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APPENDIX

A PROOFS

A.1 PROOF OF PROPERTY 3

Proof. Constraint (6) taking k = 0 is equivalent to Constraint (3), ensuring that z0 ∈ Bϵ(x). Thus,
v(QP j

t ) ≥ 0 implies minz0∈Bϵ(x) z
y
K − zjK ≥ 0.

A.2 PROOF OF THEOREM 1

Proof. 1. We first prove that v(QP j̄
t ) ≥ v(QPu) for all j̄ ∈ J̄K . Let z∗ be an optimal solution

of (QP j̄
t ). We build the solution (z = z∗, β) of (QPu) with βj̄ = 1 and βj = 0 ∀j ∈

J̄K\{j̄} satisfying Constraints (19) and (18). Obviously, the two objective functions have
the same value.

2. Then, we prove that min
j̄∈J̄K

v(QP j̄
t ) ≤ v(QPu).

Let (z∗, β∗) an optimal solution of (QPu) with βj̄ = 1 for j̄ ∈ J̄K . Obviously, z = z∗ is
feasible for (QP j̄

t ). Once again, the objective values are the same.

A.3 PROOF OF PROPOSITION 1

Proof. We ensure that the inequalities are valid in all three possible cases:

1. If βj1 = 1 and βj2 = 0, then both sides of (26) are equal to 0 and (27) becomes U j1 ≥
zj1K (x).

2. βj1 = 0 and βj2 = 1, (26) and (27) respectively lead to zj2K (x) ≤ U j2
K and zj2K (x) ≥ zj1K (x).

The latter is valid since when βj2 = 1, class j2 provides the worst example.

3. Otherwise, βj1 = βj2 = 0 and we obtain Lj1
K ≤ zj1K (x) from (26) and U j1

K ≥ zj1K (x)
from (27).

A.4 CONSTRAINTS EQ. (13) OR EQ. (9) ALSO IMPLIES Lk ≤ P [zk] ≤ Uk IN THE SDP CASE

Proof. We want to prove that P [zkz
T
k ]− (Uk + Lk)P [zk] + UkLk ≤ 0 implies Lk ≤ zk ≤ Uk.

Assume P is positive semidefinite, so every principal minor (ie. every determinant of any principal

submatrix) is nonnegative. In particular : det

(
P [1] P [zk]
P [zk] P [zkz

T
k ]

)
≥ 0, and since P [1] = 1, this

gives P [zk]
2 ≤ P [zkz

T
k ]. Plugging P [zk]

2 into Eq. (13) we obtain P [zk]
2 − (Uk + Lk)P [zk] +

UkLk ≤ 0, which is equivalent to (Uk − P [zk])(P [zk]− Lk) ≥ 0. Lk ≤ Uk gives : Lk ≤ P [zk] ≤
Uk.

The same reasoning applies with Pk.
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B COMPLEMENTS ON METHOD

B.1 ALGORITHMS COMPARAISON

SDPt(ϵ, x)
cert← true;
for j ∈ J̄K do

Compute bounds with β-CROWN.
if ∃l ∈ J̄K ∪ y, U j

K < Ll
K then

break;

v∗j ← Solve (SDP ϵ,j,x
t );

if v∗j ≤ 0 then
cert← false;
break;

return cert;

Algorithm 1: Full certification of ϵ-robustness of a DNN with targeted SDP model (SDPt)
on data x ∈ X

SDPu(ϵ, x)
cert← true;
Compute bounds with β-CROWN.
T← {j ∈ J̄K , ∃l ∈ J̄K ∪ y, U j

K < Ll
K}

v∗ ← Solve (SDP ϵ,T,x
u );

if v∗ ≤ 0 then
cert← false;
break;

return cert;

Algorithm 2: Full Certification of ϵ-robustness of a DNN with untargeted SDP model
(SDPu) on data x ∈ X

B.2 STABLE ACTIVE NEURONS ABLATION

In this section, we explain with more details our ReLU constraint relaxation in the context of stable
active neurons ablation. The quadratic ReLU constraint on neuron j of layer k + 1 is

zjk+1(z
j
k+1 −W j

k+1,uz
u
k − bk) = zjk+1W

j
k+1,az

a
k

where zak is the subset of stable active neurons of layer k. Note that each stable active neu-
ron r of layer k can be decomposed into a linear combinations of previous layers outputs

zrk =
k−1∑
l=0

nl∑
i=1,i unstable

λi
l z

i
l + γ, where γ ∈ R, λi

l ∈ R ∀l ∈ [0, k − 1], i ∈ [1, nl]. This

decomposition can be computed dynamically :

• for a layer k = 1 and a stable active neuron r on such layer: zi1 = W i
1z0 + bi1;

• for a layer l > 1 and a stable active neuron r on such layer,

zrk = W r
k zl−1 + brk

= W r
k,uz

u
k−1 +W r

k,az
a
k−1 + brk

= W r
k,uz

u
k−1 +

k−2∑
l=0

nl∑
i=1,i unstable

( nk−1∑
ν=1,ν active

W r
k,ν λi

l,ν

)
zil +

nk−1∑
ν=1,ν active

γν + brl

;

15
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Finally, our ReLU quadratic constraint can be rewritten

zjk+1(z
j
k+1 −W j

k,uz
u
k − bk) =

k−1∑
l=0

nl∑
i=1

Ai
lz

j
k+1z

i
l +Bzjk+1 (32)

where A is derived from the product of W a
k+1 and the coefficients λ, and B is derived from the

product of W a
k+1 and the coefficients γ.

We now consider the quadratic term zjk+1z
i
l present in the non-relaxed ReLU constraint on neuron

j of layer k+1, where l is a previous layer l ∈ [0, k− 1] and i is a neuron on such layer. Due to the
chordal decomposition, only products of neurons of two consecutive layers are considered and the
quadratic terms zjk+1z

i
l do not appear in our matrix variables. Our idea is to bound the terms zjk+1z

i
l

using the upper and ower bounds given by McCormick envelopes McCormick (1976). We have the
following bounding inequalities 0 ≤ zjk+1 ≤ U j

k+1, L̃i
l ≤ zil ≤ U i

l , where:

• U j
k+1 and U i

l are computed with β-CROWN.

• L̃i
l are computed as follows:

– For the input l = 0, we take the known trivial lower bounds : L̃i
l = Li

0 = xi − ϵ;

– For hidden layers l > 0, as all stable neurons have been pruned, neuron i of layer l is
unstable, that is to say its lower bound computed by β-CROWN is negative : Li

l < 0.
As zil represents the post-activation value and we want to take the tightest lower bound
possible to obtain the most efficient cuts, we take : L̃i

l = 0.

This enables us to formulate the McCormick envelopes:

zjk+1z
i
l ≥ L̃i

lz
j
k+1

zjk+1z
i
l ≤ U i

l z
j
k+1

zjk+1z
i
l ≥ U i

l z
j
k+1 + U j

k+1z
i
l − U j

k+1U
i
l

zjk+1z
i
l ≤ L̃i

lz
j
k+1 + U j

k+1z
i
l − U j

k+1L̃
i
l

These inequalities yield two boundings of Ai
lz

j
k+1z

i
l , the first one being :

Ai
lz

j
k+1z

i
l ∈

{
[Ai

lL̃
i
lz

j
k+1, A

i
lU

i
l z

j
k+1] if Ai

l ≥ 0

[Ai
lU

i
l z

j
k+1, A

i
lL̃

i
lz

j
k+1] otherwise.

(33)

And the second one being :

Ai
lz

j
k+1z

i
l ∈

{
[Ai

l

(
L̃i
lz

j
k+1 + U j

k+1z
i
l − U j

k+1L̃
i
l

)
, Ai

l

(
U i
l z

j
k+1 + U j

k+1z
i
l − U j

k+1U
i
l

)
] if Ai

l ≥ 0

[Ai
l

(
U i
l z

j
k+1 + U j

k+1z
i
l − U j

k+1U
i
l

)
, Ai

l

(
L̃i
lz

j
k+1 + U j

k+1z
i
l − U j

k+1L̃
i
l

)
] otherwise.

(34)

By summing up the lower linear bounds of Ai
lz

j
k+1z

i
l in (33) for all l ∈ [0, k − 1], i ∈ [1, nl], we

obtain a lower linear bound on the right term of (32) :
k−1∑
l=0

nl∑
i=1

Ai
lz

j
k+1z

i
l +Bzjk+1 ≤ (C1+B)zjk+1.

Applying the same approach for the upper bound of (33) and lower and upper bound of (34), we
obtain our final set of 4 constraints:
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

zjk+1(z
j
k+1 −W j

k,uz
u
k − bk) ≤ (C1 +B)zjk+1 28

zjk+1(z
j
k+1 −W j

k,uz
u
k − bk) ≥ (C2 +B)zjk+1 29

zjk+1(z
j
k+1 −W j

k,uz
u
k − bk) ≤

k−1∑
l=0

nl∑
i=1

Ci
3,lz

i
l + C3,k+1z

j
k+1 + C3 30

zjk+1(z
j
k+1 −W j

k,uz
u
k − bk) ≥

k−1∑
l=0

nl∑
i=1

Ci
4,lz

i
l + C4,k+1z

j
k+1 + C4 31

where 

C1 =

k−1∑
l=0

nl∑
i=1,Ai

l≥0

Ai
lU

i
l +

k−1∑
l=0

nl∑
i=1,Ai

l<0

Ai
lL̃

i
l

C2 =

k−1∑
l=0

nl∑
i=1,Ai

l<0

Ai
lU

i
l +

k−1∑
l=0

nl∑
i=1,Ai

l≥0

Ai
lL̃

i
l

C3 = B −
k−1∑
l=0

nl∑
i=1,Ai

l≥0

Ai
lU

j
k+1U

i
l −

k−1∑
l=0

nl∑
i=1,Ai

l<0

Ai
lL̃

i
lU

j
k+1

C4 = B −
k−1∑
l=0

nl∑
i=1,Ai

l≥0

Ai
lU

j
k+1L̃

i
l −

k−1∑
l=0

nl∑
i=1,Ai

l<0

Ai
lU

i
lU

j
k+1

C3,k+1 =

k−1∑
l=0

nl∑
i=1,Ai

l≥0

Ai
lU

i
l +

k−1∑
l=0

nl∑
i=1,Ai

l<0

Ai
lL̃

i
l

C4,k+1 =

k−1∑
l=0

nl∑
i=1,Ai

l≥0

Ai
lL̃

i
l +

k−1∑
l=0

nl∑
i=1,Ai

l<0

Ai
lU

i
l

Ci
3,l = Ci

4,l = Ai
lU

j
k+1 ∀i ∈ [1, nl], l ∈ [0, k − 1]

Note that a wider set of constraints could be explored by varying combinations of bounds from (33)
and (34). This ablation multiply by 4 the number of ReLU constraints dedicated to unstable neurons.
However, it eliminates several categories of constraints related to stable active neurons, including the
ReLU constraint (11), the bounding constraints (13), the triangular constraints (14), the McCormick
constraints (24), and the RLT constraints (16). Notably, this leads to a quadratic reduction with
respect to na

k : 4 na
k |J̄K | constraints removed from 24, and up to na

k(n
u
k + na

k) constraints removed
from (16) on layer k. In sufficiently big neural networks, this quadratic reduction counterbalances
the linear increase in constraints with respect to nu

k .

B.3 TRIANGULAR CONSTRAINT

We say that a neuron j of layer k of lower bound Lj
k and upper bound U j

k is stable active if Lj
k ≥ 0

and stable inactive if U j
k ≤ 0. Otherwise, a neuron is unstable (i.e. if Lj

k < 0 < U j
k ).

In order to tighten the upper bound on the ReLU activation function, a well-known constraint is the
triangular constraint, which provides a convex embedding of the ReLU output. Depending on the
activation status of the considered neuron j of layer k, we decompose the linear upper bound in the
following set T of triangular inequalities:
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zjk ∈ T ⇔



zjk ≤ 0 if j is inactive

zjk ≤W j
kzk−1 + bjk ifj is active

zjk ≤
U j
k

U j
k − Lj

k

(W j
kzk−1 + bjk)

+
U j
k

U j
k − Lj

k

(bjk − Lj
k) if j is unstable

Combined with constraints zjk ≥ 0, zjk ≤ ẑjk, where ẑjk denotes preactivation vector of neuron j

of layer k, this constraint yields the exact output zjk = 0 when neuron j is inactive, and zjk =

W j
kzk−1 + bjk when it is active.

When neuron j is unstable, the upper-bound is plotted in red in Figure 3. The equation of the red line

Figure 3: Triangular constraint on neuron j of layer k, where ẑjk = W j
kzk−1+bjk is the pre-activation

vector

clearly depends on the lower and upper bounds Lj
k and U j

k of the preactivation vector W j
kzk−1+bjk.

The triangular constraint has been shown to be limited, as it represents only the convex hull of the
output of a single ReLU neuron Salman et al. (2019). Recent works have porposed convex relax-
ations to capture the joint behavior of multiple ReLUs. Such ideas could be explored to compute
more efficient cuts in SDP models.

B.4 COHERENCE CONSTRAINT EQ. (15)

In all our SDP models, we use the constraint between two consecutive matrices
Pk[(1 zk+1)(1 zk+1)

⊤] = Pk+1[(1 zk+1)(1 zk+1)
⊤] (15) relaxed as in Batten et al. (2021)

and in Lan et al. (2022). For a layer k, including all coherence constraints in the model would
introduce nk(nk+3)

2 constraints. In the relaxation of constraint (15), only the nk linear constraints
remain: Pk[zk+1] = Pk+1[zk+1], preventing the number of constraints from exploding.

B.5 RLT CONSTRAINT

We present here the RLT cuts (16) selected in Lan et al. (2022). These cuts contribute to tightening
the relaxation, and are given below:

Tightening cuts



zkzk+1 ≤ Lkzk+1 − Uk+1zk + LkUk+1 (35)
zkzk+1 ≤ Lkzk+1 − Uk+1zk + LkUk+1 (36)
zkzk+1 ≤ Lkzk+1 − Lk+1zk + LkLk+1 (37)
Pk[zk+1zk+1] ≤ Uk+1zk+1 (38)

Pk[zk+1z
T
k+1] ≤ AkPk[zkzk+1] +BkPk[zk+1] (39)
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The number of these constraints is large. For a given layer k, constraints (35)–(37) scale quadrati-
cally with nk+1 × nk, while constraints (38) and (39) scale with nk+1 × nk+1. Including all these
constraints in the SDP model would significantly increase the computing time. A heuristic is there-
fore needed to select only a subset of these cuts. As (38) and (39) capture intra layer dependencies,
a heuristic selecting a subset of them is difficult to design. In contrast, since (35)–(37) represents
inter layer dependencies, a heuristic based on the linear layer weights linking them is possible.

Only a subset of constraints (35)–(37) is finally selected, based on a given percentage p. Specifically,
for each neuron j on layer k + 1 we select ⌊p nk⌋ cuts. The heuristic sorts the absolute value of the
weights |W j

k+1|, and selects the neurons corresponding to the top ⌊p nk⌋ entries in the sorted vector.
This selection is based on the full size of layer k regardless of whether neurons have been pruned.
More precisely, in the context of a full ablation, we do not select ⌊p nu

k⌋ RLT cuts but ⌊p nk⌋ ones.

B.6 TIGHTENING CUTS FOR SDPu

For simplicity and clarity, we used the full logits zjK in constraints (26) (27) (24). Note that
these logits are not variables of our model. To obtain the full constraints in our model, we need
to substitute each logit by its linear expression with respect to the penultimate layer variables :
zjK = W j

KzK−1 + bjK .

Furthermore, for the sake of clarity in constraints (23) (24) (26) (27 (25), we omit explicit ma-
trix indexation. To recover the full constraint, one must, for example, replace variables such
as βiβj by PK−2[βiβj ]. Combining this with the logit expression, zjK should be replaced by
W j

KPK−2[zK−1] + bjK , and βjz
j
K by W j

KPK−2[βjzK−1] + bjKPK−2[βj ].

19
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C IMPLEMENTATION DETAILS

All networks have been trained with a batch size of 128, the Adam optimizer, and a learning rate
of 0.001. For reproducibility, we show the details of the adversarial training in table 3. We used
the optimizer Adam, a learning rate lr = 0.01, and batch sizes of 128. All PGD attacks were used
with number of steps = 40, a random start. We denote by 6x100-5, 6x100-20, 6x100-50,
6x100-67 networks used in experiment 3.

Network Architecture Adversarial Training Accuracy
Epochs Adversarial attack

6x100 784-6x100-10 200 PGD (ϵ = 0.3, α = 0.01) 95.5
6x200 784-6x200-10 200 PGD (ϵ = 0.3, α = 0.01) 96.1
9x100 784-9x100-10 200 PGD (ϵ = 0.3, α = 0.01) 95.2
9x200 784-9x200-10 200 PGD (ϵ = 0.3, α = 0.01) 96.9
6x100-5 784-6x100-5 100 PGD (ϵ = 0.3, α = 0.01) 97.6
6x100-20 784-6x100-20 100 PGD (ϵ = 0.3, α = 0.01) 86.0
6x100-50 784-6x100-50 100 PGD (ϵ = 0.3, α = 0.01) 76.7
6x100-67 784-6x100-67 100 PGD (ϵ = 0.3, α = 0.01) 75.2

Table 3: Networks used in our three experiments.

Network ϵ Stability study
Stable Unstable Total Running targets

Inactives Actives
6x100 0.026 283

47%
224
37%

93
16%

600
100%

4.0

6x200 0.015 713
59%

287
24%

200
17%

1200
100%

6.8

9x100 0.026 364
40%

225
25%

312
35%

900
100%

7.1

9x200 0.015 1024
57%

312
17%

464
26%

1800
100%

7.6

6x100-5 0.05 261
44%

119
20%

220
36%

600
100%

3.25

6x100-20 0.05 243
40%

157
26%

201
33%

600
100%

14.44

6x100-50 0.05 188
31%

117
20%

295
49%

600
100%

48.8

6x100-67 0.05 203
34%

127
21%

271
45%

600
100%

60.1

Table 4: Mean number of stable active, stable inactive and unstable neurons computed on the data
of our experiments (100 data for 6x100-6x200-9x100-9x200, 5 data for 6x100-5, 20 data for
6x100-20, 50 data for 6x100-50, and 67 data for 6x100-67).
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D ADDITIONNAL STATE OF THE ART

D.1 OTHER INCOMPLETE VERIFICATION USING SDP

Other related efforts include the development of dual solvers tailored to the SDP formula-
tion Dathathri et al. (2018). Other works have created a Branch and Bound framework based on
a rewriting of the matrix coefficient of the quadratic constraint of the ReLU BB − SDPt ?. While
these approaches differ significantly from ours—making them difficult to reproduce—we observe
that they primarily improve certification rates rather than scalability. In ?, we can estimate the com-
puting method time multiplying the certification time of the model (targeted) by an underestimation
of the number of running targets. We see that our model is faster for all common networks structure
in our experiments (6x100, 6x200, 9x100).

Some recent works have adressed different settings. Notably, some have incorporated SDP-based
bounds to into the Branch and Bound framework commonly used with β-CROWN. They observed
that bounds computed with β-CROWN are bad with the norm 2 Chiu et al. (2025).

D.2 SDP RELAXATIONS

The two main criterion to design a relaxation is its computation time and its tightness. Indeed,
the tighter the relaxation, the better the lower bound. Existing relaxation techniques for quadratic
problems are mainly based on linearization or on semi-definite programming. To compute a linear
relaxation, the quadratic functions are reformulated as convex equivalent functions in an extended
space of variables. More precisely, new variables Zij are introduced for all (i, j), that are meant to
satisfy the equalities Zij = zizj . The linearization is then obtained by relaxation of the later non-
convex equalities, for instance by linear constraints (see for instance McCormick (1976); Sherali
& Adams (2013); Yajima & Fujie (1998)). Using semi-definite relaxations for quadratic program-
ming was also widely studied Anstreicher (2009); Chen & Burer (2012); Burer & Vandenbussche
(2008; 2009); Vandenbussche & Nemhauser (2005a;b). A semi-definite relaxation of a quadratic
optimization problem can be obtained by lifting z to a symmetric matrix Z = zz⊤ where the later
non-convex constraints are relaxed to Z − zz⊤ ⪰ 0. Note that, since in a DNN only layers k and
k + 1 are linked by Relu Constraints, a chordal decomposition of the variable matrix Z into |K|
block diagonal matrices is possible Batten et al. (2021). This standard semi-definite relaxation is
often referred to as “Shor’s” relaxation. In Anstreicher (2009), the “Shor’s plus RLT” relaxation
was introduced, where the convex envelopes of the quadratic terms McCormick (1976) where added
to the later relaxation. We detailed the RLT cuts used in Lan et al. (2022) in section B.5.

D.3 COMPLETE VERIFICATION

Ideal verification is complete, ensuring that all answers are reliable. However, due to the complexity
of the problem, fully achieving such verification is often constrained. Works using Satisfiability
Modulo Theory Ehlers (2017) like Reluplex Katz et al. (2017) or Marabou Katz et al. (2019) Wu
et al. (2024) have been developed, but are not currently scalable. Nevertheless, they are very pre-
cise and give formal proof of robustness or useful counterexamples when working on a sufficiently
small network. Some works have introduced Mixed Integer Programming formulations (MIP), see
Fischetti & Jo (2018) Cheng et al. (2017), but the direct resolution of these models without relax-
ations are also not scalable. Most efficient complete verification rely on Brand&Bound Bunel et al.
(2020)- Ferrari et al. (2022)- Jaeckle et al. (2021)- Lu & Kumar (2019), whose relaxation of the
certification problem is fast heuristics like CROWN. They have been improved by smart branching:
splitting on the activation or not activation of a set of neurons has been exponentially faster than
splitting on the input ball. Some methods have improve¡d ReLU splitting to better choose neurons
for branching decision Henriksen & Lomuscio (2021). When reaching a certain depth of the tree, a
relatively fast MIP is solved (with few binary variables as the activation of most neurons is fixed), to
prune a branch without exploring all its content. It also helps to avoid impossible activation patterns
in practice, which may not be seen by heuristic methods like bound propagation, guaranteeing the
soundness of the algorithm. The resolution of these MILP has been further improved with cutting
planes Zhang et al. (2022).
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D.4 ADVERSARIAL TRAINING

In this section, we present the adversarial training used in order to create robust networks. Madry
introduced adversarial training Madry et al. (2019) by adding a maximisation problem into the com-
mon training minimisation problem:

min
∀(x,y)∈X

max
z∈Bϵ(x)

L(z, y)

where the inner maximisation represents the computation of the worst adversarial attack. It is
approached by heuristics, most of them are based on gradient descents, Projected Gradient Descent
(PGD) Madry et al. (2019), or its variants (FGSM Goodfellow et al. (2015), IGS Kurakin et al.
(2017)), JSMA Papernot et al. (2015) for the norm ∥∥0, DeepFool Moosavi-Dezfooli et al. (2016)
for ∥∥2) and have been improved since Carlini & Wagner (2017). Specifically, we train our model
using the most classic adversarial attack: PGD, and compute untargeted adversarial attacks with it.
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