [24], Huang et al. [25]] and Ahn et al. [26] decompose complex tasks
at execution time via language models. While this shares motivation with our work, we represent
tasks via RMs and exploit compositional task structure for both training and execution.

Formal Languages for RL. Formal languages like Linear Temporal Logic (LTL) [27]] and other
associated formal structure such as RMs [16]] have a rich history of application in the control [28]29],
verification [30-32], monitoring, and synthesis of dynamical systems. Recently, they have risen
in popularity in deep RL for white-box specification of rich temporally extended reward functions
[15133H35] and in a number of cases can be automatically generated from natural language commands
(e.g., [36H39]). Several works show that formal languages enable compositional generalization to
unseen instructions. Vaezipoor et al. [40], Kuo et al. [41] and Yalcinkaya et al. [42] train instruction-
conditioned policies that zero-shot generalize to unseen instructions by training on procedurally
generated LTL formulas. Qiu et al. [43], Liu et al. [44]], Le6n et al. [45] and Jackermeier and Abate
[46] train transferable skills that can be invoked by a planner. Nangue Tasse et al. [47]] consider how
value functions and policies can be composed zero-shot for arbitrary RM tasks, but assume that all
the tasks can be captured via a finite, predetermined set of goal states. Our compositional reward
shaping approach also builds on prior methods. Camacho et al. [34], Furelos-Blanco et al. [48] and
Parac et al. [49] provide potential-based rewards for RMs based on the current RM state, but such
methods provide no signal when target propositions rarely occur. Several works propose continuous
progress signals for each proposition [33}50-H54], but these approaches are limited to tasks with a
binary success criterion. While progress signals are typically manually specified, we show how they
can be learned directly from data.

Nearly all formal-language-based deep RL methods assume access to an external evaluator of
symbolic features (a.k.a. a labelling function). To our knowledge, only a few works specifically avoid
this assumption, but they instead depend on an external reward signal. Li et al. [55}156] consider the
implications of noisily grounding symbols when using RMs. Hyde and Santos [57] and Christoffersen
et al. [58] infer RMs from the reward signal as an inductive bias for RL. Umili et al. [59}160], Kuo et al.
[41], Andreas et al. [61] and Oh et al. [62]] show that ungrounded formal specifications can improve
RL by providing information about the task structure. In contrast to these works, our approach does
not rely on an external symbol evaluator or reward function.

3 Preliminaries

3.1 Reinforcement Learning

A reinforcement learning (RL) problem considers an environment modelled as a Markov Decision
Process (MDP) (S, A, T,P, R, uu,v), where S is a set of states, .4 a set of actions, 7 C S a set
of terminal states, P : S x A — AS a transition probability distribution, R : S x A xS - R
a reward function, u € AS an initial probability distribution, and « € [0, 1] a discount factor. An
episode begins with sg ~ p, and at each time ¢ > 0 the agent chooses an action a;, then observes
the next state s;11 ~ P(st,a) and reward 711 = R(st, at, St41), repeating until a terminal state

"Henceforth “formal languages,” for ease of exposition.

! Go to ared triangle, then a green object, thena
blue object that isn't a triangle.

e\
O—0O—0
(RAD0) (G0) (BA-AL)

/" Gotoared, then a green, then a blue object, A A . /" Go to a blue object, but never go to triangles .
repeatedly. H before circles.

(B,1)
(R,0) :(; (@,0)

Figure 2: Four temporally extended tasks in a gridworld expressed as Reward Machines over the
propositions AP = {R, G, B, A, O}. An edge labelled (i, r) indicates the logical condition ¢ for
when the corresponding transition should be followed, and the reward 7 that is yielded as a result.
Doubled circles indicate terminal states, and we omit non-rewarding self-loop edges to aid readability.

st € T is reached. We refer to full episodes as trajectories, denoted by 7 = (sg, ag, $1,a1,...). A
history hy = (so, ag, 1,01, . . . s¢) refers to the states and actions up to time ¢. The agent’s goal is
to interact with the environment to learn a policy 7(a¢|s;) that maximizes the expected discounted

return B, . [Zthl v'r;] (where the episode length 7' can be co).

3.2 Task Specification via Reward Machines

Formal languages with sequential or temporal structure—including RMs [[16], regular expressions
[63], and various temporal logics [54) |40]—offer an intuitive and expressive interface for specifying
tasks in RL while supporting representations that capture compositional task structure. Starting with
a predefined set of atomic propositions AP that represent abstract, binary features of environment
states, such languages can be used to express temporally extended properties or reward functions. In
this work, we focus on tasks specified as RMs, which subsume several formal languages of interest
[34] such as LTL over finite traces [[64, 65] and regular expressions.

An RM is an automaton that captures the structure of a reward function over the abstract vocabulary
AP (Fij%ure . It takes as input a sequence of fruth assignments (w1, ws, .. .) over AP, where each
wy € 217 denotes the subset of AP that holds true at time ¢, and outputs a corresponding sequence
of rewards (ry1, 72, ...). An RM has a finite set of internal states I/ and begins in a fixed state uq at
time ¢ = 0. At each step ¢t > 1, the RM updates its state to u; € U/ and emits a reward r; based on
the current input w, and the previous state u;_;. This continues until the RM enters a terminal state
from a designated subset J C U.

Running Example. The gridworld in Figure2|will serve as a running example. Consider the top-left
RM, which describes a task composed of three subgoals to be completed in a fixed order. When given
an input sequence (wy,ws, . . .) that identifies the values of all propositions at each time t (whether
the agent is at a red object, a green object, a circle, and so on), the RM state uy € U tracks which
subgoals have been completed and transitions to the next RM state as soon as the agent achieves
the current subgoal. When a red triangle, a green object, and a blue object that isn’t a triangle are
reached in that order, the RM terminates with a reward of 1.

Definition 1. A Reward Machine R is defined as a tuple (U, ug, F, AP, 0., 0,), where U is a finite
set of states, with initial state uy € U and terminal states F C U; AP is a set of propositions;
8y 1 U x 2P — U is a transition function that updates the RM state based on the current truth
assignment; and 6, : U x 227 — R is a reward function that emits a reward at each step.

As shown in Figure|2] the transition and reward functions of an RM can be intuitively and compactly

specified via a set of labelled edges of the form (u, u’, ¢, r), indicating that if a truth assignment w
satisfies the formula ¢ (denoted by w |=), then d,, (u,w) = v’ and §, (u,w) = r.

3.3 Grounded Interpretations

RMs express tasks in terms of abstract symbols (e.g., R, AA), but these symbols must be grounded
in the environment to be meaningful. This is achieved via a labelling function £ : S — 27 that

maps each MDP state s to the set w C AP of propositions that hold true in s. For an RM R over
propositions AP, any such L also grounds R in the environment by inducing a reward sequence for
any MDP trajectory 7: first, states s; in 7 are converted into truth assignments w; = £(s¢), then the
RM is simulated over the sequence (w1, ws, .. .) to generate a sequence of rewards until termination.

An RM-MDP augments an environment (represented by a reward-free MDP) with a concrete reward
function captured by an RM and labelling function. The resulting reward function is generally
non-Markovian with respect to MDP states S, since the reward at time ¢ depends on the internal
RM state u;. While one might consider expressing optimal behaviours via a history-based policy
m(a¢hy), this is unnecessary if the agent has oracle access to £ since RM-MDPs are Markovian over
the extended state space S x U [[16]. The agent can use £ to compute wy = L(s;) and recursively
simulate the RM to track w;. Thus, it is typical to express policies in the form 7 (a|s;, u;), where the
RM state u; compactly encodes the history h; and is sufficient for optimal decision making.

Definition 2. An RM-MDP is a triple (M, R, L), where M = (S, A, P, u,) is an MDP without
rewards or terminal states, R = (U, uy, F, AP, 6., 6,) is an RM, and L : S — 247 is a labelling
function. The RM-MDP is equivalent to an MDP with state space S x U and reward function induced
by R and L.

Running Example. The RM at the top left of Figure 2 captures the high-level structure of a multi-
stage task. To map environment trajectories into concrete rewards for this RM, we need a labelling
function £ : S — 247 that connects abstract propositions like R and /\ to environment states.

4 Problem Setting

Our goal in this work is to faithfully elicit behaviours from an agent given only a high-level task
specification in the form of an RM, R such as the ones depicted in Figure 2| R can be specified
directly, translated from other formal languages like LTL [34]], generated from a symbolic planner
(66,167, or sometimes autoformalized from natural language. Formally, we consider an environment
M = (S, A, P, u,~) (an MDP without rewards or terminal states) and a finite set of propositional
symbols AP. For any given RM task R = (U, ug, F, AP, by, d,), we wish to obtain a policy
7w (a¢|hy) that performs well in the RM-MDP (M, R, £*), where L* : S — 247 reflects a ground-
truth interpretation of the propositions AP in the environment

Assumptions. We aim to obtain 7w without online access to L* or to an external reward function
that evaluates ground-truth performance with respect to RE] In order to connect symbols AP with
environment percepts, we instead assume access to a fixed pretraining dataset D = {(7%,w®)}¥ | of
trajectories 7' = (s}, ab, si,...) with corresponding labels w® = (L*(s}), L*(s%),...). In practice,
such labels can be obtained via crowdsourced annotations [69]] or self-supervised learning [70].

For a task R, the agent is allowed an arbitrary number of interaction episodes with the environment
before committing to a final policy 7w . However, during this interaction phase, the agent must learn
in a self-supervised manner as the environment does not provide a separate reward signal.

5 Ground-Compose-Reinforce

We propose an end-to-end framework for this setting called Ground-Compose-Reinforce (Figure[T).
In the pretraining phase, the agent first grounds propositional symbols 4P in environment states via
supervised learning on D. In the behaviour elicitation phase, the agent is given a task as an RM R
composed over symbols AP. The agent then learns a policy 7w by interacting with the environment
and synthesizing its own learning signal for RL based on R and its learned interpretation of AP. We
hypothesize that this bottom-up approach to grounding language in behaviours—first learning the
meanings of individual symbols and then composing them to interpret complex tasks—is an effective
strategy. The remainder of this section describes the core implementation of Ground-Compose-
Reinforce and in Section [6] we raise and address an issue called propositional sparsity where the
agent fails to learn in extremely long-horizon tasks.

2For the problem statement, we consider the more general form of history-based policies, rather than policies
conditioned on the ground-truth RM state, which depend on £*.
*Such oracles can be notoriously hard to design in practice [68] and often require internal simulator access.

Core Algorithm. We ground the Ajgorithm 1 Ground-Compose-Reinforce for RMs
propositional symbols AP by learn-

ing a labelling function L(s) =

Input: MDP M without rewards, Propositional symbols AP,
b5 . . ; . Dataset D of labelled trajectories, RM task R over AP
L*(s) via any binary classification // Pretraining phase
method on D. Given an RM task R 1: Train labelling function [ﬁ(s) on D using any binary classifica-
over AP, we 391ve a surrogate RM- tion method
MDP (M, R, L) via RL. This surro- // Behaviour elicitation phase
gate task approximates the true RM- 2: Initialize policy m= (a | s, u) arbitrarily
MDP (M, R, L*) for which the agent ~ 3: for each episode do
lacks supervision. Since the agent 4= Observe initial state s in M; set u to the initial state of R
A . . 5 while v is non-terminal do
can query L freely, it can simulate 6 S .
ample action a ~ 7R (- | s,u)
rewards (r1,72,...) ar}d RM states ;. Execute a in M and observe next state s’
(u1,usz, ...) for any trajectory, as de- g. A
scribed in Section[3.3] Finally, weuse ¢
0
1

Compute truth assignment & — L(s”)

Update RM: v’ « 8§, (u, @), r + 6 (u, @)
these self-generated signals to train 10: Update m with RL for transition (s, u, a,,s’, u’)
a policy mg (at|st, u:) as outlined in 11:
Algorithm T}

Sets <« s, u+u

Running Example. Suppose our gridworld agent is expected to solve arbitrary RM tasks over
the vocabulary {R, G, B, A, O}. With Ground-Compose-Reinforce, the agent first connects these
symbols to environment states via D (i.e. it learns to identify which states have red shapes, which
states have triangles, etc). A human can then specify a new task as an RM composed over these
symbols (e.g. “go to a triangle and a circle, in any order”) without needing to program a task-specific
reward function. The agent systematically evaluates its own performance on this task by composing
its learned interpretations of {R, G, B, A, O}, providing a learning signal for RL.

6 Compositional Reward Shaping

An issue that can arise with the core implemen-
tation is sparse rewards. While prior RM works Vinny(5)
have proposed additional learning signals for

Estimate value of logical subtask | Bootstrap with RM-state value

v ()

T§<_
transitioning in the RM [34} 148l 149]], these meth- [~
ods fail when RM transitions themselves pose a5y

s

an exploration challenge. This can be caused by o\ i k
propositional sparsity: when L*(s) is constant \ ok
across most states under random exploration, AAG | @

the agent struggles to learn to meaningfully af-
fect propositional values (e.g. consider a robot
manipulation task that involves satisfying the

proposition “the box is picked up”).

To address this, we extend Ground-Compose-
Reinforce with potential-based reward shaping
[71]. Specifically, for a given RM task R, we
estimate the optimal value function (OVF) for
the surrogate RM-MDP (M, R, £) by decom-
posing R into simpler subtasks. The most ba-
sic subtasks correspond to satisfying individual
propositions or their negations, and we estimate
the OVFs for these 2| AP| tasks during pretrain-
ing via offline RL on D. These 2|AP| OVFs

Figure 3: An illustration of how we estimate op-
timal values in an RM-MDP. Suppose the agent
is currently in RM state u** (green and bolded).
To evaluate the expected return for the transition
u? — uB, we estimate how close the agent is to
satisfying the formula on the transition (reaching
the red triangle), and bootstrap with a coarse value
estimate for RM state u”. The overall value of u*
is approximated by the maximum expected return

across all outgoing transitions from u*.

then serve as building blocks that can be composed to approximate the OVF for any of the infinitely
many RM tasks over AP.

6.1 Deconstructing RMs into Logical Subtasks

To estimate the OVF of the surrogate RM-MDP (M, R, £), denoted V7 (s, u), we combine two key
ideas: (1) treating each RM transition in R as an independent subtask, and (2) bootstrapping from
a state-independent value function v} (u). Consider the example in Figure (3| where the agent is in

MDP state s and RM state u“*. Each RM transition is associated with a logical condition ¢ (e.g.,
RA A or BA—A), and we treat the satisfaction of ¢ as its own subtask. DeﬁnitionE]formalizes this:
we introduce the class OPL(AP) of reachability tasks over propositional formulas, where each task
<O entails reaching a state s such that ﬁ(sT) = ¢, terminating with reward 1 upon satisfaction.
Oy is itself an RM-MDP with a single non-terminal RM state (and a terminal RM state), and is
therefore Markovian over S. We denote its OVF as VS, (s).

Definition 3. For any propositional logic formula ¢ over AP, define Oy as the task of reach-
ing a state sy € S such that L(sp) = ¢. The episode terminates and yields a reward of 1 if
such a state is reached, and continues indefinitely with 0 reward otherwise. Let OPL(AP) =
{Ow | is a propositional formula over AP} denote the set of such reachability tasks.

The second component of our method is to bootstrap using a state-independent value function v, (u)
that approximates the expected return from any RM state v while ignoring the MDP state. We
estimate v, (u) using a variant of Value Iteration over the RM graph, following Camacho et al. [34].
Finally, to estimate V3 (s, u), we evaluate each outgoing transition (u, w’, ¢, r) from u by combining
the subtask value VS, (s) with the bootstrapped value of the next RM state v (u'). The final estimate
is the maximum expected return over all such transitions:

Vilosw) ~ max (V3 (9) - (r+ 70 (a)] m
This approximation assumes no RM self-transitions with non-zero rewards. Appendix [A] further
justifies and explains our approximation while extending it to arbitrary RMs.

6.2 Further Deconstructing Logical Subtasks

Approximation [I| allows us to estimate V3 (s, u) for any RM task R over AP, provided we can
estimate VS, (s) for any ¢ in OPL(AP). However, the number of propositional formulas over AP

(up to logical equivalence) is 22" and modelling a separate OVF for each such task is intractable.
To address this, we further decompose logical formulas based on their structure. Any formula ¢ can
be rewritten in disjunctive normal form, i.e., as a disjunction of conjunctions of literals (where a
literal is either a proposition z or its negation —x). We then approximate the OVF of ¢ using the
semantics of fuzzy logic [72], where max represents disjunction and min represents conjunction

Let p = &1 V...V &, where each &; is a conjunction of literals. We approximate:

V&D(s) ~ max Ve, (s) 2)

For each conjunctive clause £ = I; A ... Alg, where each [; is a literal, we approximate:

Viels) = min V3, (s))

By composing Approximations [IH3] we can estimate the OVF for any RM task based on only 2| AP
OVFs—namely, those for ¢x and O—z, for each € AP. We refer to these as the primitive value
functions (PVFs).

6.3 Final Remarks

In this section, we showed that the optimal value function (OVF) of any RM task R can be approxi-
mated using just 2| AP| primitive value functions (PVFs). From these 2| AP| PVFs, we can estimate
OVFs for doubly exponentially many logical tasks (22") and infinitely many RM tasks. Each PVF
quantifies progress toward satisfying a single proposition or its negation, and can be learned directly
from D using any offline RL algorithm. One might view this approach as trading off expressivity for
modularity: directly modelling the OVFs of all RM tasks is infeasible, so we instead model a small,
reusable set of 2| AP| PVFs at the cost of introducing some approximation error.

Leveraging that we can estimate the OVF for any RM task R, we extend Algorithm|[I] with potential-
based reward shaping to address propositional sparsity. Further details on learning PVFs, sources of
approximation error, and the potential-based reward shaping scheme are provided in Appendix [A]

*Fuzzy operators have previously been applied for satisfaction of a temporal formula over quantitative signals
[331153}154]. While such tasks are binary in nature, we consider RMs, which can express other reward structures.

7 Experiments

We conducted experiments to evaluate the following research questions:

RQ1 Grounding RMs in Behaviours: With Ground-Compose-Reinforce, can we faithfully elicit
behaviours given high-level task specifications (RMs)?

RQ2 Compositional Generalization: Can we elicit meaningful, out-of-distribution (OOD) be-
haviours beyond those observed in D?

RQ3 Propositional Sparsity: Can the agent operate in extremely long-horizon environments where
propositional values are hard to alter with random exploration?

Code/videos available at: https://github.com/andrewli77/ground-compose-reinforce.

7.1 Experimental Setup

We considered two domains: an image-based gridworld with
randomized object locations called GeoGrid (introduced in
the running example), and a Meta-World-based robotics
environment called DrawerWorld (Figure). Full details on
the setup can be found in Appendix BT}

Pretraining Datasets. We collected D under minimal as-
sumptions about downstream tasks. In GeoGrid, D con-
tains 5000 trajectories generated by a random policy. In
DrawerWorld, we manually operated the robot to collect
350 trajectories involving generic behaviours (e.g., opening
drawers, lifting boxes). To evaluate OOD generalization, we
constrained D to only contain trajectories interacting with]
at most one box in DrawerWorld. Finally, trajectories were Figure 4: DrawerWorld is a custom

labelled using a handcrafted labelling function. Meta-World environment where the
.) agent can interact with two drawers
Tasks. We designed a diverse set of RM tasks (Table[T) that ;4 three boxes. Propositions capture

target behaviours rarely or never seen in D. The GeoGrid hether: each drawer is open; each
tasks evaluate whether the agent can produce fine-tuned o is lifted by the agent; a given box
behaviours beyond the random-action trajectories observed ¢ ip a given drawer.

in D. The DrawerWorld tasks evaluate whether the agent

can solve complex manipulation tasks that require composing behaviours observed in D (e.g., Pickup-
Each-Box requires handling all three boxes, while trajectories in D interact with at most one box).

7.2 Method and Baselines

We benchmarked Ground-Compose-Reinforce (GCR) against several non-compositional baselines.
Methods based on online RL (GCR, Bespoke Reward Model) use PPO [[73] to train a policy from
scratch. During execution, GCR captures memory via the RM state while all non-RM-based base-
lines encode the observation history using an additional GRU [74]. See Appendix B.2] for full
implementation details and Appendix [B23|for full training details.

Ground-Compose-Reinforce (ours). We implemented GCR with potential-based reward shaping as

described in Sections|5{and @ Both the predicted labelling function £ and PVFs are neural networks
trained on D via supervised learning and offline RL, respectively.

LTL-conditioned Behaviour Cloning (LTL-BC) is a neural network policy 7(a¢|h;, ¢) that directly
maps LTL specifications ¢ to behaviours. We labelled each trajectory 7 in D with an LTL description
 (based on the propositional labels for 7), then trained the policy to maximize the log-likelihood of
actions in 7, conditioned on the history i, and ¢. For each downstream task in Table [T} we prompted
the policy with an LTL formula that aligns with that task.

We also trained bespoke models with advance knowledge of the downstream RM tasks. Bespoke
Reward Model directly predicts rewards, optimal values, and terminations for all downstream
tasks simultaneously. We labelled each trajectory in D with ground-truth rewards and terminations
for each task based on the propositional labels, then trained the model to directly predict these
quantities given the history h;. Value estimates were trained via offline RL in a similar manner to

https://github.com/andrewli77/ground-compose-reinforce

Table 1: List of RM tasks. For each, we report the mean (up) and max (maxp) undiscounted return
over trajectories in D, along with the max achievable expected return of any policy (Max; if unknown,
we report the highest average return observed in our experiments). Some tasks involve behaviours
that are rarely or never observed in D.

Task Description Return

GeoGrid 7753 maxp Max

Sequence Go to ared A, then a green A\, then a blue A. 0.04 1 1

Loop Repeatedly go to ared A, then a green A, then a blue A. 0.04 3 5.36

Logic Go to all six objects, but always go to red objects before ~ 0.00 1 1
blue objects, and blue objects before green objects.

Safety Go to a red object, then a blue object, then a green object, —0.84 1 1
but always avoid A.

DrawerWorld

Hold-Red-Box Lift and hold the red box as long as possible. 41.7 736 1538

Pickup-Each-Box Pick up the red box, then the blue box, then the green box. 0 0 1

Show-Green-Box Reveal the green box if it’s in a closed drawer, then liftit. ~ 0.22 1 1

GCR. Finally, we trained a policy via RL while using the learned value function for potential-based
reward shaping. Bespoke Behaviour Cloning (BC) is a neural network policy that directly imitates
successful trajectories in D for every downstream task. Due to the limited number of reward-worthy
trajectories in D, we considered any trajectory achieving positive return on that task as successful.

We also compared various reward shaping schemes for GCR. No RS directly uses RM rewards
without any reward shaping (i.e. AlgorithmT). High-Level RS, inspired by Camacho et al. [34], uses
a potential function that only considers the current RM state, but not the current MDP state.

7.3 Results

We ran each method’s training pipeline five times and report the average final performances in
Table 2] Performance was measured by undiscounted return (averaged over 100 evaluation episodes
for GeoGrid or 20 for DrawerWorld), where rewards are with respect to the ground-truth labelling
function £*. In Appendix we report RL learning curves, both with respect to the agent’s own
reward model (without shaping rewards) and ground-truth rewards under L£*.

GCR consistently solves novel tasks, even when no successful demonstrations exist in D. On Loop,
Hold-Red-Box and Pickup-Each-Box, it significantly outperforms even the best trajectories in D. We
attribute this success to GCR’s ability to learn transferable knowledge from D and apply it towards
novel task compositions, while fine-tuning behaviours with (self-supervised) RL.

All non-compositional baselines fail to reliably solve any task. Results show that LTL-BC, Bespoke
Reward Model, and Bespoke BC do not fare well with limited pretraining trajectories. Learning curves
show that the Bespoke Reward Model assigns near-zero rewards to most trajectories in GeoGrid,
likely due to the rarity of positive demonstrations in D. In DrawerWorld, it produces misaligned
rewards, leading to reward hacking (evidenced by high returns under the learned reward model but
low returns under the ground-truth £*).

Reward shaping enables long-horizon RL. Our reward shaping strategy yields modest improvements
in GeoGrid, but is critical to success in DrawerWorld, where behaviours like opening a drawer and
picking up a box are nearly impossible to discover from random exploration alone.

We conclude the following. GCR faithfully elicits behaviours from RM specifications, outperform-
ing non-compositional approaches (RQ1). Moreover, GCR compositionally generalizes to OOD
behaviours beyond those observed in D (RQ2). Finally, our compositional reward shaping strategy
for GCR enables RL in long-horizon settings involving propositional sparsity (RQ3).

7.4 Extending Ground-Compose-Reinforce with a Natural Language Interface

While natural language (NL) is often argued to have compositional properties [[75]], exploiting this
compositionality in agentic language models (e.g. vision-language-action models) remains an open
challenge. In Appendix |C], we show that our GeoGrid RMs can be autoformalized directly from an

Table 2: Comparison of methods for eliciting behaviours from high-level task specifications. We
report performance (undiscounted return with respect to ground-truth rewards) averaged over 5 runs
with standard error.

Bespoke Bespoke GCR (Ours) GCR (Ours)
Task GCR (Ours) LTL-BC g ord Model BC No RS High-Level RS
GeoGrid
Sequence 1.00 £ 0.00 0.04 £0.01 0+£0 0.05+0.01 0.94+0.03 1.00+0.00
Loop 5.36 = 0.08 0.03 +£0.01 0£0 0.04 £0.01 4.68+£0.05 5.2740.08
Logic 0.94 + 0.01 0+£0 0+£0 0+£0 0.00+£0.00 0.94 +0.01
Safety 1.00 £0.00 —0.84 +0.01 —0.14 +£0.01 —0.85+0.01 0.23+0.11 0.97 +0.01
DrawerWorld
Hold-Red-Box 1538 + 130 0+£0 0+£0 0+£0 0+0 0+0
Pickup-Each-Box 1.00 + 0.00 0+£0 0+0 0+0 0+0 0+0
Show-Green-Box 0.61 4+ 0.06 0+£0 0+£0 0+£0 0+0 0+£0

NL reward function description using OpenAI’s 03 model, zero-shot—i.e., without fine-tuning on
trajectories or other forms of grounding in our specific environments. Thus, we posit that leveraging
compositional representations like RMs can be an effective way of building NL-interfaced agents in
settings with limited labelled trajectory data (i.e. where |D| is small).

8 Future Work and Limitations

Extension to Other Compositional Representations: In this work, we propose an end-to-end
framework for grounding high-level specifications in behaviours that leverages the compositionality
inherent in RMs. However, we believe our core insights apply to a wide range of compositional
representations such as those that deal with objects [76] and relations [77].

Extension to Other Problem Settings: Grounding language is a prerequisite for a myriad of
language-conditioned problem settings. We consider an ‘“RL-in-the-loop” setting, but future works
could extend our insights to zero-shot execution of language tasks [5, 40} 46], question answering
[78L[79], and interactive task learning 80, [81]].

Reward Hacking: Misalignment between an agent’s interpretation of a task and human intent can
lead to harmful consequences, particularly in RL [82]]. The use of formal specifications like RMs,
which are unambiguous over the propositional vocabulary, can partially mitigate this, but ambiguity in
the propositions themselves remains a concern in Ground-Compose-Reinforce. Prior works suggest
that RM structure can be exploited to improve decision making under such ambiguity [55}56].

Assumptions on D: We assume that trajectories in D are labelled with values for a fixed set of
propositions. Future works could explore other representations of propositions (e.g. as text) as well
as scalable labelling methods (e.g. crowdsourced annotations [[69] or self-supervised learning [70]).

9 Conclusion

This work presents Ground-Compose-Reinforce, an end-to-end framework for training RL agents
directly from Reward Machine specifications—without oracle reward or labelling functions. A key
challenge that we address is grounding these high-level task specifications in executable behaviours,
given an agent’s perception and action capabilities. We find that exploiting compositional task
structure is critical to faithfully capturing this grounding from limited data. Starting from only 350
labelled pretraining trajectories, we show that our technical approach scales to temporally extended
manipulation tasks in Meta-World while generalizing out-of-distribution to behaviours that never
appear in pretraining. Moreover, we show that in some cases, Reward Machines can be autoformalized
directly from natural language reward function descriptions to expose this temporal task structure.

More broadly, we show that leveraging language compositionality presents a promising pathway to
building language-driven agents without relying on massive language-labelled data. Future work
could explore the extension of these ideas to large-scale agentic language models such as vision-
language-action models.

10

Acknowledgements

We thank Harris Chan for his insightful and valuable input throughout all stages of this project.
We gratefully acknowledge funding from the Natural Sciences and Engineering Research Coun-
cil of Canada (NSERC) and the Canada CIFAR AI Chairs Program. Resources used in prepar-
ing this research were provided, in part, by the Province of Ontario, the Government of Canada
through CIFAR, and companies sponsoring the Vector Institute for Artificial Intelligence (https:
//vectorinstitute.ai/partnerships/). Finally, we thank the Schwartz Reisman Institute for
Technology and Society for providing a rich multi-disciplinary research environment.

References

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

[9

—

[10]

Maxime Chevalier-Boisvert, Dzmitry Bahdanau, Salem Lahlou, Lucas Willems, Chitwan
Saharia, Thien Huu Nguyen, and Yoshua Bengio. BabyAlI: A platform to study the sample
efficiency of grounded language learning. In Proceedings of the 7th International Conference
on Learning Representations (ICLR), 2019.

Karl Moritz Hermann, Felix Hill, Simon Green, Fumin Wang, Ryan Faulkner, Hubert Soyer,
David Szepesvari, Wojciech Marian Czarnecki, Max Jaderberg, Denis Teplyashin, Marcus
Wainwright, Chris Apps, Demis Hassabis, and Phil Blunsom. Grounded language learning in a
simulated 3d world. arXiv preprint arXiv:1706.06551, 2017.

Felix Hill, Olivier Tieleman, Tamara von Glehn, Nathaniel Wong, Hamza Merzic, and Stephen
Clark. Grounded language learning fast and slow. In Proceedings of the 9th International
Conference on Learning Representations (ICLR), 2021.

Devendra Singh Chaplot, Kanthashree Mysore Sathyendra, Rama Kumar Pasumarthi, Dheeraj
Rajagopal, and Ruslan Salakhutdinov. Gated-attention architectures for task-oriented language
grounding. In Proceedings of the 32nd AAAI Conference on Artificial Intelligence (AAAI),
volume 32, 2018.

Kevin Black, Noah Brown, Danny Driess, Adnan Esmail, Michael Equi, Chelsea Finn, Niccolo
Fusai, Lachy Groom, Karol Hausman, Brian Ichter, Szymon Jakubczak, Tim Jones, Liyiming
Ke, Sergey Levine, Adrian Li-Bell, Mohith Mothukuri, Suraj Nair, Karl Pertsch, et al. mg: A
vision-language-action flow model for general robot control. arXiv preprint arXiv:2410.24164,
2024.

Brianna Zitkovich, Tianhe Yu, Sichun Xu, Peng Xu, Ted Xiao, Fei Xia, Jialin Wu, Paul Wohlhart,
Stefan Welker, Ayzaan Wahid, Quan Vuong, Vincent Vanhoucke, Huong Tran, Radu Soricut,
Anikait Singh, Jaspiar Singh, Pierre Sermanet, Pannag R. Sanketi, Grecia Salazar, et al. RT-2:
Vision-language-action models transfer web knowledge to robotic control. In Proceedings of
the 7th Conference on Robot Learning (CoRL), volume 229, pages 2165-2183. PMLR, 2023.

Yecheng Jason Ma, Vikash Kumar, Amy Zhang, Osbert Bastani, and Dinesh Jayaraman. LIV:
Language-image representations and rewards for robotic control. In Proceedings of the 40th
International Conference on Machine Learning (ICML), volume 202, pages 23301-23320.
PMLR, 2023.

Bowen Baker, Ilge Akkaya, Peter Zhokov, Joost Huizinga, Jie Tang, Adrien Ecoffet, Brandon
Houghton, Raul Sampedro, and Jeff Clune. Video pretraining (VPT): Learning to act by
watching unlabeled online videos. In Proceedings of the 36th Conference on Advances in
Neural Information Processing Systems (NeurIPS), volume 35, pages 24639-24654, 2022.

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B Brown, Benjamin Chess, Rewon Child,
Scott Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language
models. arXiv preprint arXiv:2001.08361, 2020.

Armen Aghajanyan, Lili Yu, Alexis Conneau, Wei-Ning Hsu, Karen Hambardzumyan, Susan
Zhang, Stephen Roller, Naman Goyal, Omer Levy, and Luke Zettlemoyer. Scaling laws for
generative mixed-modal language models. In Proceedings of the 40th International Conference
on Machine Learning (ICML), volume 202, pages 265-279. PMLR, 2023.

11

https://vectorinstitute.ai/partnerships/
https://vectorinstitute.ai/partnerships/

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

Kaya Stechly, Karthik Valmeekam, and Subbarao Kambhampati. Chain of thoughtlessness?
An analysis of CoT in planning. In Proceedings of the 38th Conference on Advances in Neural
Information Processing Systems (NeurIPS), volume 37, pages 2910629141, 2024.

Lucy Xiaoyang Shi, Michael Robert Equi, Liyiming Ke, Karl Pertsch, Quan Vuong, James
Tanner, Anna Walling, Haohuan Wang, Niccolo Fusai, Adrian Li-Bell, et al. Hi robot: Open-
ended instruction following with hierarchical vision-language-action models. In Proceedings of
the 42nd International Conference on Machine Learning (ICML), volume 267, pages 54919—
54933. PMLR, 2025.

Shalev Lifshitz, Keiran Paster, Harris Chan, Jimmy Ba, and Sheila Mcllraith. STEVE-1: A
generative model for text-to-behavior in Minecraft. In Proceedings of the 37th Conference on
Advances in Neural Information Processing Systems (NeurIPS), volume 36, pages 6990069929,
2023.

Rishi Bommasani, Drew A. Hudson, Ehsan Adeli, Russ B. Altman, Simran Arora, Sydney von
Arx, Michael S. Bernstein, Jeannette Bohg, Antoine Bosselut, Emma Brunskill, Erik Brynjolfs-
son, Shyamal Buch, Dallas Card, Rodrigo Castellon, Niladri S. Chatterji, Annie S. Chen, et al.
On the opportunities and risks of foundation models. arXiv preprint arXiv:2108.07258, 2021.

Rodrigo Toro Icarte, Toryn Klassen, Richard Valenzano, and Sheila Mcllraith. Using reward
machines for high-level task specification and decomposition in reinforcement learning. In
Proceedings of the 35th International Conference on Machine Learning (ICML), volume 80,
pages 2107-2116. PMLR, 2018.

Rodrigo Toro Icarte, Toryn Q Klassen, Richard Valenzano, and Sheila A Mcllraith. Reward
machines: Exploiting reward function structure in reinforcement learning. Journal of Artificial
Intelligence Research, 73:173-208, 2022.

Tianhe Yu, Deirdre Quillen, Zhanpeng He, Ryan Julian, Karol Hausman, Chelsea Finn, and
Sergey Levine. Meta-World: A benchmark and evaluation for multi-task and meta reinforcement
learning. In Proceedings of the 3rd Conference on Robot Learning (CoRL), volume 100, pages
1094-1100. PMLR, 2020.

Evan Zheran Liu, Sahaana Suri, Tong Mu, Allan Zhou, and Chelsea Finn. Simple embodied
language learning as a byproduct of meta-reinforcement learning. In Proceedings of the 40th
International Conference on Machine Learning (ICML), volume 202, pages 21997-22008.
PMLR, 2023.

Moo Jin Kim, Karl Pertsch, Siddharth Karamcheti, Ted Xiao, Ashwin Balakrishna, Suraj Nair,
Rafael Rafailov, Ethan P Foster, Pannag R Sanketi, Quan Vuong, Thomas Kollar, Benjamin
Burchfiel, Russ Tedrake, Dorsa Sadigh, Sergey Levine, Percy Liang, and Chelsea Finn. Open-
VLA: An open-source vision-language-action model. In Proceedings of the 8th Conference on
Robot Learning (CoRL), volume 270, pages 2679-2713. PMLR, 2025.

Dzmitry Bahdanau, Felix Hill, Jan Leike, Edward Hughes, Pushmeet Kohli, and Edward
Grefenstette. Learning to understand goal specifications by modelling reward. In Proceedings
of the 7th International Conference on Learning Representations (ICLR), 2019.

Kate Baumli, Satinder Baveja, Feryal M. P. Behbahani, Harris Chan, Gheorghe Comanici,
Sebastian Flennerhag, Maxime Gazeau, Kristian Holsheimer, Dan Horgan, Michael Laskin,
Clare Lyle, Hussain Masoom, Kay McKinney, Volodymyr Mnih, Alexander Neitz, Fabio Pardo,
et al. Vision-language models as a source of rewards. arXiv preprint arXiv:2312.09187, 2023.

Juan Rocamonde, Victoriano Montesinos, Elvis Nava, Ethan Perez, and David Lindner. Vision-
language models are zero-shot reward models for reinforcement learning. In Proceedings of the
12th International Conference on Learning Representations (ICLR), 2024.

Yuwei Fu, Haichao Zhang, Di Wu, Wei Xu, and Benoit Boulet. FuRL: Visual-language models
as fuzzy rewards for reinforcement learning. In Proceedings of the 41st International Conference
on Machine Learning (ICML), volume 235, pages 14256-14274. PMLR, 2024.

12

[24] Haoqi Yuan, Chi Zhang, Hongcheng Wang, Feiyang Xie, Penglin Cai, Hao Dong, and Zongqing
Lu. Plan4MC: Skill reinforcement learning and planning for open-world Minecraft tasks. arXiv
preprint arXiv:2303.16563, 2023.

[25] Wenlong Huang, Fei Xia, Ted Xiao, Harris Chan, Jacky Liang, Pete Florence, Andy Zeng,
Jonathan Tompson, Igor Mordatch, Yevgen Chebotar, Pierre Sermanet, Tomas Jackson, Noah
Brown, Linda Luu, Sergey Levine, Karol Hausman, and Brian Ichter. Inner monologue:
Embodied reasoning through planning with language models. In Proceedings of the 6th
Conference on Robot Learning (CoRL), volume 205, pages 1769—-1782. PMLR, 2023.

[26] Michael Ahn, Anthony Brohan, Noah Brown, Yevgen Chebotar, Omar Cortes, Byron David,
Chelsea Finn, Keerthana Gopalakrishnan, Karol Hausman, Alexander Herzog, Daniel Ho,
Jasmine Hsu, Julian Ibarz, Brian Ichter, Alex Irpan, Eric Jang, Rosario Jauregui Ruano, et al.

Do as I can, not as I say: Grounding language in robotic affordances. In Proceedings of the 6th
Conference on Robot Learning (CoRL), volume 205, pages 287-318. PMLR, 2023.

[27] Amir Pnueli. The temporal logic of programs. In /8th Annual Symposium on Foundations of
Computer Science, pages 46-57. IEEE, 1977.

[28] Sertac Karaman, Ricardo G. Sanfelice, and Emilio Frazzoli. Optimal control of mixed logical
dynamical systems with linear temporal logic specifications. In Proceedings of the 47th IEEE
Conference on Decision and Control, CDC, pages 2117-2122. IEEE, 2008.

[29] Marius Kloetzer and Calin Belta. A fully automated framework for control of linear systems
from temporal logic specifications. IEEE Transactions Automatic Control, 53(1):287-297,
2008.

[30] Christel Baier and Joost-Pieter Katoen. Principles of Model Checking. MIT press, 2008.

[31] I1 Moon, Gary J. Powers, Jerry R. Burch, and Edmund M. Clarke. Automatic verification of
sequential control systems using temporal logic. AIChE Journal, 38(1):67-75, 1992.

[32] Amir Pnueli. Applications of temporal logic to the specification and verification of reactive
systems: A survey of current trends. In J. W. de Bakker, Willem P. de Roever, and Grzegorz
Rozenberg, editors, Current Trends in Concurrency, Overviews and Tutorials, volume 224 of
Lecture Notes in Computer Science, pages 510-584. Springer, 1986.

[33] Xiao Li, Cristian Ioan Vasile, and Calin Belta. Reinforcement learning with temporal logic
rewards. In Proceedings of the 2017 IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), pages 3834-3839, 2017.

[34] Alberto Camacho, Rodrigo Toro Icarte, Toryn Q. Klassen, Richard Valenzano, and Sheila A.
Mcllraith. LTL and beyond: Formal languages for reward function specification in reinforcement

learning. In Proceedings of the 28th International Joint Conference on Artificial Intelligence
(IJCAI), pages 6065-6073, 2019.

[35] Cameron Voloshin, Abhinav Verma, and Yisong Yue. Eventual discounting temporal logic
counterfactual experience replay. In Proceedings of the 40th International Conference on
Machine Learning (ICML), volume 202, pages 35137-35150. PMLR, 2023.

[36] Andrea Brunello, Angelo Montanari, and Mark Reynolds. Synthesis of LTL formulas from
natural language texts: State of the art and research directions. In 26¢h International Symposium
on Temporal Representation and Reasoning (TIME), volume 147 of LIPIcs, pages 17:1-17:19.
Schloss Dagstuhl-Leibniz-Zentrum fiir Informatik, 2019.

[37] Jason Xinyu Liu, Ziyi Yang, Ifrah Idrees, Sam Liang, Benjamin Schornstein, Stefanie Tellex,
and Ankit Shah. Grounding complex natural language commands for temporal tasks in unseen
environments. In Proceedings of the 7th Conference on Robot Learning (CoRL), volume 229,
pages 1084-1110. PMLR, 2023.

[38] Francesco Fuggitti and Tathagata Chakraborti. NL2LTL-a python package for converting
natural language (NL) instructions to linear temporal logic (LTL) formulas. In Proceedings of
the 37th AAAI Conference on Artificial Intelligence (AAAI), volume 37, pages 16428-16430,
2023.

13

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

Yongchao Chen, Rujul Gandhi, Yang Zhang, and Chuchu Fan. NL2TL: Transforming natural
languages to temporal logics using large language models. In Proceedings of the 2023 Confer-
ence on Empirical Methods in Natural Language Processing (EMNLP), pages 15880—-15903,
2023.

Pashootan Vaezipoor, Andrew C Li, Rodrigo A Toro Icarte, and Sheila A Mcilraith. LTL2Action:
Generalizing LTL instructions for multi-task RL. In Proceedings of the 38th International
Conference on Machine Learning (ICML), volume 139, pages 10497-10508. PMLR, 2021.

Yen-Ling Kuo, Boris Katz, and Andrei Barbu. Encoding formulas as deep networks: Reinforce-
ment learning for zero-shot execution of LTL formulas. In Proceedings of the 2020 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS), pages 5604-5610, 2020.

Beyazit Yalcinkaya, Niklas Lauffer, Marcell Vazquez-Chanlatte, and Sanjit A. Seshia. Composi-
tional automata embeddings for goal-conditioned reinforcement learning. In Proceedings of the
38th Conference on Advances in Neural Information Processing Systems (NeurIPS), volume 37,
pages 72933-72963, 2024.

Wenjie Qiu, Wensen Mao, and He Zhu. Instructing goal-conditioned reinforcement learning
agents with temporal logic objectives. In Proceedings of the 37th Conference on Advances in
Neural Information Processing Systems (NeurIPS), volume 36, pages 39147-39175, 2023.

Jason Xinyu Liu, Ankit Shah, Eric Rosen, Mingxi Jia, George Konidaris, and Stefanie Tellex.
Skill transfer for temporal task specification. In Proceedings of the 2024 IEEE International
Conference on Robotics and Automation (ICRA), pages 2535-2541. IEEE, 2024.

Borja G. Le6n, Murray Shanahan, and Francesco Belardinelli. In a nutshell, the human asked for
this: Latent goals for following temporal specifications. In Proceedings of the 10th International
Conference on Learning Representations (ICLR), 2022.

Mathias Jackermeier and Alessandro Abate. DeepLTL: Learning to efficiently satisfy complex
LTL specifications for multi-task RL. In Proceedings of the 13th International Conference on
Learning Representations (ICLR), 2025.

Geraud Nangue Tasse, Devon Jarvis, Steven James, and Benjamin Rosman. Skill machines:
Temporal logic skill composition in reinforcement learning. In Proceedings of the 12th Interna-
tional Conference on Learning Representations (ICLR), 2024.

Daniel Furelos-Blanco, Mark Law, Anders Jonsson, Krysia Broda, and Alessandra Russo.
Induction and exploitation of subgoal automata for reinforcement learning. Journal of Artificial
Intelligence Research, 70:1031-1116, 2021.

Roko Para¢, Lorenzo Nodari, Leo Ardon, Daniel Furelos-Blanco, Federico Cerutti, and Alessan-
dra Russo. Learning robust reward machines from noisy labels. In Proceedings of the 21st
International Conference on Knowledge Representation and Reasoning (KR), 2024.

Yugian Jiang, Suda Bharadwaj, Bo Wu, Rishi Shah, Ufuk Topcu, and Peter Stone. Temporal-
logic-based reward shaping for continuing reinforcement learning tasks. In Proceedings of the
35th AAAI Conference on Artificial Intelligence (AAAI), volume 35, pages 7995-8003, 2021.

Mahmoud Elbarbari, Kyriakos Efthymiadis, Bram Vanderborght, and Ann Nowé. Ltlf-based
reward shaping for reinforcement learning. In Adaptive and Learning Agents Workshop 2021:
at AAMAS, 2021.

Kishor Jothimurugan, Rajeev Alur, and Osbert Bastani. A composable specification language
for reinforcement learning tasks. In Proceedings of the 33rd Conference on Advances in Neural
Information Processing Systems (NeurIPS), volume 32, 2019.

Anand Balakrishnan and Jyotirmoy V. Deshmukh. Structured reward shaping using signal

temporal logic specifications. In Proceedings of the 2019 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), pages 3481-3486, 2019.

14

[54] Derya Aksaray, Austin Jones, Zhaodan Kong, Mac Schwager, and Calin Belta. Q-learning for
robust satisfaction of signal temporal logic specifications. In 2016 IEEE 55th Conference on
Decision and Control (CDC), pages 6565-6570, 2016. doi: 10.1109/CDC.2016.7799279.

[55] Andrew Li, Zizhao Chen, Toryn Klassen, Pashootan Vaezipoor, Rodrigo Toro Icarte, and Sheila
Mcllraith. Reward machines for deep RL in noisy and uncertain environments. In Proceedings
of the 38th Conference on Advances in Neural Information Processing Systems (NeurIPS),
volume 37, pages 110341-110368, 2024.

[56] Andrew C Li, Zizhao Chen, Pashootan Vaezipoor, Toryn Q Klassen, Rodrigo Toro Icarte,
and Sheila A Mcllraith. Noisy symbolic abstractions for deep RL: A case study with reward
machines. arXiv preprint arXiv:2211.10902, 2022.

[57] Gregory Hyde and Eugene Santos, Jr. Detecting hidden triggers: Mapping non-Markov reward
functions to Markov. In Proceedings of the 27th European Conference on Artificial Intelligence
(ECAI), volume 392, pages 1357-1364. IOS Press, 2024.

[58] Phillip JK Christoffersen, Andrew C Li, Rodrigo Toro Icarte, and Sheila A Mcllraith. Learning
symbolic representations for reinforcement learning of non-Markovian behavior. arXiv preprint
arXiv:2301.02952, 2023.

[59] Elena Umili, Francesco Argenziano, and Roberto Capobianco. Neural reward machines. In
Proceedings of the 27th European Conference on Artificial Intelligence (ECAI), pages 3055—
3062. IOS Press, 2024.

[60] Elena Umili, Roberto Capobianco, and Giuseppe De Giacomo. Grounding LTLf specifications
in image sequences. In Proceedings of the 20th International Conference on Knowledge
Representation and Reasoning (KR), volume 19, pages 668—678, 2023.

[61] Jacob Andreas, Dan Klein, and Sergey Levine. Modular multitask reinforcement learning with
policy sketches. In Proceedings of the 34th International Conference on Machine Learning
(ICML), volume 70, pages 166—175. PMLR, 2017.

[62] Junhyuk Oh, Satinder Singh, Honglak Lee, and Pushmeet Kohli. Zero-shot task generaliza-
tion with multi-task deep reinforcement learning. In Proceedings of the 34th International
Conference on Machine Learning (ICML), volume 70, pages 2661-2670. PMLR, 2017.

[63] Ronen I. Brafman and Giuseppe De Giacomo. Regular Decision Processes: A model for
non-Markovian domains. In Proceedings of the 28th International Joint Conference on Artificial
Intelligence (IJCAI), pages 5516-5522, 2019.

[64] Giuseppe De Giacomo and Moshe Y Vardi. Linear Temporal Logic and Linear Dynamic
Logic on finite traces. In Proceedings of the 23rd International Joint Conference on Artificial
Intelligence (IJCAI), pages 854-860, 2013.

[65] Jorge A Baier and Sheila A Mcllraith. Planning with first-order temporally extended goals
using heuristic search. In Proceedings of the 21st National Conference on Artificial Intelligence
(AAAI), volume 21, pages 788-795, 2006.

[66] Leodn Illanes, Xi Yan, Rodrigo Toro Icarte, and Sheila A. Mcllraith. Symbolic planning and
model-free reinforcement learning: Training taskable agents. In Proceedings of the 4th Multi-
disciplinary Conference on Reinforcement Learning and Decision (RLDM), pages 191-195,
2019a.

[67] Ledn Illanes, Xi Yan, Rodrigo Toro Icarte, and Sheila A. Mcllraith. Symbolic plans as high-level
instructions for reinforcement learning. In Proceedings of the 30th International Conference on
Automated Planning and Scheduling (ICAPS), volume 30, pages 540-550, 2020.

[68] Jack Clark and Dario Amodei. Faulty reward functions in the wild, 2016. URL https:
//openai.com/index/faulty-reward-functions/. Blog post.

[69] Nisan Stiennon, Long Ouyang, Jeffrey Wu, Daniel Ziegler, Ryan Lowe, Chelsea Voss, Alec
Radford, Dario Amodei, and Paul F Christiano. Learning to summarize with human feedback.
In Proceedings of the 34th Conference on Advances in Neural Information Processing Systems
(NeurIPS), volume 33, pages 3008-3021, 2020.

15

https://openai.com/index/faulty-reward-functions/
https://openai.com/index/faulty-reward-functions/

[70] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agar-
wal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen Krueger, and Ilya
Sutskever. Learning transferable visual models from natural language supervision. In Proceed-
ings of the 38th International Conference on Machine Learning (ICML), volume 139, pages
8748-8763. PMLR, 2021.

[71] Andrew Y Ng, Daishi Harada, and Stuart Russell. Policy invariance under reward transfor-
mations: Theory and application to reward shaping. In Proceedings of the 16th International
Conference on Machine Learning (ICML), pages 278-287, 1999.

[72] J. A. Goguen. The logic of inexact concepts. Synthese, 19(3/4):325-373, 1969.

[73] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal
policy optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

[74] Kyunghyun Cho, Bart van Merriénboer, Caglar Gulcehre, Dzmitry Bahdanau, Fethi Bougares,
Holger Schwenk, and Yoshua Bengio. Learning phrase representations using RNN encoder—
decoder for statistical machine translation. In Proceedings of the 2014 Conference on Empirical
Methods in Natural Language Processing (EMNLP), pages 1724—1734, 2014.

[75] Zoltan Gendler Szabé. Compositionality. In Edward N. Zalta and Uri Nodelman, editors, The
Stanford Encyclopedia of Philosophy. Metaphysics Research Lab, Stanford University, 2024.

[76] Carlos Diuk, Andre Cohen, and Michael L Littman. An object-oriented representation for
efficient reinforcement learning. In Proceedings of the 25th International Conference on
Machine Learning (ICML), pages 240-247, 2008.

[77] Saso DZeroski, Luc De Raedt, and Kurt Driessens. Relational reinforcement learning. Machine
Learning, 43:7-52, 2001.

[78] Lynette Hirschman and Robert Gaizauskas. Natural language question answering: the view
from here. Natural Language Engineering, 7(4):275-300, 2001.

[79] Robert F Simmons. Natural language question-answering systems: 1969. Communications of
the ACM, 13(1):15-30, 1970.

[80] Joyce Y Chai, Qiaozi Gao, Lanbo She, Shaohua Yang, Sari Saba-Sadiya, and Guangyue Xu.
Language to action: Towards interactive task learning with physical agents. In Proceedings of
the 27th International Joint Conference on Artificial Intelligence (IJCAI), volume 7, pages 2-9,
2018.

[81] John E. Laird, Kevin A. Gluck, John R. Anderson, Kenneth D. Forbus, Odest Chadwicke
Jenkins, Christian Lebiere, Dario D. Salvucci, Matthias Scheutz, Andrea Thomaz, J. Gregory
Trafton, Robert E. Wray, Shiwali Mohan, and James R. Kirk. Interactive task learning. /IEEE
Intelligent Systems, 32(4):6-21, 2017.

[82] Joar Skalse, Nikolaus Howe, Dmitrii Krasheninnikov, and David Krueger. Defining and
characterizing reward hacking. In Proceedings of the 36th Conference on Advances in Neural
Information Processing Systems (NeurIPS), volume 35, pages 9460-9471, 2022.

[83] Richard S Sutton, Doina Precup, and Satinder Singh. Between MDPs and semi-MDPs: A
framework for temporal abstraction in reinforcement learning. Artificial intelligence, 112(1-2):
181-211, 1999.

[84] Geraud Nangue Tasse, Steven James, and Benjamin Rosman. A Boolean task algebra for rein-
forcement learning. In Proceedings of the 34th Conference on Advances in Neural Information
Processing Systems (NeurIPS), volume 33, pages 9497-9507, 2020.

[85] Damien Ernst, Pierre Geurts, and Louis Wehenkel. Tree-based batch mode reinforcement
learning. Journal of Machine Learning Research, 6:503-556, 2005.

[86] Jiafei Lyu, Xiaoteng Ma, Xiu Li, and Zongqing Lu. Mildly conservative Q-learning for
offline reinforcement learning. In Proceedings of the 36th Conference on Advances in Neural
Information Processing Systems (NeurIPS), volume 35, pages 1711-1724, 2022.

16

[87] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Proceedings of the 31st
Conference on Advances in Neural Information Processing Systems (NIPS), volume 30, 2017.

[88] Claudio Menghi, Christos Tsigkanos, Patrizio Pelliccione, Carlo Ghezzi, and Thorsten Berger.
Specification patterns for robotic missions. IEEE Transactions on Software Engineering, 47
(10):2208-2224, 2021.

17

NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The claims in the abstract and introduction are reflected in the framework
described in Section[5} the compositional reward shaping in Section [6] and the experimental
results in Section[7]

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Limitations are discussed in Section[8]
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

 The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

18

Answer: [NA]
Justification: The paper does not include theoretical results.
Guidelines:

* The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: Major experimental details are reported in Section 7, with details like hyperpa-
rameters and network architectures in the appendix.

Guidelines:

* The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

19

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: Code and data is released at https://github.com/andrewli77/
ground-compose-reinforce.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

¢ Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

 The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: See details in Appendix
Guidelines:

» The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]
Justification: Standard error is shown in Table 2]
Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

20

https://github.com/andrewli77/ground-compose-reinforce
https://github.com/andrewli77/ground-compose-reinforce
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

8.

10.

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

* It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

e It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: See Appendix B.2
Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: The code of ethics has been reviewed and the paper conforms with it.
Guidelines:

» The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

o If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).
Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
Justification: Societal impacts are discussed in Appendix [D]
Guidelines:
» The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

21

https://neurips.cc/public/EthicsGuidelines

11.

12.

» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The data and models in this particular paper do not have any possible misuse
potential.

Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: Our environment is based on MetaWorld, which we cite. We also acknowledge
the authors of the RL library we used.

Guidelines:

* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

* If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets

has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

22

paperswithcode.com/datasets

13.

14.

15.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

« If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: No new assets are released at this time.
Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

23

16. Declaration of LLLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]
Justification: The methods in this paper do not use LLMs.
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

* Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

24

https://neurips.cc/Conferences/2025/LLM

Supplementary Material for Ground-Compose-Reinforce: Tasking
Reinforcement Learning Agents through Formal Language

In this supplementary material,

* we provide further details and analysis on Ground-Compose-Reinforce (Appendix [A)
* we provide experimental details (Appendix [B]),

* we show how we autoformalize natural language descriptions of reward functions into our
Reward Machines with LLMs (Appendix [C),

+ and we discuss the potential societal impact of this work (Appendix [DJ.

A Supplementary Details on Ground-Compose-Reinforce

In this section, we

* discuss when Ground-Compose-Reinforce is likely to work well in practice (Appendix [A.T]
* elaborate on Section [6.1]s description of how we approximate the optimal value function
VZ (s, u),
— first under the assumption that the RM does not contain self-loop transitions with
non-zero rewards (Appendix [A.2),
— and then relaxing that assumption (Appendix [A.3);

* discuss approximation errors that can occur (Appendix [A.4);

* describe how we train with offline RL the primitive value functions used in the approximation
(Appendix [A.5);
* show how we use the approximate value functions for potential-based reward shaping

(Appendix [A.6).
A.1 Analysis of Advantages and Assumptions

For Ground-Compose-Reinforce to work well in practice, we assume that a faithful grounding of
propositions can be learned during the pretraining phase from D (i.e. ﬁ(s) ~ L*(s)). If this is the
case, the rewards generated by the core framework (Algorithm [T)) will faithfully capture tasks for
any RM over propositions AP, by design. To achieve this, D should provide sufficient coverage
of the state space S—but critically, it does not require sufficient coverage of the space of possible
trajectories to generalize. Hence, Ground-Compose-Reinforce is able to reliably elicit desirable
trajectories that are significantly out-of-distribution with respect to D.

Unlike many imitation-learning-based methods, Ground-Compose-Reinforce also does not rely on a
high concentration of expert demonstrations in D (as evidenced by the fact that our agent reliably
solves tasks, even when D contains only random-action trajectories). We can attribute this to the RL
phase, where the agent fine-tunes its policy using its self-generated learning signal.

A.2 Approximating V; (s, u) (No Rewarding RM Self-Transitions)

To estimate V3 (s, u), we evaluate each outgoing transition (u,u’, ¢, r) from u by combining the
subtask value VJ,(s) with vy (u'). While Camacho et al. [34] treat RM transitions as singular
actions, we treat RM transitions as temporally extended options [83]] that take a variable number of
steps to execute. Specifically, for a transition (u,u’, ¢, r), we make the following assumptions about
the corresponding option:

(1) It can be initiated if and only if the current RM state is u.
(2) It optimizes for the subtask G (i.e. satisfying ¢ quickly and with high probability).

(3) It either terminates when ¢ is satisfied after a variable length of time K, or it never termi-
nates.

(4) The option will never result in a different transition in the RM than the one in question.

25

Algorithm 2 Value Iteration over RM States (Modified from Camacho et al. [34])

Input: RM R = (U, ug, F, AP, dy,), discount factor yrn
1: Initialize v}, (u) < 0, Vu € U
2: while not converged do
3: foruinlf do
4: VR (1) ¢ Max(y/ o ryes(u) YRM(T + VR (1))
5: return vy

(lava,-1)

(=lava,0)

Figure 5: An RM that produces a reward of —1 for each timestep the agent spends in lava, until it
exits the lava.

To estimate vi,*z(u), we run a variant of Value Iteration, modified from Camacho et al. [34] to reflect
that rewards are garnered after the option completes (Algorithm [2). Note that Algorithm 2] should be
run with a high-level discount factor yry < v as it treats RM transitions as singular actions while in
the actual RM-MDP, an RM transition may require many low-level steps to achieve.

We estimate the return for an RM transition (u,u’, ¢, r), given that the agent is in MDP state s
and RM state u, as follows. First, we model the return for immediately achieving the transition
as r + yvk (v') — reward r is immediately received for achieving the RM transition and v (u')
estimates the future discounted return for being in RM state ’. If instead the RM transition is
achieved k steps in the future, we estimate the discounted return as v*(r + yv (u’)). Treating
(u,u’,p,r) as an option that terminates when the RM transition is achieved, define K to be the
(random variable) number of steps it takes for this option to terminate when initiated from MDP state
s and RM state u (where K is oo if the RM transition is never achieved). The expected return of
initiating the option is:

Einrc [V (r + 0 ()] = Eror [y (r + vi (u'))
= V3, (5) - (r + i (u)

Recalling that the option is assumed to optimize for the subtask ¢, the final step results from the
fact that By g [y*] is precisely the optimal value for O from state s. We finally estimate the optimal
value function for RM task R by maximizing over the choice of option:

Vi(s,u)~ max VE(8)(r 4+ yuk (v
Rsa)m | ma [V, (6)(4 k()]

A.3 Approximating V3 (s, u) with Rewarding Self-Loop Transitions

To handle RMs that contain self-loop transitions with non-zero rewards, we require a few modifica-
tions. Intuitively, an option corresponding to a transition (u, u’, ¢,) where u # v’ might receive
a reward 1’ at any timestep it is active if there exists another transition (u, u, ¢’,r’). As a simple
example, consider the RM in Figure[5] The RM describes a task where the agent needs to exit the lava
as quickly as possible, and receives a reward of —1 for each step until it does so. When estimating
the expected return of the edge labelled (—lava, 0), we need to consider the accumulation of the —1
reward at each timestep.

This can be hard to handle in general without more information, particularly when multiple self-loop
edges exist for the same RM state. For simplicity, we assume that only non-self-loop transitions are
treated as options (for the purposes of estimating optimal values), while all self-loop transitions in
the current state u are available at each step while an option is being executed. Thus, if we define

26

T4, as the maximum reward for any self-loop transition in RM state u, we can modify our expression
for the expected return of an option corresponding to transition (u, u’, p,) in state (s, u) as follows:

]Ek,NK,s’ [r’u,.’u, + RAETRN +...+ ,\/'kilr’u,.’u, + ’Yk (T + ’YV’E(Sla ’LL,))]

1— ~k .

o) A ARG)
1-VZ (s

= Es/ |:/ru,u <170M) + ng(s)(r + "}/VE(S/, 'U,/))]

—

!

= EkNK,s’ |:7)u,u (

1-V3, (s
~ i (S v)+ i)
-
For the previous lava example, the expected return for the option that corresponds to the transition
labelled (—lava,0) now correctly reflects a reward of —1 obtained for each step until the option

terminates by the agent exiting the lava. We modify our approximation of V7 (s, u) as follows:

1— Vg, (s)
V* ~ - ¥ V* * / 4
R~ mas[r (S0) # V)0 + i) *

We also modify the Value Iteration algorithm to consider self-loops with non-zero rewards (see
Algorithm [3).

Algorithm 3 Value Iteration over RM States (modified for self-loop transitions)

Input: RM R = (U, ug, F, AP, dy,), MDP discount factor -, high-level discount factor yr
1: Initialize v} (u) - 0, Vu € U
: Extract maximum self-loop rewards r,, ,,, Vu € U from 6,
while not converged do
for v in U/ do
v;‘z(u) — MaAX(y! o r)es(u) (Tu,u (ﬂ) + YrRM (T + v;‘z(u’)))
return v,

AN i

A.4 Sources of Approximation Errors

We now discuss how errors can occur when estimating V3 (s, u) from PVFs.

First, Approximation {4 clearly introduces approximation error from assuming the largest reward
among self-loop transitions r,, ,, will be garnered until an outgoing transition is reached, and from
using a bootstrapped value estimate of the next state v}, (u') ~ V3 (s’,u'). Another less obvious
source of error is that the expected return for each outgoing transition {(u,u’, ¢,) is estimated by
assuming that an optimal policy for reaching ¢ will be followed. However, this ignores the possibility
of some other transition from u occurring before the intended transition. In general, it may not be
possible to satisfy o while achieving value V() in the subtask < while also avoiding all other

transitions from RM state w that are not (u, u’, p, r).

Estimating the OVF for a disjunction of formulas via Approximation 2] always underestimates the
true value. We prove this as follows. Suppose ¢ = &1 V ... V £ and recall that the approximation of
V3, (s) is max;—1,._k V3, (s). Observe that for each i, V3, (s) < Vi3,,(s), since for every trajectory
T, if &; is satisfied at timestep 7" in 7, then must also be satisfied at timestep 7' (or earlier) in
7. Thus, max;—1,...x V3, (s) < V{;W(s). The reason this bound is not tight is because there are
situations where satisfying one of &1, .. ., & is easier than satisfying any of &1, . . ., & individually.
For example, consider the task & (X VX)), which is always trivially solved on the first step. However,
it is possible that &X' and &—X are both non-trivial tasks.

Lastly, estimating the OVF for a conjunction of formulas via Approximation [3|always overestimates
the true value, by a similar line of reasoning as for disjunction. In general, knowing VI, (s) and

e, (s) does not provide enough information to estimate V¢, ¢, (s). For instance, it may be the
case that &1, &5 are mutually exclusive and thus, Vg(gl Aé2) is zero everywhere. However, whether or
not &1, §> are mutually exclusive cannot be inferred based only on V3, (s) and V3, (s). Nangue Tasse
et al. [84]] provide a discussion on this topic for a related setting.

27

A.5 Training Primitive Value Functions

PVFs can be trained directly from the trajectory dataset D based on any offline RL approach.
Algorithm] shows how to train the PVF for a single primitive task ¢z using a simple offline RL
algorithm (Fitted Q-Iteration [83]]). The approach can be easily adapted to negations &—ax as well, and
in practice, we simultaneously train all 2|.AP| possible PVFs in parallel as a single neural network.

Algorithm 4 Learning PVF V() for 2 € AP from Trajectory Data D

Input: Dataset D = {(7%,w’) }f\;l, discount factor +y, proposition = € AP
1: Initialize Q function Qp : S x A — R
2: Initialize value function Vi : § =+ R
3: while not converged do
4: Sample transition (s, w, a, s’,w’) ~ D
5: Update ¢ with SGD on BinaryCrossEntropy (L4 (s), L[z € w])
6: reward < 1 [z € w'],next_value < maxqea Qo(s’,a’),done + 1 [z € ']
7
8
9:

Update 6 with SGD on (Qq (s, a) — stop_grad(reward + 7 * (1 — done) * next_value))2

: Update ¢ with SGD on (Vi (s’) — next_value)?
return V),

A.6 Potential-based Reward Shaping

We extend our core Ground-Compose-Reinforce algorithm with potential-based reward shaping by
leveraging Approximations [I{{3|and trained PVFs to predict V3 (s, u) for any MDP state s and RM
state u. This is shown in Algorithm [5| with changes from the core algorithm highlighted in red.

Algorithm 5 Ground-Compose-Reinforce for RMs with Potential-Based Reward Shaping

Input: MDP M without rewards, Propositional symbols AP, Dataset D of labelled trajectories, RM task R
over AP, Shaping potential weighting coefficient A
// Pretraining phase
1: Train labelling function [Z(s) on D using any binary classification method

2: Train PVFs V3, (s) and VS_,(s), Vo € AP on D
// Behaviour elicitation phase

3: Initialize policy wr (a | s, u) arbitrarily

4: for each episode do

5: Observe initial state s in M set u to the initial state of R

6: Estimate initial value v ~ V3 (s, u) using Approximations and trained PVFs

7: while u is non-terminal do

8: Sample action a ~ 7R (- | s,u)

9: Execute a in M and observe next state s’
10: Compute truth assignment & — L(s”)
11: Update RM: v’ < &, (u, @), 7 < 8, (u, @)
12: Update value v" & V5 (s', u") using Approximations and trained PVFs
13: Update policy mr with RL for transition (s, u,a,r + A(yv' — v), s’,u’)
14: Set s <+ s, u <+ u',v <

B Experimental Details

B.1 Domain Descriptions

Environments. GeoGrid is an 8 x 8 image-based gridworld depicted in Figure 2 with six objects
randomly positioned at the start of each episode. States are 8 x 8 x 6-dimensional images that identify
each cell’s colour/shape and the agent’s location, while propositions {R, G, B, A, O} identify if the
agent is at an object with that particular colour or shape. DrawerWorld is a MuJoCo environment
adapted from Meta-World [[17]. The agent controls a robotic gripper and can interact with two
drawers (left and right) and three boxes (red, green, and blue). Observations are 78-dimensional
vectors representing positions of objects and the gripper. Propositions identify whether a particular

28

drawer is open, whether a particular block is picked up by the agent, and whether a particular block is
currently inside a particular drawer.

Datasets. We carefully curated datasets D in each environment to support our analysis of com-
positional generalization (RQ2). In GeoGrid, D is comprised of 5000 trajectories of length 100
generated under a random-action policy. In DrawerWorld, D is comprised of 350 trajectories of
varying length that we collected by manually controlling the robot in the simulator. To ensure
sufficient state coverage in D, drawers and boxes were initialized in a random configuration when
collecting each trajectory. Behaviours that appear in the dataset include opening and closing drawers,
picking up boxes, and moving boxes from one location to another, but no trajectory involves direct
interaction with more than one box. A small number of trajectories involve incidental (but not
prolonged) interaction with more than one box (e.g. bumping into one box while moving another).
We intentionally include accidental behaviours in the DrawerWorld dataset such as failing to grip a
box, dropping a box while attempting to move it, and opening a drawer beyond its limit. We also
include behaviours not tied to downstream tasks such as placing a box on top of a drawer or throwing
a box off the table.

Tasks. We designed a diverse set of RM tasks (Table [T). For tasks that involve achieving a
(temporally extended) goal, the RM terminates and provides a reward of 1 upon doing so. The
RM terminates with a reward of O if the goal becomes logically impossible (e.g. due to breaking
a constraint), except in Safety, which terminates with a penalty of —1. Loop and Hold-Red-Box
involve repeating some desired behaviour, and the RM yields a reward of 1 for each such repetition.
For the precise encodings of tasks as RMs, please see the released code.

B.2 Baseline Implementation Details

All approaches involve supervised training on D, and Ground-Compose-Reinforce and Bespoke
Reward Model additionally require an RL phase in the environment. Network architectures for super-
vised training on D are reported in Table[3] PPO network architectures are reported in Table [d All
policy networks (whether trained via RL or behaviour cloning) use GRUs to temporal dependencies
except for GCR, which uses RM transitions. The policy network outputs a probability distribution
over actions (in DrawerWorld, the outputs of the network parameterize a Gaussian policy’s mean
and standard deviation). For methods relying on potential-based reward shaping, we computed
shaping rewards without discounting the next potential, i.e. we issued the shaping reward as A(v' — v)
rather than A(yv" — v). Though this loses some theoretical convergence properties, we found it to
significantly outperform the standard shaping reward in all cases.

Ground-Compose-Reinforce. GCR consists of the following neural networks: a labelling function
network that outputs a single binary classification logit for each proposition in AP, a PVF network
that outputs an optimal value prediction for each literal in .AP, and a policy of the form m(a|s¢, us)
that conditions on the current RM state. The labelling function is trained via a binary cross entropy
loss on D, the PVFs are trained via offline RL on D, and the policy is trained via RL supported by
the labelling function and PVFs to provide learning signals.

In GeoGrid, PVFs were trained using Fitted Q-Iteration [85]. In DrawerWorld, PVFs were trained to
directly predict Monte Carlo returns. We also considered a state-of-the-art offline RL method, MCQ
[86]], but it performed worse than Monte Carlo regression. We attribute this to the relatively small
size of D compared to standard offline RL benchmarks.

LTL-conditioned Behaviour Cloning. This baseline models a neural network policy g (at|hy, @),
where the history h; is encoded by a GRU [74]] and ¢ (a goal represented directly in LTL) is encoded
by a Transformer [87]. Only observations (and not actions) are encoded as part of the history. We
trained 7g by labelling each trajectory 7¢ in D with an LTL formula (° based on the sequence of
propositional labels ¢ in D and then minimized the behaviour cloning loss Ep[— log g (at| k¢, ¢)].
Finally, we evaluated the model on the downstream tasks by conditioning on the LTL formulas shown
in Table

To the best of our knowledge, there are no existing approaches that generate LTL descriptions based
on a single trajectory. We instead used a custom approach based on common specification templates
to generate diverse LTL descriptions. For each trajectory 7 in D, we randomly generated a single
formula that is satisfied by 7 for each of the following specification templates found in Table 2 of

29

Table 3: Network Architectures for Supervised Training on D.

GCR

Labelling Function

PVFs

LTL-BC

Bespoke Reward Model

Bespoke BC

GeoGrid

Conv2d(6,16,3,1,1)
RelU
Conv2d(16,32,3,1,1)

Conv2d(6,32,3,1,1)
ReLU
Conv2d(32,32,3,1,1)

Obs Encoder:
Conv2d(6,16,3,1,1)
ReLU
Conv2d(16,32,3,1,1)
ReLU

Flatten
Linear(2048,256)

LTL Encoder:

Conv2d(6,16,3,1,1)
RelU
Conv2d(16,32,3,1,1)
ReLU

Conv2d(6,16,3,1,1)
ReLU
Conv2d(16,32,3,1,1)
ReLU

ReLU ReLU Transformer (d_mode1=64 Flatten Flatten

Flatten Flatten nhead=4 - > Linear(2048,256) Linear(2048,256)
Linear(2048,128) Linear(2048,256) dim feeéforward=128 GRU(256,256) GRU(256,256)
RelLU RelLU - > RelU ReLU

num_layers=2)

Linear(128,5) Linear(256,10) GRU(256,256)

Linear(768,4) X 3

GRU(256,256)

Policy: Linear(768,16)

GRU(256+64,256)
ReLU
GRU(256,256)
Linear(768,16)

DrawerWorld

Obs Encoder:
Linear(39,1600)
ReLU

Linear (1600,400)

Linear(39,1600) Linear(39,1600)

Linear (39,1600) LTL Encoder: RelU ReLU
. ’ Transformer (d_model=64, Linear(1600,400) Linear(1600,400)
Linear(39,1600) ReLU
ReLU Linear (1600,400) nhead=d, ReLU ReLU
Linear(1600,11) ReLU ’ dim_feedforward=128, GRU(400,256) GRU (400,256)
’ num_layers=2) ReLU ReLU

Linear (400,22) GRU(256,256)

Linear(912,3) X 3

GRU(256,256)
Policy: Linear(912,24)
GRU(464,256)

ReLU

GRU(256,256)

Linear(976,4)

Menghi et al. [88]]: visit, sequenced visit, ordered visit, patrolling (for this purpose, we consider an
event to occur infinitely often if it occurs at least five times within the same trajectory in GeoGrid or
200 times within the same trajectory in DrawerWorld) and global avoidance. These templates were
chosen since they correspond to LTL properties that are relatively simple to automatically mine from
a given trajectory. We then labelled each trajectory 7 with a randomly chosen LTL formula from
among this set.

Bespoke Reward Model. This baseline is a single neural network that directly predicts the reward,
termination, and optimal value function for each of the downstream tasks. The neural network consists
of an observation encoder, followed by two GRU layers (to encode the history of observations),
followed by three linear output heads to predict rewards, optimal values, and terminations, respectively,
for all downstream tasks simultaneously for that domain. To generate target rewards and terminations
for a trajectory 7 in D, we evaluated the RM of each downstream task based on the sequence of
propositional labels o?. The optimal value estimates were trained using offline RL in a similar manner
as the PVFs. Finally, a policy was obtained using RL on the rewards and terminations, while the
optimal values were used for potential-based reward shaping, similar to the shaped version of GCR.

Bespoke Behaviour Cloning. This baseline is similar to LTL-BC, except it does not condition on an
LTL task—instead, it simultaneously outputs actions for each of the possible downstream tasks. To
evaluate the policy on a specific downstream task, only the output for that task is considered. We
trained the policy via behaviour cloning on any trajectory that achieves positive return on a particular
downstream task due to the limited number of successful demonstrations.

30

Table 4: Network Architectures for PPO.

GeoGrid DrawerWorld
GCR Bespoke Reward Model GCR Bespoke Reward Model
Encoder:
Encoder:
Conv2d(6,16,3,1,1) Conv2d(6,16,3,1,1)
ReLU ReLU Actor:
Conv2d(16,32,3,1,1) Conv2d(16,32,3,1,1) Linear (78+|U/|,512) Encoder:
ReLU PTE T ReLU ReLU Linear(78,512)
Flatten Flatten Linear(512,512) ReLU
GRU(2048,128) ReLU Linear(512,512)
Actor Head: ‘ Linear(512,512) GRU(512,512)
Linear (2048+[14|, 128 Actor Head: ReLU
ReLU ’ Linear (128,128) Linear(512,8) Actor Head:
Linear(128,64) ReLU Linear(512,512)
ReLU ’ Linear (128,64) Critic: ReLU
Linear(64,4) ReLU Linear (78+|{|,512) Linear(512,8)
’ Linear(64,4) RelLU
- . Linear(512,512) Critic Head:
LC;IlltelgII‘-I(eQEE)(11.8+|U| 1ogy Critic Head: ReLU Linear(512,512)
ReLU ’ Linear(128,128) Linear(512,512) ReLU
Linear(128,64) ReLU ReLU Linear(512,1)
’ Linear(128,64) Linear(512,1)
ReLU
Linear(64,1) ReLU
’ Linear(64,1)
Table 5: LTL formulas used to evaluate LTL-BC.
Task LTL Formula
GeoGrid (propositions are named r,g,b,c,t instead of R, &G, B, A, O to avoid confusion with LTL operators)
Sequence O((rAt) ANO((gAt) AO(bAL)))
Loop go((rAt) AO((gAt) AO(bATL)))
Logic SrAE)ANOC(GA)ASDAL)AS(TrA) AO(gA) AO(DAC)A(mbUT)A(—gUD)
Safety O((rAt)yANO((gAt) AO(bATL))) ADt
DrawerWorld
Hold-Red-Box 0ORedBoxLifted

Pickup-Each-Box ¢ (RedBoxLifted A ¢(BlueBoxLifted A ©GreenBoxLifted))

Show-Green-Box —[-(GreenBoxInDrawerl A &(DrawerlOpen U GreenBoxLifted))
A-(GreenBoxInDrawer2 A &(Drawer20pen U GreenBoxLifted))
A—(~GreenBoxInDrawerl A ~GreenBoxinDrawer2 A ¢GreenBoxLifted)]

B.3 Experimental Setup and Hyperparameter Details

Details: Supervised Training on D. All experiments were run on a compute cluster. Supervised
training on D required a single GPU and CPU, minimal memory resources (24GB of RAM or less)
and no more than 30 minutes to train any method to 100 epochs. We tuned hyperparameters via a line
search over batch size, learning rate, L1 regularization coefficient, and epochs (in that order) using a
held-out 10% of the trajectories in D, and the final hyperparameters are reported in Table[6] Final
models were retrained on the full data with the tuned hyperparameters. We note that the batch size
hyperparameter should be interpreted differently for methods requiring a GRU. For GCR, it refers
to the number of transitions sampled from D. For LTL-BC, Bespoke Reward Model and Bespoke
Behaviour Cloning, it refers to the number of full length trajectories sampled from D. This is because
it is necessary to keep transitions in a trajectory in the correct order to train the GRU.

Details: RL Training. All experiments were run on a compute cluster. Each RL run used a single
GPU, 16 CPUs, and 48GB of RAM. For GCR, runs took up to 6 hours on GeoGrid (to train to
15M frames) and 16 hours on DrawerWorld (to train to 20M frames). RL training with the Bespoke
Reward Model took longer due to GRUs—up to 12 hours on GeoGrid (to train to 15M frames) and

31

Table 6: Hyperparameters for Supervised Training on D.

Hyperparameter GCR LTL-BC Bespoke Reward Model Bespoke BC
Labelling Function PVFs
GeoGrid
Batch size 256 1024 100 100 100
Learning rate 3e-4 3e-4 le-4 3e-3 3e-4
L1 loss le-5 0 0 0 0
Epochs 10 100 9 100 11
Discount factor n.a. 0.97 n.a. 0.97 n.a.
DrawerWorld
Batch size 256 256 50 50 50
Learning rate 3e-4 3e-4 le-3 le-4 le-4
L1 loss le-5 le-5 0 0 le-9
Epochs 100 100 87 11 4
Discount factor n.a. 0.9975 n.a. 0.9975 n.a.

Table 7: RL Training Hyperparameters.

Hyperparameter Value for all methods
GeoGrid

Number of parallel environments 16
Frames per update per process 1000
Learning rate 3e-4
Discount factor () 0.97
GAE parameter (\) 0.95
Clip range 0.2
Entropy coefficient le-4
Value loss coefficient 0.5
Number of epochs per update 4
Minibatch size 4000
High-level Discount Factor (yrm) 0.97'°
Shaping potential weighting coefficient (\) 1
DrawerWorld

Number of parallel environments 16
Frames per update per process 4000
Learning rate 3e-4
Discount factor () 0.99
GAE parameter (\) 0.99
Clip range 0.2

Entropy coefficient

Value loss coefficient

Number of epochs per update

Minibatch size

High-level Discount Factor (yrm)
Shaping potential weighting coefficient (\)

0.01 in Pickup-Each-Box, otherwise 0.03

0.5
10
8000

0.9975400

0.1 in Hold-Red-Box, otherwise 1

B.4 Learning Curves

32

18 hours on DrawerWorld (to train to 20M frames). For RL training, we used the implementation of
PPO athttps://github.com/lcswillems/torch-ac with the hyperparameters in Table[/| The
total number of environment steps each method was trained on was 2.5M for Sequence, 4M for Loop,
10M for Safety, 20M for Show-Green-Box, and 15M for all others.

We report RL learning curves for each method and task in Figures[6|and[7] GCR and its variants have
an internal reward model that is better aligned with the ground truth compared to Bespoke Reward
Model. In GeoGrid, GCR’s reward model is near perfect, and in all cases, optimizing its internal

https://github.com/lcswillems/torch-ac

Sequence Sequence

A ot

o
o
=

&
E o c
2 4"' 2
Q
& Vi & 0.04
o T
205 y £
c c
3 3
Qo ,I're o
2 ¥ 2 0.02
i Vs 5
5 F Vg <
=] ;i /m"u' 2
o it
Letndnted s 0.00
oM ™ 2M oM ™ 2M
Frames Frames
Loop Loop

o

o
=4
o
R

Undiscounted Return
N
o

Undiscounted Return
o
o
o

!
o
o
=

oM ™ 3M
Frames Frames

Logic Logic

0.0000

05 -0.0004

Undiscounted Return
Undiscounted Return

-0.0008

00 om 5M 10M 15M oM oM 12M

Frames Frames
. Safety Safety
c
S 5o
3 3
2 2
E0 S -015
A H
@2 }J 2
T i T
c i c
S i H
-0.18
1 om 3M 6M M oM am 8Mm
Frames Frames
Methods Textures
GCR (Ours) ess=== No RS e Actual rewards
e High-Leve| RS emss=== Bespoke Reward Model ©— Perceived rewards

Figure 6: RL learning curves for GeoGrid, showing returns under the agent’s own reward model
(“perceived rewards”) and under the ground-truth £* (“actual rewards”). Perceived rewards are
reported without shaped rewards, and shaded regions show standard error. Approaches based on
Ground-Compose-Reinforce (including No RS and High-Level RS) generate rewards that are closely
aligned with the ground truth and lead to an effective final policy, while Bespoke Reward Model
produces near-zero rewards in all cases and makes little progress.

rewards improves ground truth performance as well. Bespoke Reward Model almost always predicts
near-zero rewards on GeoGrid tasks (except Safety), likely since there are few examples of positive
demonstrations in D. On DrawerWorld, Bespoke Reward-Model is highly misaligned, predicting
large rewards but garnering near-zero return based on the ground truth.

In terms of sample efficiency, we observe that GCR with our reward shaping strategy outperforms
all baselines. The difference is marginal in GeoGrid, where exploration is less of an issue, but in
DrawerWorld, all other reward shaping approaches fail.

33

Hold-Red-Box Hold-Red-Box
400

o
1<}
S

£ £
5 5 200
ki ®
4 4
g 1000 T o
€ €
3 =
o o
H H]
g 500 g ~200
i3 c
=) =]
-400
0
oM 5M 10M 15M oM 6M 12M
Frames Frames
Pickup-Each-Box Pickup-Each-Box
09 8
S £
3 3
S 8.
E 0.6 g
203 2
2 2.
=] =]
0.0 s
oM 5M 10M 15M oM 6M 12M
Frames Frames
Show-Green-Box Show-Green-Box
075 10.0
£ £
=1 3
k] ® 75
4 4
5 050 °
2 2
c € 50
3 3
o o
b H
2025 2 55
c c
=] =]
0.00 f it Vi SNy 0.0
oM 6M 12M 18M oM 8M 16M
Frames Frames
Methods Textures
GCR (Ours) No RS e— Actual rewards
== High-Level RS Bespoke Reward Model ©— Perceived rewards

Figure 7: RL learning curves for DrawerWorld, showing returns under the agent’s own reward model
(“perceived rewards”) and under the ground-truth £* (“actual rewards”). Perceived rewards are
reported without shaped rewards, and shaded regions show standard error. When evaluated under
ground-truth rewards, Ground-Compose-Reinforce with our reward shaping strategy learns strong
policies in all cases, while alternative approaches make no progress. Notably, Bespoke Reward Model
results in a final policy with high perceived rewards, but poor actual performance.

C Autoformalizing Natural Language to Reward Machines

While several works have been dedicated to the autoformalization of natural language instructions into
formal languages such as LTL [36H39]], we show that a modern LLM can sometimes perform this task
zero-shot for RMs, without having specifically been trained on it (to the best of our knowledge). This
allows us to directly task the RL agent in our framework through natural language, then autoformalize
the task description into an RM.

We tested OpenAI’s ChatGPT-40 and 03 models as the autoformalizer and prompted it with a
description of the autoformalization task (including the output format), a text description of the
environment, a list of propositions and associated text descriptions, and a text description of the
desired reward function (Listing[T). For each of the four GeoGrid tasks in Table [T} we ran each
autoformalizer five times for consistency. We manually evaluated each outputted RM based on
whether it yielded a reward function that exactly matched the textual description, with the success
rate reported in Table|[§]

ChatGPT-40 correctly produced RMs for all tasks, except for Logic, which requires a complex
RM (our solution involved 10 states and 18 transitions). However, we note that ChatGPT-40 was
nearly correct for all five trials for Logic—each of its outputted RMs deviated by a single transition

34

that changed the behaviour of the resultant reward function. 03 outputted correct RMs on all tasks.
Notably, the outputted RMs were identical in structure to the intended RMs we manually constructed
in all cases (with the only differences being in the naming of RM states and the representation of
equivalent logical formulas).

You are given a list of propositional symbols and their descriptions,
an environment description, and a description of a desired reward
function in English. Your job is to comnstruct a Reward Machine
representing this reward function.

Reward Machine states should be numbered 0, 1, 2, 3, ..., with 1
always being the initial state, and 0 always being the terminal
state. Transitions should be represented as a tuple (i, j, \varphi
, r), where i and j are the start and end Reward Machine states of

the transition, respectively, \varphi is a logical formula over
the set of propositional symbols (use "!" to represent "mot", "&"
to represent "and", and "|" to represent "or", and write the
formula in disjunctive normal form), and r is the reward for the
transition. Your output should be the transitions in the Reward
Machine, one per line, in the tuple form shown above, e.g. (0, 1,
'X&Y, 0.1), with no other punctuation. For brevity, do not list
self -loop transitions that provide O reward in the output.

Environment Description: The environment is a gridworld, where some
squares have objects. Each object has a single colour (red, green,
or blue) and a single shape (circle, or triangle).

Propositions:

- red: The agent’s current cell has a red object.

- blue: The agent’s current cell has a blue object.

- green: The agent’s current cell has a green object.
- triangle: The agent’s current cell has a triangle.
- circle: The agent’s current cell has a circle.

Task: <TASK DESCRIPTION>

Listing 1: Reward Machine Autoformalization Prompt

D Societal Impact

Data-efficient learning lowers environmental cost. Ground-Compose-Reinforce (GCR) achieves
strong generalization from a relatively small, task-agnostic trajectory dataset. Because it avoids the
need for internet-scale demonstrations, the total compute and data collection burden is substantially
reduced, which in turn diminishes the carbon footprint of training and retraining large decision-making
systems.

Transparent, verifiable task specifications. By exposing an explicit formal specification layer
(Reward Machines) between the human and the agent, GCR allows auditors to read, simulate, and
formally verify the reward logic before deployment. This contrasts with opaque end-to-end reward
models and can help regulators trace undesirable behaviour back to a concrete symbolic condition
rather than a latent neural representation, supporting safer and more accountable RL pipelines.

Broader access to capable agents. Because symbols are grounded once and then recomposed
to create an unbounded task space, domain experts without ML backgrounds can author complex
tasks simply by writing RMs, potentially democratizing advanced robotics and simulation tools in
education, manufacturing, and assistive settings. The same mechanism lets small-lab researchers
prototype complex multi-stage tasks without the costs associated with collecting new labelled rewards.

Reward hacking and specification gaps. If the learned interpretation of propositions in the envi-
ronment is erroneous, the resultant behaviour may no longer match human intent. In the paper, we
caution that such mis-grounding can lead to harmful behaviours despite the use of a precise formal
specification.

35

Table 8: Success rate for ChatGPT-40 and 03 when autoformalizing Reward Machines from a natural
language description of the desired reward function.

Task Description GPT-40 Success Rate 03 Success Rate

Sequence Give a reward of 1 and terminate the episode 100% 100%
when a red triangle, a green triangle, and a blue
triangle have been reached, in that order. Only
give the reward of 1 when the final step has been
completed. Give O reward and never terminate
the episode otherwise.

Loop Give a reward of 1 when a red triangle, a green 100% 100%

triangle, and a blue triangle have been reached,
in that order. Only give the reward of 1 when the
final step has been completed. After completing
this sequence, the agent may repeat all steps
of the sequence to receive the reward again, as
many times as it wishes. The episode never
terminates.

Logic Give a reward of 1 and terminate the episode as 0% 100%
soon as a red triangle, red circle, green triangle,
green circle, blue triangle, and blue circle have
all been reached at some point. However, blue
objects should not be visited until both red ob-
jects are visited, and green objects should not be
visited until both blue objects are visited. Circles
and triangles of the same colour can be reached
in either order. If any objects are reached out of
order, immediately terminate the episode with a
reward of 0.

Safety Give a reward of 1 when a red object, a green 100% 100%
object, and a blue object have been reached, in
that order. Only give the reward of 1 when the
final step has been completed. However, always
avoid squares with triangles—if this is violated,
immediately terminate the episode with a reward
of -1.

Labour displacement. Easier programming of general-purpose robotic skills may substitute for
manual labour in logistics or assembly lines, contributing to job displacement without adequate social
safety nets.

36

	Introduction
	Related Work
	Preliminaries
	Reinforcement Learning
	Task Specification via Reward Machines
	Grounded Interpretations

	Problem Setting
	Ground-Compose-Reinforce
	Compositional Reward Shaping
	Deconstructing RMs into Logical Subtasks
	Further Deconstructing Logical Subtasks
	Final Remarks

	Experiments
	Experimental Setup
	Method and Baselines
	Results
	Extending Ground-Compose-Reinforce with a Natural Language Interface

	Future Work and Limitations
	Conclusion
	Supplementary Details on Ground-Compose-Reinforce
	Analysis of Advantages and Assumptions
	Approximating V*R(s,u) (No Rewarding RM Self-Transitions)
	Approximating V*R(s,u) with Rewarding Self-Loop Transitions
	Sources of Approximation Errors
	Training Primitive Value Functions
	Potential-based Reward Shaping

	Experimental Details
	Domain Descriptions
	Baseline Implementation Details
	Experimental Setup and Hyperparameter Details
	Learning Curves

	Autoformalizing Natural Language to Reward Machines
	Societal Impact

