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A ATOMIC AUTOENCODER ARCHITECTURE DETAILS

In Figure 5, we visualize the details of our Atomic Autoencoder architecture. We use a GraphTrans-
former encoder and a vanilla transformer decoder.
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Figure 5: Atomic Autoencoder Architecture Details. The autoencoder takes atom element types
and pairwise distances as input and reconstructs all atomic coordinates. The encoder is a graph
transformer that uses the pairwise distances to bias the attention mechanism to learn rich atomic
representations. The atomic representations are pooled to form a microenvironment embedding. The
decoder takes the atomic representations and microenvironment embedding as input and produces
coordinates for each atom. The learned microenvironment embeddings are discretized via K-means
into structure tokens, which supervise the fine-tuning of a protein language model.

B ATOMIC AUTOENCODER DATASET

We downloaded a list of proteins from the PDB via PISCES (https://dunbrack.fccc.edu/pisces/) on
October 23rd, 2023. We use the 95% sequence similarity split with 37,907 protein chains. We keep
all proteins resolved by X-ray crystallography with resolution better than 3Å with no residue breaks
and sequence length between 40 and 10,000. After our data pipeline and additional filtering, we
ended up with 35,985 proteins in our PDB training set.
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C ATOMIC AUTOENCODER TRAINING AND ISM STRUCTURE-TUNING

Table 5 lists the hyperparameters used for training the Atomic Autoencoder (see Section 4.1) and
structure-tuning the PLM (see Section 4.2).

Table 5: Model Hyperparameters.

(a) Atomic Autoencoder Training

Hyperparameter Stage 1 Stage 2
optimization

total batch size 2048 2048
optimizer AdamW AdamW
learning rate 1e-3 1e-3
weight decay 1e-5 1e-5
epochs 5 5
warmup epochs 1 1
clip max norm 1.0 1.0
modeling

layers 4 4
max atoms 512 512
max atom distance 10.0 10.0
losses

ωAA 1.0 1.0
ωDistogram 1.0 1.0
ωMSE-aligned 0 1.0
number of GPUs 8 8
runtime →12hr →12hr

(b) Protein Language Model Structure-tuning

Hyperparameter Structure-tuning
optimization

total batch size 1536
optimizer AdamW
learning rate 1e-4
weight decay 5e-3
epochs 20
warmup epochs 4
clip max norm 5.0
modeling

layers 33
mask ratio 15%
crop length 512
losses

ωMLM 1.0
ωstruct1 1.0
ωstruct2 1.0
number of GPUs 32
runtime 26hr

Table 6: Structural Dataset Statistics. We report the primary metrics and number of proteins. The
split similarity is the maximum allowed sequence similarity between any protein in the training set
and any protein in the validation or test sets.

Dataset Metrics Train Valid Test Split Similarity
Structure Prediction GDT-TS 121,481 - 185 -
Contact Prediction Long Range Precision 25,299 224 40 30%
Secondary Structure Prediction Accuracy 8,678 2170 513 25%
Binding Residue Prediction F1 1,014 - 300 20%

Table 7: Hyperparameters on downstream structural benchmarks. ω: we find that training
converges and terminate training early.

Hyperparameter Structure Contact Secondary Structure Binding Residues
optimization

total batch size 128 16 16 32
optimizer LION AdamW AdamW AdamW
learning rate 1e-4 0.01 3e-4 1e-4
weight decay 5e-3 0.01 0.5 0.5
epochs 20 30 10 10
warmup epochs 4 - 2 2
clip max norm 5.0 - 5.0 5.0
freeze backbone True True True True
number of GPUs 32 8 4 8
runtime 20hr 40mω 35m 5m
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D DOWNSTREAM STRUCTURAL BENCHMARK DETAILS

We summarize our structural datasets in Table 6. In Table 7, we report the hyperparameters used for
fine-tuning on different downstream benchmarks. Additionally, we report all additional metrics for
contact prediction and binding residue prediction in Table 9 and Table 10 respectively.

D.1 STRUCTURE PREDICTION

We train on proteins in the PDB and evaluate our model on the CAMEO dataset. Notably, unlike
most benchmarks, CAMEO evaluations customarily do not include a sequence similarity split.

We initialize our model from SoloSeq Ahdritz et al. (2022) and freeze our ISM backbone. We
fine-tune the folding trunk for 10 epochs using a cosine learning rate schedule with 2 warmup epochs.
We use a batch size of 128 proteins. We use LION optimizer with a learning rate of 1→ 10→4 and
weight decay of 0.01.

We also include comparisons to SoloSeq below. We found that fine-tuning SoloSeq, even with the
ESM-2 backbone, improved performance.

Table 8: System-level Comparisons to prior work on CAMEO structure prediction.

Method GDT-TS GDT-HA LDDT

SoloSeq 0.61 0.43 0.79
with ESM-2 0.64 0.47 0.82
with ISM 0.67 0.50 0.83

D.2 CONTACT PREDICTION

We follow the experimental setting as in SaProt (Su et al., 2023), which uses the contact prediction
benchmark proposed by Rao et al. (2019) and Xu et al. (2022). In this benchmark, the goal is to
predict whether a pair of residues is within a certain distance of one another. We evaluate our model
on the ProteinNet CASP12 test set which contains at most 30% sequence identity to those in the
training set.

In the main paper, we report precision at L (P@L) for long-range contacts at least 24 amino acids
away. In Table 9, we thoroughly evaluate precision at L, L/2, L/5 on short, medium, and long-range
intervals of [6,12], [12,24],[24,↑] amino acids respectively. The results of our baseline Amplify
model closely align with those reported in their paper.

Table 9: Comparisons to prior work on contact prediction. ISM is structure-tuned on Uniclust30
while ISM

† is additionally trained on the PDB. SaProt↑ takes the structure as input. The proteins in
the training and test sets have at most 30% sequence similarity.

Short Range Medium Range Long Range
Method P@L P@L/2 P@L/5 P@L P@L/2 P@L/5 P@L P@L/2 P@L/5

ESM-2 0.45 0.45 0.50 0.45 0.45 0.54 0.35 0.42 0.52
ESM-2S 0.46 0.46 0.50 0.46 0.47 0.54 0.36 0.43 0.52
Amplify 0.38 0.38 0.41 0.36 0.35 0.40 0.23 0.28 0.35
S-PLM 0.49 0.49 0.55 0.48 0.49 0.57 0.36 0.43 0.54
SaProt↑ 0.57 0.57 0.64 0.53 0.55 0.66 0.48 0.60 0.74
ISM (Ours) 0.62 0.62 0.67 0.60 0.61 0.68 0.49 0.57 0.69
ISM

† (Ours) 0.62 0.62 0.68 0.60 0.60 0.68 0.48 0.56 0.67
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D.3 SECONDARY STRUCTURE

We use the secondary structure prediction benchmark from Xu et al. (2022). The protein’s secondary
structures are labeled one of three states - coil, strand, or helix. The training set is taken from Klausen
et al. (2019), which contains proteins with no more than 25% sequence similarity. The proteins in the
test set have at most 25% sequence similarity to those in the training set. We evaluate the model’s
classification accuracy.

We freeze ISM and train a 2-layer classifier for 10 epochs using a cosine learning rate schedule with
2 warmup epochs. We use a batch size of 32 proteins. We use AdamW optimizer with a learning rate
of 1→ 10→4 and weight decay of 0.5.

D.4 BINDING RESIDUES

We use the binding residues benchmark extracted from BioLip (Yang et al., 2012) prepared in the
bindEmbed21 method (Littmann et al., 2021). At the time of dataset generation, they found 104,733
structures corresponding to 14,894 sequences in BioLiP. Upon deduplication at 20% sequence
similarity, they ended up with 1314 proteins, of which 1014 were used for training and 300 were used
for testing. We evaluate on the binary classification of whether a residue is within < 2.5Å of a metal
ion, nucleic acid, or a small ligand (Littmann et al., 2021).

We freeze ISM and train a 2-layer classifier for 10 epochs using a cosine learning rate schedule with
2 warmup epochs. We use a batch size of 32 proteins. We use AdamW optimizer with a learning rate
of 3→ 10→4 and weight decay of 0.5. Full results with all metrics are available in Table 10.

Table 10: Comparisons to prior work on binding residue prediction. ISM is structure-tuned on
Uniclust30 while ISM

† is additionally trained on the PDB. SaProt↑ takes the structure as input. The
proteins in the training and test sets have at most 20% sequence similarity.

Test Independent
Method F1 MCC AUC F1 MCC AUC

ESM (Lin et al., 2022) 0.31 0.34 0.84 0.28 0.28 0.82
ESM-2S 0.32 0.35 0.84 0.28 0.28 0.83
Amplify (Fournier et al., 2024) 0.22 0.26 0.81 0.19 0.18 0.79
S-PLM (Wang et al., 2023) 0.35 0.36 0.83 0.35 0.33 0.82
SaProt↑ (Su et al., 2023) 0.36 0.38 0.87 0.35 0.33 0.87
ISM (Ours) 0.35 0.37 0.86 0.33 0.31 0.85
ISM

† (Ours) 0.37 0.38 0.86 0.34 0.32 0.85
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E QUALITATIVE ANALYSIS ON THE CLUSTERING RESULTS.

We qualitatively evaluate our clusters both on the experimental structures in PDB and the AlphaFold
structures in Uniclust30. First, we measured how many unique token IDs occurred in each protein
in Figure 6a. Surprisingly, we observed that over 20% of the proteins contained the same token
ID (token [17]) for every residue in the sequence. We then measured the number of times each
token appeared in the entire Uniclust30 dataset and found that one token appeared over 20% in total
(see Figure 6b). This turns out to be token [17] in Figure 7 which contains disordered regions with
little or no secondary or tertiary structures. Interestingly, the microenvironments in PDB with token
[17] do contain more sparse environments. This motivated us to remove training on the special
token s↑ =[17].

We also looked at a few tokens in Figure 7 that either occurred the most/least and report our intuition
below. Note that while our intuition can offer some rationale about the clusters, the model may
capture relevant microenvironment features that are difficult for humans to interpret.

• [id:3]: In PDB proteins, this cluster consists primarily of semi-solvent exposed mi-
croenvironments with masked alanines. In Alphafold proteins, the cluster still contains
semi-solvent exposed microenvironments but is not as heavily biased towards alanine. This
is the least frequently seen structure token in Uniclust30.

• [id:14]: In PDB proteins, this cluster consists primarily of glycine residues that are
solvent-exposed and mainly present in highly dynamic loops, often with little local secondary
structure. In Alphafold proteins, we observe similar microenvironments, though not as
heavily biased towards glycine. This is the second most frequently seen structure token in
Uniclust30. It is the most frequently seen token ID in PDB.

• [id:17] In PDB proteins, this cluster consists primarily of residues that are solvent-
exposed. However, in Alphafold proteins, this cluster corresponds to poorly folded regions
(e.g., N- and C-terminus residues and low pLDDT regions). This is the most frequent
structure token in Uniclust30 and the second least frequent structure token in PDB. Because
this token accurately captures poorly folded regions in computational structures, we drop
this token during training on the Uniclust30 dataset.

• [id:25]: In PDB proteins, this cluster primarily consists of the tertiary interactions
centered on disulfide bridges. In Alphafold proteins, this cluster also captures tertiary
interactions of small amino acids, primarily glycine. We suspect that since AlphaFold
does not explicitly model post-translation modifications, this cluster is not biased towards
compact tertiary structures formed by disulfide bridges, as observed in the PDB. This is the
least frequently seen structure token in PDB proteins.
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Figure 6: Measuring the diversity of tokens in both PDB and Uniclust30.
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(a) PDB Structures with [struct id 3] (b) AlphaFold Structures with [struct id 3]

(c) PDB Structures with [struct id 14] (d) AlphaFold Structures with [struct id 14]

(e) PDB Structures with [struct id 17] (f) AlphaFold Structures with [struct id 17]

(g) PDB Structures with [struct id 25] (h) AlphaFold Structures with [struct id 25]

Figure 7: More Cluster-based Microenvironment Visualizations. Residues in sky blue are within
the microenvironment, while white residues are outside and included for context. The grey density
indicates the masked-out amino acid. Nodes are colored by element: blue for nitrogen, red for oxygen,
and yellow for sulfur. The left two columns display structures from the PDB, while the right two
columns show protein sequences from Uniclust30, folded using AlphaFold.
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