
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

APPENDIX

A PROOFS

A.1 PROOF OF PROPERTY 3

Proof. Constraint (6) taking k = 0 is equivalent to Constraint (3), ensuring that z0 ∈ Bϵ(x). Thus,
v(QP j

t) ≥ 0 implies minz0∈Bϵ(x) z
y
K − zjK ≥ 0.

A.2 PROOF OF THEOREM 1

Proof. 1. We first prove that v(QP j̄
t) ≥ v(QPu) for all j̄ ∈ J̄K . Let z∗ be an optimal solution

of (QP j̄
t). We build the solution (z = z∗, β) of (QPu) with βj̄ = 1 and βj = 0 ∀j ∈

J̄K\{j̄} satisfying Constraints (19) and (18). Obviously, the two objective functions have
the same value.

2. Then, we prove that min
j̄∈J̄K

v(QP j̄
t) ≤ v(QPu).

Let (z∗, β∗) an optimal solution of (QPu) with βj̄ = 1 for j̄ ∈ J̄K . Obviously, z = z∗ is
feasible for (QP j̄

t). Once again, the objective values are the same.

A.3 PROOF OF PROPOSITION 1

Proof. We ensure that the inequalities are valid in all three possible cases:

1. If βj1 = 1 and βj2 = 0, then both sides of (26) are equal to 0 and (27) becomes U j1 ≥
zj1K (x).

2. βj1 = 0 and βj2 = 1, (26) and (27) respectively lead to zj2K (x) ≤ U j2
K and zj2K (x) ≥ zj1K (x).

The latter is valid since when βj2 = 1, class j2 provides the worst example.

3. Otherwise, βj1 = βj2 = 0 and we obtain Lj1
K ≤ zj1K (x) from (26) and U j1

K ≥ zj1K (x)
from (27).

A.4 CONSTRAINTS EQ. (13) OR EQ. (9) ALSO IMPLIES Lk ≤ P [zk] ≤ Uk IN THE SDP CASE

Proof. We want to prove that P [zkz
T
k]− (Uk + Lk)P [zk] + UkLk ≤ 0 implies Lk ≤ zk ≤ Uk.

Assume P is positive semidefinite, so every principal minor (ie. every determinant of any principal

submatrix) is nonnegative. In particular : det

(
P [1] P [zk]
P [zk] P [zkz

T
k]

)
≥ 0, and since P [1] = 1, this

gives P [zk]
2 ≤ P [zkz

T
k]. Plugging P [zk]

2 into Eq. (13) we obtain P [zk]
2 − (Uk + Lk)P [zk] +

UkLk ≤ 0, which is equivalent to (Uk − P [zk])(P [zk]− Lk) ≥ 0. Lk ≤ Uk gives : Lk ≤ P [zk] ≤
Uk.

The same reasoning applies with Pk.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

B COMPLEMENTS ON METHOD

B.1 ALGORITHMS COMPARAISON

SDPt(ϵ, x)
cert← true;
for j ∈ J̄K do

Compute bounds with β-CROWN.
if ∃l ∈ J̄K ∪ y, U j

K < Ll
K then

break;

v∗j ← Solve (SDP ϵ,j,x
t);

if v∗j ≤ 0 then
cert← false;
break;

return cert;

Algorithm 1: Full certification of ϵ-robustness of a DNN with targeted SDP model (SDPt)
on data x ∈ X

SDPu(ϵ, x)
cert← true;
Compute bounds with β-CROWN.
T← {j ∈ J̄K , ∃l ∈ J̄K ∪ y, U j

K < Ll
K}

v∗ ← Solve (SDP ϵ,T,x
u);

if v∗ ≤ 0 then
cert← false;
break;

return cert;

Algorithm 2: Full Certification of ϵ-robustness of a DNN with untargeted SDP model
(SDPu) on data x ∈ X

B.2 STABLE ACTIVE NEURONS ABLATION

In this section, we explain with more details our ReLU constraint relaxation in the context of stable
active neurons ablation. The quadratic ReLU constraint on neuron j of layer k + 1 is

zjk+1(z
j
k+1 −W j

k+1,uz
u
k − bk) = zjk+1W

j
k+1,az

a
k

where zak is the subset of stable active neurons of layer k. Note that each stable active neu-
ron r of layer k can be decomposed into a linear combinations of previous layers outputs

zrk =
k−1∑
l=0

nl∑
i=1,i unstable

λi
l z

i
l + γ, where γ ∈ R, λi

l ∈ R ∀l ∈ [0, k − 1], i ∈ [1, nl]. This

decomposition can be computed dynamically :

• for a layer k = 1 and a stable active neuron r on such layer: zi1 = W i
1z0 + bi1;

• for a layer l > 1 and a stable active neuron r on such layer,

zrk = W r
k zl−1 + brk

= W r
k,uz

u
k−1 +W r

k,az
a
k−1 + brk

= W r
k,uz

u
k−1 +

k−2∑
l=0

nl∑
i=1,i unstable

(nk−1∑
ν=1,ν active

W r
k,ν λi

l,ν

)
zil +

nk−1∑
ν=1,ν active

γν + brl

;

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Finally, our ReLU quadratic constraint can be rewritten

zjk+1(z
j
k+1 −W j

k,uz
u
k − bk) =

k−1∑
l=0

nl∑
i=1

Ai
lz

j
k+1z

i
l +Bzjk+1 (32)

where A is derived from the product of W a
k+1 and the coefficients λ, and B is derived from the

product of W a
k+1 and the coefficients γ.

We now consider the quadratic term zjk+1z
i
l present in the non-relaxed ReLU constraint on neuron

j of layer k+1, where l is a previous layer l ∈ [0, k− 1] and i is a neuron on such layer. Due to the
chordal decomposition, only products of neurons of two consecutive layers are considered and the
quadratic terms zjk+1z

i
l do not appear in our matrix variables. Our idea is to bound the terms zjk+1z

i
l

using the upper and ower bounds given by McCormick envelopes McCormick (1976). We have the
following bounding inequalities 0 ≤ zjk+1 ≤ U j

k+1, L̃i
l ≤ zil ≤ U i

l , where:

• U j
k+1 and U i

l are computed with β-CROWN.

• L̃i
l are computed as follows:

– For the input l = 0, we take the known trivial lower bounds : L̃i
l = Li

0 = xi − ϵ;

– For hidden layers l > 0, as all stable neurons have been pruned, neuron i of layer l is
unstable, that is to say its lower bound computed by β-CROWN is negative : Li

l < 0.
As zil represents the post-activation value and we want to take the tightest lower bound
possible to obtain the most efficient cuts, we take : L̃i

l = 0.

This enables us to formulate the McCormick envelopes:

zjk+1z
i
l ≥ L̃i

lz
j
k+1

zjk+1z
i
l ≤ U i

l z
j
k+1

zjk+1z
i
l ≥ U i

l z
j
k+1 + U j

k+1z
i
l − U j

k+1U
i
l

zjk+1z
i
l ≤ L̃i

lz
j
k+1 + U j

k+1z
i
l − U j

k+1L̃
i
l

These inequalities yield two boundings of Ai
lz

j
k+1z

i
l , the first one being :

Ai
lz

j
k+1z

i
l ∈

{
[Ai

lL̃
i
lz

j
k+1, A

i
lU

i
l z

j
k+1] if Ai

l ≥ 0

[Ai
lU

i
l z

j
k+1, A

i
lL̃

i
lz

j
k+1] otherwise.

(33)

And the second one being :

Ai
lz

j
k+1z

i
l ∈

{
[Ai

l

(
L̃i
lz

j
k+1 + U j

k+1z
i
l − U j

k+1L̃
i
l

)
, Ai

l

(
U i
l z

j
k+1 + U j

k+1z
i
l − U j

k+1U
i
l

)
] if Ai

l ≥ 0

[Ai
l

(
U i
l z

j
k+1 + U j

k+1z
i
l − U j

k+1U
i
l

)
, Ai

l

(
L̃i
lz

j
k+1 + U j

k+1z
i
l − U j

k+1L̃
i
l

)
] otherwise.

(34)

By summing up the lower linear bounds of Ai
lz

j
k+1z

i
l in (33) for all l ∈ [0, k − 1], i ∈ [1, nl], we

obtain a lower linear bound on the right term of (32) :
k−1∑
l=0

nl∑
i=1

Ai
lz

j
k+1z

i
l +Bzjk+1 ≤ (C1+B)zjk+1.

Applying the same approach for the upper bound of (33) and lower and upper bound of (34), we
obtain our final set of 4 constraints:

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026



zjk+1(z
j
k+1 −W j

k,uz
u
k − bk) ≤ (C1 +B)zjk+1 28

zjk+1(z
j
k+1 −W j

k,uz
u
k − bk) ≥ (C2 +B)zjk+1 29

zjk+1(z
j
k+1 −W j

k,uz
u
k − bk) ≤

k−1∑
l=0

nl∑
i=1

Ci
3,lz

i
l + C3,k+1z

j
k+1 + C3 30

zjk+1(z
j
k+1 −W j

k,uz
u
k − bk) ≥

k−1∑
l=0

nl∑
i=1

Ci
4,lz

i
l + C4,k+1z

j
k+1 + C4 31

where 

C1 =

k−1∑
l=0

nl∑
i=1,Ai

l≥0

Ai
lU

i
l +

k−1∑
l=0

nl∑
i=1,Ai

l<0

Ai
lL̃

i
l

C2 =

k−1∑
l=0

nl∑
i=1,Ai

l<0

Ai
lU

i
l +

k−1∑
l=0

nl∑
i=1,Ai

l≥0

Ai
lL̃

i
l

C3 = B −
k−1∑
l=0

nl∑
i=1,Ai

l≥0

Ai
lU

j
k+1U

i
l −

k−1∑
l=0

nl∑
i=1,Ai

l<0

Ai
lL̃

i
lU

j
k+1

C4 = B −
k−1∑
l=0

nl∑
i=1,Ai

l≥0

Ai
lU

j
k+1L̃

i
l −

k−1∑
l=0

nl∑
i=1,Ai

l<0

Ai
lU

i
lU

j
k+1

C3,k+1 =

k−1∑
l=0

nl∑
i=1,Ai

l≥0

Ai
lU

i
l +

k−1∑
l=0

nl∑
i=1,Ai

l<0

Ai
lL̃

i
l

C4,k+1 =

k−1∑
l=0

nl∑
i=1,Ai

l≥0

Ai
lL̃

i
l +

k−1∑
l=0

nl∑
i=1,Ai

l<0

Ai
lU

i
l

Ci
3,l = Ci

4,l = Ai
lU

j
k+1 ∀i ∈ [1, nl], l ∈ [0, k − 1]

Note that a wider set of constraints could be explored by varying combinations of bounds from (33)
and (34). This ablation multiply by 4 the number of ReLU constraints dedicated to unstable neurons.
However, it eliminates several categories of constraints related to stable active neurons, including the
ReLU constraint (11), the bounding constraints (13), the triangular constraints (14), the McCormick
constraints (24), and the RLT constraints (16). Notably, this leads to a quadratic reduction with
respect to na

k : 4 na
k |J̄K | constraints removed from 24, and up to na

k(n
u
k + na

k) constraints removed
from (16) on layer k. In sufficiently big neural networks, this quadratic reduction counterbalances
the linear increase in constraints with respect to nu

k .

B.3 TRIANGULAR CONSTRAINT

We say that a neuron j of layer k of lower bound Lj
k and upper bound U j

k is stable active if Lj
k ≥ 0

and stable inactive if U j
k ≤ 0. Otherwise, a neuron is unstable (i.e. if Lj

k < 0 < U j
k).

In order to tighten the upper bound on the ReLU activation function, a well-known constraint is the
triangular constraint, which provides a convex embedding of the ReLU output. Depending on the
activation status of the considered neuron j of layer k, we decompose the linear upper bound in the
following set T of triangular inequalities:

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

zjk ∈ T ⇔



zjk ≤ 0 if j is inactive

zjk ≤W j
kzk−1 + bjk ifj is active

zjk ≤
U j
k

U j
k − Lj

k

(W j
kzk−1 + bjk)

+
U j
k

U j
k − Lj

k

(bjk − Lj
k) if j is unstable

Combined with constraints zjk ≥ 0, zjk ≤ ẑjk, where ẑjk denotes preactivation vector of neuron j

of layer k, this constraint yields the exact output zjk = 0 when neuron j is inactive, and zjk =

W j
kzk−1 + bjk when it is active.

When neuron j is unstable, the upper-bound is plotted in red in Figure 3. The equation of the red line

Figure 3: Triangular constraint on neuron j of layer k, where ẑjk = W j
kzk−1+bjk is the pre-activation

vector

clearly depends on the lower and upper bounds Lj
k and U j

k of the preactivation vector W j
kzk−1+bjk.

The triangular constraint has been shown to be limited, as it represents only the convex hull of the
output of a single ReLU neuron Salman et al. (2019). Recent works have porposed convex relax-
ations to capture the joint behavior of multiple ReLUs. Such ideas could be explored to compute
more efficient cuts in SDP models.

B.4 COHERENCE CONSTRAINT EQ. (15)

In all our SDP models, we use the constraint between two consecutive matrices
Pk[(1 zk+1)(1 zk+1)

⊤] = Pk+1[(1 zk+1)(1 zk+1)
⊤] (15) relaxed as in Batten et al. (2021)

and in Lan et al. (2022). For a layer k, including all coherence constraints in the model would
introduce nk(nk+3)

2 constraints. In the relaxation of constraint (15), only the nk linear constraints
remain: Pk[zk+1] = Pk+1[zk+1], preventing the number of constraints from exploding.

B.5 RLT CONSTRAINT

We present here the RLT cuts (16) selected in Lan et al. (2022). These cuts contribute to tightening
the relaxation, and are given below:

Tightening cuts



zkzk+1 ≤ Lkzk+1 − Uk+1zk + LkUk+1 (35)
zkzk+1 ≤ Lkzk+1 − Uk+1zk + LkUk+1 (36)
zkzk+1 ≤ Lkzk+1 − Lk+1zk + LkLk+1 (37)
Pk[zk+1zk+1] ≤ Uk+1zk+1 (38)

Pk[zk+1z
T
k+1] ≤ AkPk[zkzk+1] +BkPk[zk+1] (39)

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

The number of these constraints is large. For a given layer k, constraints (35)–(37) scale quadrati-
cally with nk+1 × nk, while constraints (38) and (39) scale with nk+1 × nk+1. Including all these
constraints in the SDP model would significantly increase the computing time. A heuristic is there-
fore needed to select only a subset of these cuts. As (38) and (39) capture intra layer dependencies,
a heuristic selecting a subset of them is difficult to design. In contrast, since (35)–(37) represents
inter layer dependencies, a heuristic based on the linear layer weights linking them is possible.

Only a subset of constraints (35)–(37) is finally selected, based on a given percentage p. Specifically,
for each neuron j on layer k + 1 we select ⌊p nk⌋ cuts. The heuristic sorts the absolute value of the
weights |W j

k+1|, and selects the neurons corresponding to the top ⌊p nk⌋ entries in the sorted vector.
This selection is based on the full size of layer k regardless of whether neurons have been pruned.
More precisely, in the context of a full ablation, we do not select ⌊p nu

k⌋ RLT cuts but ⌊p nk⌋ ones.

B.6 TIGHTENING CUTS FOR SDPu

For simplicity and clarity, we used the full logits zjK in constraints (26) (27) (24). Note that
these logits are not variables of our model. To obtain the full constraints in our model, we need
to substitute each logit by its linear expression with respect to the penultimate layer variables :
zjK = W j

KzK−1 + bjK .

Furthermore, for the sake of clarity in constraints (23) (24) (26) (27 (25), we omit explicit ma-
trix indexation. To recover the full constraint, one must, for example, replace variables such
as βiβj by PK−2[βiβj]. Combining this with the logit expression, zjK should be replaced by
W j

KPK−2[zK−1] + bjK , and βjz
j
K by W j

KPK−2[βjzK−1] + bjKPK−2[βj].

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

C IMPLEMENTATION DETAILS

All networks have been trained with a batch size of 128, the Adam optimizer, and a learning rate
of 0.001. For reproducibility, we show the details of the adversarial training in table 3. We used
the optimizer Adam, a learning rate lr = 0.01, and batch sizes of 128. All PGD attacks were used
with number of steps = 40, a random start. We denote by 6x100-5, 6x100-20, 6x100-50,
6x100-67 networks used in experiment 3.

Network Architecture Adversarial Training Accuracy
Epochs Adversarial attack

6x100 784-6x100-10 200 PGD (ϵ = 0.3, α = 0.01) 95.5
6x200 784-6x200-10 200 PGD (ϵ = 0.3, α = 0.01) 96.1
9x100 784-9x100-10 200 PGD (ϵ = 0.3, α = 0.01) 95.2
9x200 784-9x200-10 200 PGD (ϵ = 0.3, α = 0.01) 96.9
6x100-5 784-6x100-5 100 PGD (ϵ = 0.3, α = 0.01) 97.6
6x100-20 784-6x100-20 100 PGD (ϵ = 0.3, α = 0.01) 86.0
6x100-50 784-6x100-50 100 PGD (ϵ = 0.3, α = 0.01) 76.7
6x100-67 784-6x100-67 100 PGD (ϵ = 0.3, α = 0.01) 75.2

Table 3: Networks used in our three experiments.

Network ϵ Stability study
Stable Unstable Total Running targets

Inactives Actives
6x100 0.026 283

47%
224
37%

93
16%

600
100%

4.0

6x200 0.015 713
59%

287
24%

200
17%

1200
100%

6.8

9x100 0.026 364
40%

225
25%

312
35%

900
100%

7.1

9x200 0.015 1024
57%

312
17%

464
26%

1800
100%

7.6

6x100-5 0.05 261
44%

119
20%

220
36%

600
100%

3.25

6x100-20 0.05 243
40%

157
26%

201
33%

600
100%

14.44

6x100-50 0.05 188
31%

117
20%

295
49%

600
100%

48.8

6x100-67 0.05 203
34%

127
21%

271
45%

600
100%

60.1

Table 4: Mean number of stable active, stable inactive and unstable neurons computed on the data
of our experiments (100 data for 6x100-6x200-9x100-9x200, 5 data for 6x100-5, 20 data for
6x100-20, 50 data for 6x100-50, and 67 data for 6x100-67).

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

D ADDITIONNAL STATE OF THE ART

D.1 OTHER INCOMPLETE VERIFICATION USING SDP

Other related efforts include the development of dual solvers tailored to the SDP formula-
tion Dathathri et al. (2018). Other works have created a Branch and Bound framework based on
a rewriting of the matrix coefficient of the quadratic constraint of the ReLU BB − SDPt ?. While
these approaches differ significantly from ours—making them difficult to reproduce—we observe
that they primarily improve certification rates rather than scalability. In ?, we can estimate the com-
puting method time multiplying the certification time of the model (targeted) by an underestimation
of the number of running targets. We see that our model is faster for all common networks structure
in our experiments (6x100, 6x200, 9x100).

Some recent works have adressed different settings. Notably, some have incorporated SDP-based
bounds to into the Branch and Bound framework commonly used with β-CROWN. They observed
that bounds computed with β-CROWN are bad with the norm 2 Chiu et al. (2025).

D.2 SDP RELAXATIONS

The two main criterion to design a relaxation is its computation time and its tightness. Indeed,
the tighter the relaxation, the better the lower bound. Existing relaxation techniques for quadratic
problems are mainly based on linearization or on semi-definite programming. To compute a linear
relaxation, the quadratic functions are reformulated as convex equivalent functions in an extended
space of variables. More precisely, new variables Zij are introduced for all (i, j), that are meant to
satisfy the equalities Zij = zizj . The linearization is then obtained by relaxation of the later non-
convex equalities, for instance by linear constraints (see for instance McCormick (1976); Sherali
& Adams (2013); Yajima & Fujie (1998)). Using semi-definite relaxations for quadratic program-
ming was also widely studied Anstreicher (2009); Chen & Burer (2012); Burer & Vandenbussche
(2008; 2009); Vandenbussche & Nemhauser (2005a;b). A semi-definite relaxation of a quadratic
optimization problem can be obtained by lifting z to a symmetric matrix Z = zz⊤ where the later
non-convex constraints are relaxed to Z − zz⊤ ⪰ 0. Note that, since in a DNN only layers k and
k + 1 are linked by Relu Constraints, a chordal decomposition of the variable matrix Z into |K|
block diagonal matrices is possible Batten et al. (2021). This standard semi-definite relaxation is
often referred to as “Shor’s” relaxation. In Anstreicher (2009), the “Shor’s plus RLT” relaxation
was introduced, where the convex envelopes of the quadratic terms McCormick (1976) where added
to the later relaxation. We detailed the RLT cuts used in Lan et al. (2022) in section B.5.

D.3 COMPLETE VERIFICATION

Ideal verification is complete, ensuring that all answers are reliable. However, due to the complexity
of the problem, fully achieving such verification is often constrained. Works using Satisfiability
Modulo Theory Ehlers (2017) like Reluplex Katz et al. (2017) or Marabou Katz et al. (2019) Wu
et al. (2024) have been developed, but are not currently scalable. Nevertheless, they are very pre-
cise and give formal proof of robustness or useful counterexamples when working on a sufficiently
small network. Some works have introduced Mixed Integer Programming formulations (MIP), see
Fischetti & Jo (2018) Cheng et al. (2017), but the direct resolution of these models without relax-
ations are also not scalable. Most efficient complete verification rely on Brand&Bound Bunel et al.
(2020)- Ferrari et al. (2022)- Jaeckle et al. (2021)- Lu & Kumar (2019), whose relaxation of the
certification problem is fast heuristics like CROWN. They have been improved by smart branching:
splitting on the activation or not activation of a set of neurons has been exponentially faster than
splitting on the input ball. Some methods have improve¡d ReLU splitting to better choose neurons
for branching decision Henriksen & Lomuscio (2021). When reaching a certain depth of the tree, a
relatively fast MIP is solved (with few binary variables as the activation of most neurons is fixed), to
prune a branch without exploring all its content. It also helps to avoid impossible activation patterns
in practice, which may not be seen by heuristic methods like bound propagation, guaranteeing the
soundness of the algorithm. The resolution of these MILP has been further improved with cutting
planes Zhang et al. (2022).

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

D.4 ADVERSARIAL TRAINING

In this section, we present the adversarial training used in order to create robust networks. Madry
introduced adversarial training Madry et al. (2019) by adding a maximisation problem into the com-
mon training minimisation problem:

min
∀(x,y)∈X

max
z∈Bϵ(x)

L(z, y)

where the inner maximisation represents the computation of the worst adversarial attack. It is
approached by heuristics, most of them are based on gradient descents, Projected Gradient Descent
(PGD) Madry et al. (2019), or its variants (FGSM Goodfellow et al. (2015), IGS Kurakin et al.
(2017)), JSMA Papernot et al. (2015) for the norm ∥∥0, DeepFool Moosavi-Dezfooli et al. (2016)
for ∥∥2) and have been improved since Carlini & Wagner (2017). Specifically, we train our model
using the most classic adversarial attack: PGD, and compute untargeted adversarial attacks with it.

22

	Proofs
	Proof of property 3
	Proof of Theorem 1
	Proof of Proposition 1
	Constraints boundRefSDPk or boundRefSDP also implies Lk P[zk] Uk in the SDP case

	Complements on method
	Algorithms comparaison
	Stable active neurons ablation
	Triangular constraint
	Coherence constraint stabSDP
	RLT constraint
	Tightening cuts for SDPu

	Implementation details
	Additionnal state of the art
	Other incomplete verification using SDP
	SDP relaxations
	Complete verification
	Adversarial training

