Under review as a conference paper at ICLR 2026

APPENDIX

A PROOFS

A.1 PROOF OF PROPERTY 3

Proof. Constraint @ taking k& = 0 is equivalent to Constraint , ensuring that zp € B(x). Thus,
v(QP/) > 0 implies min, g, (2) 25 — 23 > 0. O

A.2 PROOF OF THEOREM 1

Proof. 1. We first prove that v(QPtj) > v(QP,) forall j € Jg. Let 2* be an optimal solution
of (QP/). We build the solution (2 = 2*, 3) of (QP,) with 3; = 1and 3; = 0 Vj €
Jx\{Jj} satisfying Constraints and . Obviously, the two objective functions have
the same value.

2. Then, we prove that min U(QPg) <v(QP,).
JE€EITK

Let (z*, 8*) an optimal solution of (QP,) with #; =1 for j € Jk. Obviously, z = z* is
feasible for (QPtj). Once again, the objective values are the same.
O

A.3 PROOF OF PROPOSITION 1

Proof. We ensure that the inequalities are valid in all three possible cases:

1. If 3;, = 1 and 8;, = 0, then both sides of are equal to 0 and becomes U7t >
2. Bj, =0and g, =1, and (27) respectively lead to 272 (x) < U372 and 22 (z) > 2t (z).

The latter is valid since when 3;, = 1, class j, provides the worst example.

3. Otherwise, 3;, = fj, = 0 and we obtain L}} < zJ(x) from and U3} > 21 (z)

from (27).
O

A.4 CONSTRAINTS EQ. OR EQ. (9) ALSO IMPLIES L, < P[z;;] < Uy IN THE SDP CASE

Proof. We want to prove that P(z,z] | — (Uy, + Li) P[zx] + ULy < 0 implies Ly, < 2, < U.
Assume P is positive semidefinite, so every principal minor (ie. every determinant of any principal
submatrix) is nonnegative. In particular : det < Jf[,[zlk]] PI[D,Z[:I;}{O > 0, and since P[1] = 1, this
gives P[z])? < P[zpz}]. Plugging P[z;)? into Eq. we obtain P[zx]? — (Uy + L) P|zi] +
ULy < 0, which is equivalent to (Uy, — P[z])(Plzx] — Li) > 0. Ly < Uy gives : Ly, < Plzi] <
Ug.

The same reasoning applies with Pj. O

14

Under review as a conference paper at ICLR 2026

B COMPLEMENTS ON METHOD

B.1 ALGORITHMS COMPARAISON

SDP; (€,)
cert < true;
for j € Jx do
Compute bounds with 5-CROWN.
if3l € Jx Uy, Ui < L' then
L break;
v} < Solve (SDP;7");

if v < 0 then

cert < false;
L break;

return cert;

Algorithm 1: Full certification of e-robustness of a DNN with targeted SDP model (S D Pt)
ondatax € X

SDP,, (€, %)
cert < true;
Compute bounds with 5-CROWN.
T+ {jeJk, A eTxkUy, Ui <Lk}
v* + Solve (SDPST®);

if v* < 0 then

cert < false;
L break;

return cert;

Algorithm 2: Full Certification of e-robustness of a DNN with untargeted SDP model
(SDP,)ondatax € X

B.2 STABLE ACTIVE NEURONS ABLATION

In this section, we explain with more details our ReLU constraint relaxation in the context of stable
active neurons ablation. The quadratic ReLU constraint on neuron j of layer k£ + 1 is

J J J u _ J a
Zk+1(zk+1 - Wk+1,uzk —by) = Zk+1Wk+1,azk

where zj is the subset of stable active neurons of layer k. Note that each stable active neu-
ron r of layer k can be decomposed into a linear combinations of previous layers outputs

k=1 n A)
zp = > > A zj + 7, wherey € R)A} € R VI € [0,k —1],i € [1,ny]. This
=0 <¢=1,7 unstable
decomposition can be computed dynamically :
« for alayer k = 1 and a stable active neuron on such layer: zi = Wiz + b;
* for alayer [> 1 and a stable active neuron 7 on such layer,
2 = Wizi—1 + b,
= ng,uz;:—l + Wl:,azg—l + bz

k—2 ny Nk—1 Nk—1
o r u r 7 7 r
= Wi w2k-1 + E E (E Wy l,u)zl + E Y + by
=0 i=1,7 unstable v=1,v active v=1,v active

15

Under review as a conference paper at ICLR 2026

Finally, our ReLU quadratic constraint can be rewritten

k—1 ny

D1 (o — Wi 2k — be) = ZZA;‘Z;HZ; + Bz],, (32)
=0 =1

where A is derived from the product of Wy, and the coefficients A, and B is derived from the
product of W', | and the coefficients 7.

We now consider the quadratic term zi 17| present in the non-relaxed ReLU constraint on neuron
j of layer k + 1, where [is a previous layer [€ [0, k — 1] and 4 is a neuron on such layer. Due to the
chordal decomposition, only products of neurons of two consecutive layers are considered and the

quadratic terms z;, _Hzli do not appear in our matrix variables. Our idea is to bound the terms zi ¥
using the upper and ower bounds given by McCormick envelopes McCormick| (1976). We have the

following bounding inequalities 0 < zé 41 S U ,g i1 L% < z; < Uli, where:
« U}, and U] are computed with 3-~CROWN.

« L} are computed as follows:

— For the input [= 0, we take the known trivial lower bounds : f/f =Li=1"—¢

— For hidden layers [> 0, as all stable neurons have been pruned, neuron i of layer [is
unstable, that is to say its lower bound computed by 5—-CROWN is negative : Lj < 0.
As z; represents the post-activation value and we want to take the tightest lower bound

possible to obtain the most efficient cuts, we take : if =0.

This enables us to formulate the McCormick envelopes:

Zk+1zl > LleH
14 < U Zk+1
J 7 i J %
Zk+1zl > U} Zk+1 +Ujyi2 — Ui U

i i FiLd j i
Gpral < Lizly + Ul2 - Uk+1Lf
These inequalities yield two boundings of A}zi 17~ the first one being :

Al sic [A;L§Zi+1’ AfoziH] if A} >0 33
e [AliUlizi+1a A;E;Zi_,_l] otherwise.

And the second one being :

[Af (sziﬂ + Uli+1zli - U1g+1Lf)v Af(Ufzi_H + U1g+1zli - Uli-&-lUli)] if A% >0

Afziﬂzfe{ Ai(Uiyd Ul iUl Ui, Ai(Lis Ul iyl L herwi
[(AJ (Ui 2y + Ul 2f = UL UF), A(Lizlyy + Uiy 2t — Uiy Lj)] - otherwise.

(34)
By summing up the lower linear bounds of Aiz/ z¢in (33) forall € [0,k — 1],7 € [1,n], we
k=1 n .
obtain a lower linear bound on the right term of l| Z Z Alzl 2+ B < (Ci+B)z], .
=0 1=1

Applying the same approach for the upper bound of @ and lower and upper bound of (34), we
obtain our final set of 4 constraints:

16

Under review as a conference paper at ICLR 2026

J J Jju J
Zhp1 (Fhyr — Wiwsk — bk) < (C1 + B)zy 44
J J Jj J
Zhp1 (Fy1 — Wiwsk — bk) = (C2 + Bz
k—1 ny
J J J - J
Zk+1(zk+1 — Wk)uZ}; — bk) < E E Célzll + C3,k+1zlc+1 +C3 |30
1=0 i=1
k—1 ny
J J J u (- J
Zk+1(zk+1 - Wk,uzk —by) > E E Ciizl + Cagpyrz + 00 B
1=0 i=1
where
k—1 ng k—1 n
C, = g AU} + E E AjL;
1=0 i=1,A4i>0 1=0 i=1,4i<0
k—1 ny k—1 n
Cy = E AU + E E AjL;
=0 i=1,A}<0 =0 i=1,A1>0
k—1 nyg k—1 ny
_ iTTd i iFirTd
C3=B-— E AlUk+1Ul - E , E AlLlUk+1
1=0 i=1,4}>0 1=0 i=1,A}<0
k—1 ng k—1 ny
_ irrd fi irTiTrd
Ci=DB-— > AULLLI =Y Y AUUL,
=0 i=1,A1>0 =0 i=1,A1<0
k—l ng k:—l ng
Copri= > AUI+Y. Y AL
1=0i=1,A1>0 1=0:=1,Ai<0
k—1 ny k—1 ny
Coner=3 S AL+ > AU
1=0 i=1,Ai>0 1=0 i=1,Ai<0
C’§7l = C}l,l = A}U,ﬂJrl Vi e [1,n],1 € [0,k — 1]

Note that a wider set of constraints could be explored by varying combinations of bounds from
and (34). This ablation multiply by 4 the number of ReLU constraints dedicated to unstable neurons.
However, it eliminates several categories of constraints related to stable active neurons, including the
ReLU constraint , the bounding constraints , the triangular constraints , the McCormick
constraints @]) and the RLT constraints @ Notably, this leads to a quadratic reduction with
respect to n¢ : 4 n{, | Jx| constraints removed from and up to nj (nj 4+ n{) constraints removed
from on layer k. In sufficiently big neural networks, this quadratic reduction counterbalances
the linear increase in constraints with respect to nj.

B.3 TRIANGULAR CONSTRAINT

We say that a neuron j of layer & of lower bound Li and upper bound U ,g is stable active if L{C >0
and stable inactive if U], < 0. Otherwise, a neuron is unstable (i.e. if L], < 0 < U}).

In order to tighten the upper bound on the ReLU activation function, a well-known constraint is the
triangular constraint, which provides a convex embedding of the ReLU output. Depending on the
activation status of the considered neuron j of layer k, we decompose the linear upper bound in the
following set T of triangular inequalities:

17

Under review as a conference paper at ICLR 2026

zi <0 if 7 is inactive

2, < Wizk—1 +0),

ifj is active

Ui

deT e 2l <k (Wiz_1+b))

Ul - L
uloo
+— (b — L)

if 5 is unstable
Ui -1

Combined with constraints z;, > 0, z;, < Z], where 2; denotes preactivation vector of neuron j

of layer k, this constraint yields the exact output z; = 0 when neuron j is inactive, and zi =

Wi zi,—1 + bj, when it is active.

When neuron j is unstable, the upper-bound is plotted in red in Figure [3] The equation of the red line

n . ZJ :zsj
— =zl >0 ReLU(%]) ko Tk
2%22% J J ’//
— 2] < A} z] + Bj, i
-
-
i N
LJ Ul “
k k

Figure 3: Triangular constraint on neuron j of layer k, where éi = W,ﬁ Zk—1 +b£ is the pre-activation
vector

clearly depends on the lower and upper bounds Li and U,z of the preactivation vector Wg Zk—1 eri.

The triangular constraint has been shown to be limited, as it represents only the convex hull of the
output of a single ReLU neuron [Salman et al.| (2019). Recent works have porposed convex relax-
ations to capture the joint behavior of multiple ReLUs. Such ideas could be explored to compute
more efficient cuts in SDP models.

B.4 COHERENCE CONSTRAINT EQ. (T3)

In all our SDP models, we use the constraint between two consecutive matrices
P[(1 2k41)(1 2k41) 7] = Prega[(1 zr41)(1 zry1) "] (15) relaxed as in Batten et al.| (2021)
and in [Lan et al.| (2022)). For a layer k, including all coherence constraints in the model would

introduce 7 (nt3) constraints. In the relaxation of constraint 1i only the ny, linear constraints
remain: Py [zi+1] = Pgt1[2k+1), preventing the number of constraints from exploding.

B.5 RLT CONSTRAINT

We present here the RLT cuts (T6) selected in[Lan et al. (2022). These cuts contribute to tightening
the relaxation, and are given below:

2k2p1 < Lzt — Ugga2ze + LiUgqa (35)
22kl < Lpzgyr — Ugpaze + LiUg (36)
Tightening cuts{ ~ 2k2k+1 < Likzky1 — Lgt12k + L Lita (37)
Pilzk4125+1] < Ukt12k4+1 (38)
Pylzii12t 1] < ApPrlzizis] + BiPilzig] (39

18

Under review as a conference paper at ICLR 2026

The number of these constraints is large. For a given layer k, constraints (33)—(37) scale quadrati-
cally with ng,1 x ng, while constraints and scale with mg 1 X ng1. Including all these
constraints in the SDP model would significantly increase the computing time. A heuristic is there-
fore needed to select only a subset of these cuts. As (38) and (39) capture intra layer dependencies,
a heuristic selecting a subset of them is difficult to design. In contrast, since (35)—(37) represents
inter layer dependencies, a heuristic based on the linear layer weights linking them is possible.

Only a subset of constraints (35)—(37) is finally selected, based on a given percentage p. Specifically,
for each neuron j on layer k + 1 we select | pny | cuts. The heuristic sorts the absolute value of the

weights \W,ﬁ 41 and selects the neurons corresponding to the top [pny | entries in the sorted vector.
This selection is based on the full size of layer k regardless of whether neurons have been pruned.
More precisely, in the context of a full ablation, we do not select |pnj: | RLT cuts but |pny | ones.

B.6 TIGHTENING CUTS FOR SDP,,

For simplicity and clarity, we used the full logits z}(in constraints .. 1i |i Note that
these logits are not variables of our model. To obtain the full constraints in our model, we need
to substitute each logit by its linear expression with respect to the penultimate layer variables :

2he = Wiz 1 +).

Furthermore, for the sake of clarity in constraints (23) 24) (26) (25), we omit explicit ma-
trix indexation. To recover the full constraint, one must, for example_t, replace variables such
as f3;0; by Prx_2[B;3;]. Combining this with the logit expression, z}, should be replaced by
WIJ(PK_Q[ZK_ﬂ + bJK, and 6]2’1(by W'IY(PK_Q[ﬁjZK_]_] + bJKPK_Q[Bj}.

19

Under review as a conference paper at ICLR 2026

C IMPLEMENTATION DETAILS

All networks have been trained with a batch size of 128, the Adam optimizer, and a learning rate
of 0.001. For reproducibility, we show the details of the adversarial training in table [3] We used
the optimizer Adam, a learning rate I = 0.01, and batch sizes of 128. All PGD attacks were used
with number of steps = 40, a random start. We denote by 6x100-5, 6x100-20, 6x100-50,
6x100-67 networks used in experiment 3.

Network Architecture Adversarial Training Accuracy
Epochs Adversarial attack
6x100 784-6x100-10 200 PGD (e = 0.3, a = 0.01) 95.5
6x200 784-6x200-10 200 PGD (e = 0.3, a = 0.01) 96.1
9x100 784-9x100-10 200 PGD (e = 0.3, « = 0.01) 95.2
9x%200 784-9x200-10 200 PGD (e = 0.3, a = 0.01) 96.9
6x100-5 784-6x100-5 100 PGD (e = 0.3, « = 0.01) 97.6
6x100-20 | 784-6x100-20 100 PGD (e = 0.3, a = 0.01) 86.0
6x100-50 | 784-6x100-50 100 PGD (e = 0.3, o = 0.01) 76.7
6x100-67 | 784-6x100-67 100 PGD (e = 0.3, « = 0.01) 75.2

Table 3: Networks used in our three experiments.

Network € Stability study
Stable Unstable | Total | Running targets
Inactives Actives

6x100 0.026 | 283 224 93 600 4.0
47% 37% 16% 100%

6x200 0.015 | 713 287 200 1200 6.8
59% 24% 17% 100%

9x100 0.026 | 364 225 312 900 7.1
40% 25% 35% 100%

9x200 0.015 | 1024 312 464 1800 7.6
57% 17% 26% 100%

6x100-5 0.05 261 119 220 600 3.25
44% 20% 36% 100%

6x100-20 0.05 243 157 201 600 14.44
40% 26% 33% 100%

6x100-50 0.05 188 117 295 600 48.8
31% 20% 49% 100%

6x100-67 0.05 203 127 271 600 60.1
34% 21% 45% 100%

Table 4: Mean number of stable active, stable inactive and unstable neurons computed on the data
of our experiments (100 data for 6x100-6x200-9x100-9x200, 5 data for 6x100-5, 20 data for
6x100-20, 50 data for 6x100-50, and 67 data for 6x100-67).

20

Under review as a conference paper at ICLR 2026

D ADDITIONNAL STATE OF THE ART

D.1 OTHER INCOMPLETE VERIFICATION USING SDP

Other related efforts include the development of dual solvers tailored to the SDP formula-
tion |Dathathri et al.| (2018). Other works have created a Branch and Bound framework based on
a rewriting of the matrix coefficient of the quadratic constraint of the ReLU BB — SD Pt ?. While
these approaches differ significantly from ours—making them difficult to reproduce—we observe
that they primarily improve certification rates rather than scalability. In ?, we can estimate the com-
puting method time multiplying the certification time of the model (targeted) by an underestimation
of the number of running targets. We see that our model is faster for all common networks structure
in our experiments (6x100, 6x200, 9x100).

Some recent works have adressed different settings. Notably, some have incorporated SDP-based
bounds to into the Branch and Bound framework commonly used with 3-CROWN. They observed
that bounds computed with 3-CROWN are bad with the norm 2 |Chiu et al.|(2025)).

D.2 SDP RELAXATIONS

The two main criterion to design a relaxation is its computation time and its tightness. Indeed,
the tighter the relaxation, the better the lower bound. Existing relaxation techniques for quadratic
problems are mainly based on linearization or on semi-definite programming. To compute a linear
relaxation, the quadratic functions are reformulated as convex equivalent functions in an extended
space of variables. More precisely, new variables Z;; are introduced for all (¢, j), that are meant to
satisfy the equalities Z;; = z;z;. The linearization is then obtained by relaxation of the later non-
convex equalities, for instance by linear constraints (see for instance McCormick! (1976)); |Sherali
& Adams| (2013); |Yajima & Fujie| (1998))). Using semi-definite relaxations for quadratic program-
ming was also widely studied |Anstreicher| (2009); |(Chen & Burer| (2012)); Burer & Vandenbussche
(2008 |2009); [Vandenbussche & Nemhauser| (2005ajb). A semi-definite relaxation of a quadratic
optimization problem can be obtained by lifting z to a symmetric matrix Z = zz ' where the later
non-convex constraints are relaxed to Z — zz' > 0. Note that, since in a DNN only layers k& and
k 4 1 are linked by Relu Constraints, a chordal decomposition of the variable matrix Z into |K|
block diagonal matrices is possible |[Batten et al.[(2021). This standard semi-definite relaxation is
often referred to as “Shor’s” relaxation. In |Anstreicher] (2009), the “Shor’s plus RLT” relaxation
was introduced, where the convex envelopes of the quadratic terms|McCormick! (1976) where added
to the later relaxation. We detailed the RLT cuts used in Lan et al.|(2022) in section

D.3 COMPLETE VERIFICATION

Ideal verification is complete, ensuring that all answers are reliable. However, due to the complexity
of the problem, fully achieving such verification is often constrained. Works using Satisfiability
Modulo Theory [Ehlers| (2017) like Reluplex |[Katz et al.| (2017) or Marabou Katz et al.[(2019) Wu
et al.[(2024) have been developed, but are not currently scalable. Nevertheless, they are very pre-
cise and give formal proof of robustness or useful counterexamples when working on a sufficiently
small network. Some works have introduced Mixed Integer Programming formulations (MIP), see
Fischetti & Jo| (2018]) [Cheng et al|(2017), but the direct resolution of these models without relax-
ations are also not scalable. Most efficient complete verification rely on Brand&Bound |Bunel et al.
(2020)- |[Ferrari et al.| (2022)- Jaeckle et al.| (2021)- [Lu & Kumar| (2019), whose relaxation of the
certification problem is fast heuristics like CROWN. They have been improved by smart branching:
splitting on the activation or not activation of a set of neurons has been exponentially faster than
splitting on the input ball. Some methods have improve;d ReLU splitting to better choose neurons
for branching decision Henriksen & Lomuscio| (2021). When reaching a certain depth of the tree, a
relatively fast MIP is solved (with few binary variables as the activation of most neurons is fixed), to
prune a branch without exploring all its content. It also helps to avoid impossible activation patterns
in practice, which may not be seen by heuristic methods like bound propagation, guaranteeing the
soundness of the algorithm. The resolution of these MILP has been further improved with cutting
planes |Zhang et al.|(2022).

21

Under review as a conference paper at ICLR 2026

D.4 ADVERSARIAL TRAINING

In this section, we present the adversarial training used in order to create robust networks. Madry
introduced adversarial training Madry et al.|(2019) by adding a maximisation problem into the com-
mon training minimisation problem:

min max L(z,
V(z,y)EX 2€B.(x) (2:9)

where the inner maximisation represents the computation of the worst adversarial attack. It is
approached by heuristics, most of them are based on gradient descents, Projected Gradient Descent
(PGD) Madry et al.| (2019), or its variants (FGSM |Goodfellow et al.[(2015), IGS Kurakin et al.
(2017))), JISMA |Papernot et al.|[(2015) for the norm ||||o, DeepFool Moosavi-Dezfooli et al.| (2016)
for ||||2) and have been improved since Carlini & Wagner| (2017). Specifically, we train our model
using the most classic adversarial attack: PGD, and compute untargeted adversarial attacks with it.

22

	Proofs
	Proof of property 3
	Proof of Theorem 1
	Proof of Proposition 1
	Constraints boundRefSDPk or boundRefSDP also implies Lk P[zk] Uk in the SDP case

	Complements on method
	Algorithms comparaison
	Stable active neurons ablation
	Triangular constraint
	Coherence constraint stabSDP
	RLT constraint
	Tightening cuts for SDPu

	Implementation details
	Additionnal state of the art
	Other incomplete verification using SDP
	SDP relaxations
	Complete verification
	Adversarial training

