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In this supplementary material, we will further detail the following
aspects omitted in the main paper:

• In Appendix A, we describe the detailed algorithm of the
solver of our physics-aware module to promote the under-
standing of the simulation method.
• In Appendix B, we show the improvement of post-processing,
including isolated elements removing, filling holes, and Lapla-
cian smoothing.
• In Appendix C, we conduct an ablation study on the masked
Signed Distance Field (SDF) to illustrate our comprehensive
consideration of handling intersection.
• In Appendix D, we demonstrate a potential application of
our work about clothing matching.
• In Appendix E, we present the network architecture of the
canonical SDF 𝜙 and non-rigid deformation field 𝑑 .

A THE SOLVER OF PHYSICS-AWARE MODULE
As mentioned in Section 3.3 of the main paper, the physics-aware
module employs a position-based dynamics framework[1, 3, 5],
which is popular in soft body simulation[2, 6].

We demonstrate that the algorithm described in Section 3.3.3
of the main paper is responsible for establishing constraints. Here,
we explain the solving details, as illustrated in Algorithm 1. From
line 1 to line 3, Δ𝑡 donates the time step size, ℎ for substep size, p
for position, and v for velocity. Constraint compliance is denoted
by 𝛽 (line 5), representing the strength of the constraint[3]. All of
the constraints are applied to the position of vertices. The collision
constraint 𝑪𝑐𝑜𝑙𝑙 is solved immediately (line 6 to line 10) as well as the
air constraint 𝑪𝑎𝑖𝑟 (line 11 to line 15), while the stretch constraint
𝑪𝑠𝑡𝑟 is iteratively satisfied through the manifold projection (line
16 to line 22). line 13 is related to Equation (7) in the main paper,
where p̂ and q̂ are the nearest points pair belonging to two adjacent
layers and computed at the beginning of the simulation serving as
the air gap vector. At the end of the substep, velocities are updated
(line 24) based on the final positions (line 23). For each garment
layer, the time step size Δ𝑡 is set to 0.01s, and the number of time
steps and sub-steps to 360 and 10, respectively. For 𝑪𝑠𝑡𝑟 , we have
𝛽 = 1𝑒−5.

B POST-PROCESSING
As introduced at the end of Section 3.2, we additionally conduct
post-processing in single garment extraction to mitigate the noise
caused by segmentation errors and self-occlusion in self-rotating
videos, including isolated elements removal (see Figure 1), hole
filling (see Figure 2(a)), and Laplacian smoothing (see Figure 2(b)).
Please note that not all garments suffer from isolated elements
and holes, thus we only present some typical examples. Laplacian
smoothing is imposed on the boundary of all garments.

Algorithm 1 The solver of physics-aware module.

1: ℎ ← Δ𝑡/numSubSteps ⊲ Substep size
2: for 𝑖 = 1, . . . , numSubSteps do ⊲ Iteration
3: initialize solve p← p𝑖 + ℎv𝑖
4: initialize multipliers 𝜆 ← 0
5: 𝛽 ← 1

ℎ2 𝛽

6: for all collision constraint 𝑪𝑐𝑜𝑙𝑙 do
7: if 𝑪𝑐𝑜𝑙𝑙 (p) < 0 then
8: p← p − ∇𝜙 (p)𝜙 (p)
9: end if
10: end for
11: for all air constraint 𝑪𝑎𝑖𝑟 do
12: if 𝑪𝑎𝑖𝑟 (p) < 0 then
13: p← p − (p̂ − q̂)
14: end if
15: end for
16: for all stretch constraint 𝑪𝑠𝑡𝑟 do
17: A← ∇𝑪 (x)M−1∇𝑪𝑇 (p) + 𝛽
18: Δ𝜆 ← −A−1 (𝑪 (p) + 𝛽𝜆)
19: Δp← M−1∇𝑪𝑇 (p)Δ𝜆
20: 𝜆 ← 𝜆 + Δ𝜆
21: p← p + Δp
22: end for
23: update positions p𝑖+1 ← p

24: update velocities v𝑖+1 ← p𝑖+1−p𝑖
ℎ

25: 𝑖 ← 𝑖 + 1
26: end for

Figure 1: Two examples of removing isolated elements.
Though segmentation errors lead to some isolated elements,
it is easy to handle.
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(a) Two examples of filling holes.
(b) Two examples of Laplacian smoothing.

Figure 2: Examples of filling holes and Laplacian smoothing. (a) There are a few holes in areas prone to be occluded, such as the
armpits. (b) We adopt Laplacian smoothing to refine the boundary of the garments.

Figure 3: Comparison of correction with the original SDF and the masked SDF. The top row uses the original SDF while the
bottom row uses the masked SDF. The mask is calculated by the bounding box of the garment (green). The blue coat (top right) is
rectified by the original SDF and suffers from unnecessary deformations around the cuffs. With the masked SDF (bottom right),
the intersections between the coat and both the short skirt and the T-shirt are removed while keeping other areas unaffected.

C THE EFFECT OF MASKED SDF
As described in Section 3.3.3 in the main paper, the SDF of the
clothed body is leveraged to handle intersection. The goal is to
eliminate the inter-penetration between garments rather than the
whole clothed body. The original SDF will lead to unnecessary
corrections due to irrelevant parts of the clothed body. Therefore,
we implement a masked SDF computed based on the garment’s
Bounding BoX (BBX). The effect of the masked SDF is shown in
Figure 3. Specifically, the jacket (purple) intersects with the short
skirt and the T-shirt in the initial alignment. Thus the original
SDFs (top row) of the short skirt and the T-shirt are employed to
correct the jacket. The masks of the short skirt and the T-shirt are
calculated by their BBX (bottom row), which means if a vertex of
the jacket is not in the range of the BBX, its collision constraint
will be deactivated. For correction based on the original SDF, the
jacket exhibits significant unnecessary deformations around the
cuffs (blue). In contrast, thanks to the masked SDF, we successfully

ensure that the collision constraint only affects the clothing area,
rather than other parts of the clothed body.

D APPLICATION ON CLOTHING MATCHING
Recently, it has been popular to purchase clothes on e-commerce
platforms. Though consumers can find clothing-matching recom-
mendations on live streams or social media apps, they cannot freely
try out combinations of garments they prefer. Consider an appli-
cation where users including customers and models employed by
the sellers upload self-rotating videos of people wearing clothing,
accompanied by our well-generalizable method for clothing dig-
itization to build a large-scale 3D asset library. Therefore, users
are empowered to find garments and make a combination to pre-
view the matching results, facilitated by our robust physics-aware
module to ensure intersection-free. Figure 4 visually illustrates this
interesting idea. We believe such a visionary application will help
people find more satisfying outfits.
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Figure 4: An application about clothing matching. Due to the robust capability of handling intersections, IF-Garments presents
promise in clothing matching that enables the customer to combine various kinds of garments according to their preferences.

(a) The architecture of the canonical SDF 𝜙 .

(b) The architecture of the non-rigid deformation field 𝑑 .

Figure 5: Details of MLPs adopted in our work. Rectangles represent vectors, arrows stand for operations, FC means the fully
connected layers, and ⊕ is concatenation. We leverage position encoding[4] to enhance the learning of the spatial features of
the clothed body. In (b), 𝑑 is conditioned by the feature embedding h𝑖 of 𝑖-th frame.

E NEURAL NETWORK ARCHITECTURE
In Section 3.1 of the main paper, Multi-Layer Perceptrons (MLPs)
are employed to represent the SDF𝜙 in canonical space and the non-
rigid deformation field 𝑑 . Their architecture is shown in Figure 5.
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