
Appendices
First, we give the formulation of unsupervised anomaly detection (UAD). Let Dtrain =
{(x i , yi)}Ni=1, yi ∈ {−} be the training set of normal samples, where xi is the ith sample with
its label yi. During test, Dtest = {(x i , yi)}Mi=1, yi ∈ {−, +} (− for normal, + for anomalous)
contains both normal and anomalous images. Our goal is to train a model using Dtrain to identify
(x,+) from (x,−) in Dtest, while localizing anomalous regions at the same time.

A Related Work

Epistemic methods are based on the assumption that the networks respond differently during
inference between seen input and unseen input. Within this paradigm, pixel reconstruction methods
assume that the networks trained on normal images can reconstruct anomaly-free regions well, but
poorly for anomalous regions [1]. Auto-encoder (AE) [2; 1], variational auto-encoder (VAE) [3; 4],
or generative adversarial network (GAN) [5; 6; 7] are used to restore normal pixels. However, pixel
reconstruction models may also succeed in restoring unseen anomalous regions if they resemble
normal regions in pixel values or the anomalies are barely noticeable [8; 9]. Therefore, feature
reconstruction is proposed to construct features of pre-trained encoders instead of raw pixels [8;
10; 11]. To prevent the whole network from converging to a trivial solution, the parameters of the
encoders are frozen during training [9]. In feature distillation [8; 12; 13], the student network is
trained from scratch to mimic the output features of the pre-trained teacher network with the same
input of normal images, also based on the similar hypothesis that the student trained on normal
samples only succeed in mimicking features of normal regions.

Pseudo-anomaly methods generate handcrafted defects on normal images to imitate anomalies,
converting UAD to supervised classification [14] or segmentation task [15]. Specifically, CutPaste
[14] simulates anomalous regions by randomly pasting cropped patches of normal images. DRAEM
[15] constructs abnormal regions using Perlin noise as the mask and another image as the additive
anomaly. SimpleNet [16] introduces anomaly by injecting Gaussian noise in the pre-trained feature
space. These methods deeply rely on how well the pseudo anomalies match the real anomalies [8],
which makes it hard to generalize to different datasets.

Feature memory & modeling methods [17; 18; 19; 20; 21] memorize all (or their modeled distribu-
tion) normal features extracted by networks pre-trained on large-scale datasets and match them with
test samples during inference. Since these methods require memorizing, processing, and matching
nearly all features from training samples, they are computationally expensive in both training and
inference, especially when the training set is large. There is a considerable semantic gap between
large-scale natural images on which the frozen networks were pre-trained and the target UAD images
in various modalities. Therefore, methods based on pre-trained networks struggle in transferring as
the feature encoders are not optimized in the target domain.

There are a few studies addressing the adaptation problem in UAD settings. CFA [21] and
SimpleNet[16] unanimously utilize a learnable linear layer to transform the output features of
the frozen encoder. However, the linear layer may be insufficient for adaption and can hardly recover
the domain-specific information in pre-trained features, especially when the target domain, e.g. CT
and MRI, is remote from natural image domain. In OCC settings, a number of works focus on
utilizing self-supervised pre-training approaches to learn a compact representation space for normal
samples [22; 23; 24]. However, the performances are far from satisfactory in UAD tasks (I-AUROC
under 90% on MVTec AD).

B Datasets

MVTec AD [25] is an industrial defect detection dataset, containing 15 sub-datasets (5 texture
categories and 10 object categories) with a total of 3,629 normal images as the training set and 1,725
normal and anomalous images as the test set. Pixel-level annotations are available for anomalous
images for evaluating anomaly segmentation. All images are resized to 256×256.
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VisA [26] is an industrial defect detection dataset, containing 12 sub-datasets with a total of 9,621
normal and 1200 anomalous images. Pixel-level annotations are available for anomalous images for
evaluating anomaly segmentation. We split it into training and test sets following the setting in [26].
All images are resized to 256×256.

OCT2017 is an optical coherence tomography (OCT) dataset [27]. The dataset is labeled into four
classes: normal, drusen, DME (diabetic macular edema), and CNV (choroidal neovascularization).
The latter three classes are considered anomalous. The training set contains 26,315 normal images
and the test set contains 1,000 images. All images are resized to 256×256.

APTOS is a color fundus image dataset, available as the official training set of the 2019 APTOS
blindness detection challenge [28]. The dataset contains 3,662 images with annotated grade 0-4 to
indicate different severity of diabetic retinopathy, yielding 1,805 normal images (grade 0) and 1857
anomalous images (grade 1-4). We randomly selected 1,000 normal images as our training set and
the rest 2,662 images as the test set. Images are preprocessed to crop the fundus region, and then
resized to 256×256.

ISIC2018 is a skin disease dataset, available as task 3 of ISIC2018 challenge [29]. It contains seven
classes. NV (nevus) is taken as the normal class and the rest of classes are taken as anomaly, following
[30]. The training set contains 6705 normal images. The official validation set is used as our test set,
which includes 193 images. Images are resized to 256×256 and then center cropped into 224×224 to
remove redundant background. In addition, because the normal and anomalous images of ISIC2018
are different objects (lesions) instead of healthy objects and unhealthy objects, the task is more like
one-class classification. Therefore, we take the mean (instead of maximum) value of Smap as the
Simg in ReContrast and other reproduced methods.

C Complete Implementation Details

WideResNet50 [31] pre-trained on ImageNet [32] is utilized as the encoder by default. The decoder
is the upside-down version of the encoder, exactly the same as RD4AD [8], i.e., the 3×3 convolution
with stride 2 at the beginning of each layer is replaced by a 2×2 transposed convolution with stride 2.
The bottleneck is also the same as RD4AD [8]. For each decoder layer, two 1x1 convolutions are
used to project the feature map to reconstruct the frozen encoder and trained encoder, respectively.
AdamW optimizer [33] is utilized with β=(0.9,0.999) and weight decay=1e-5. The learning rates of
the new (decoder and bottleneck) and pre-trained (encoder) parameters are 2e-3 and 1e-5 respectively.
The network is trained for 3,000 iterations on each sub-dataset in VisA, 2,000 on each sub-dataset in
MVTec AD and ISIC2018, and 1,000 on APTOS and OCT2017. The batch size is 16 for industrial
datasets and 32 for medical datasets. The α in (5) linearly rises from -3 to 1 in the first one-tenth
iterations and keeps 1 for the rest of the training. By default, the batchnorm (BN) layers of encoder
are set to train mode during training. Because training instability and performance drop are observed
for some categories 1, the BN of encoder is set to eval mode (use pre-trained statistics) for such
datasets. The reason is discussed in Appendix E. A library2 is used to plot the landscape in Figure 4.
The distance and steps arguments are set to 1 and 50 respectively.

On MVTec AD and VisA, the results of comparison methods are taken from the original papers or the
benchmark paper [34] that report their performances. On medical datasets, we take the results from
[30] if available; otherwise, we reproduce the method with official code. For RD4AD, we use their
official code, in which Lglobal is already implemented instead of Lregion, as discussed in Section
2.1. Codes are implemented with Python 3.8 and PyTorch 1.12.0 cuda 11.3. Experiments are run on
NVIDIA GeForce RTX3090 GPUs (24GB).

D Additional Experiments

D.1 Additional Experimental Results

In addition to the averaged segmentation performances in Table 2, we present the P-AUROC and
AUPRO of each categories in MVTec AD in Table A1. The results in the main paper are reported

1Toothbrush, Leather, Grid, Tile, Wood, Screw in MVTec AD, cashew, pcb1 in VisA, and OCT2017.
2https://github.com/marcellodebernardi/loss-landscapes
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with a single random seed following our baseline [8]. In Table A2, we report the mean and standard
deviation of three runs with three different random seeds (1, 11, and 111). In addition to the averaged
performances in Table 3, we present the I-AUROC, P-AUROC, and AUPRO of each category in VisA
in Table A3.

Table A1: Anomaly segmentation performance of 15 subset (categories) of MVTec AD (%).

Carpet Grid Leather Tile Wood Bottle Cable Capsule

P-AUROC 99.3 99.2 99.5 96.3 95.9 99.0 98.9 98.4
AUPRO 97.9 97.8 99.2 93.7 92.5 97.1 95.6 95.4

Hazelnut MetalNut Pill Screw Toothbrush Transistor Zipper

P-AUROC 99.1 98.7 99.1 99.6 99.2 95.4 98.1
AUPRO 95.9 94.4 97.7 98.6 95.0 82.3 94.9

Table A2: Performance on MVTec AD over three runs (%).

I-AUROC P-AUROC AUPRO

Carpet 99.72 ± 0.27 99.27 ± 0.05 98.55 ± 0.88
Grid 100 ± 0.00 99.26 ± 0.05 97.79 ± 0.03
Leather 100 ± 0.00 99.48 ± 0.02 99.17 ± 0.04
Tile 99.66 ± 0.17 96.18 ± 0.11 92.95 ± 0.66
Wood 99.05 ± 0.05 95.94 ± 0.03 92.61 ± 0.10
Bottle 100 ± 0.00 99.00 ± 0.01 97.13 ± 0.08
Cable 99.58 ± 0.15 98.92 ± 0.02 95.63 ± 0.02
Capsule 97.86 ± 0.36 98.40 ± 0.00 95.34 ± 0.04
Hazelnut 100 ± 0.00 99.08 ± 0.03 95.87 ± 0.08
MetalNut 100 ± 0.00 98.73 ± 0.04 94.49 ± 0.09
Pill 98.94 ± 0.24 99.13 ± 0.03 97.75 ± 0.05
Screw 97.80 ± 0.14 99.57 ± 0.02 98.50 ± 0.07
Toothbrush 99.44 ± 0.45 99.17 ± 0.02 94.99 ± 0.02
Transistor 99.65 ± 0.11 95.38 ± 0.03 82.61 ± 0.22
Zipper 99.68 ± 0.15 98.16 ± 0.04 95.12 ± 0.25

All Avg 99.42 ± 0.05 98.39 ± 0.01 95.21 ± 0.06

Table A3: Performance of 12 subset (categories) of VisA (%).

candle capsules cashew chewinggum fryum macaroni1

I-AUROC 97.20 93.55 98.14 99.28 97.56 98.84
P-AUROC 99.15 99.46 97.41 97.36 91.96 99.01
AUPRO 94.77 94.45 94.28 86.63 79.11 93.63

macaroni2 pcb1 pcb2 pcb3 pcb4 pipe_fryum

I-AUROC 91.79 97.86 97.84 98.18 99.82 99.96
P-AUROC 99.04 99.79 98.99 99.05 98.70 98.30
AUPRO 97.36 96.76 92.47 95.14 91.29 95.57

D.2 Qualitative Visualization

The qualitative anomaly segmentation results of ReContrast trained by Lglobal and ReContrast trained
by Lglobal−hm are presented in Figure A1. It is shown that the hard-normal regions are less activated
with Lglobal−hm. The results of VisA and medical images are shown in Figure A2 and Figure A3,
respectively. Each Smap is min-max-normalized to 0-1 for clearer visualization.

D.3 Additional Ablation Study

Ablation study is conducted on the value of α in Lglobal−hm, as shown in Table A4. Assuming the
regional cosine distances Mk (h,w) conforms Gaussian distribution, the discarding rates of feature
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point are 2.3%, 15.9%, 50%, 69.1%, 84.1%, 93.3% and 97.7% for α = -2, -1, 0, 0.5, 1, 1.5 and 2,
respectively. Lglobal−hm is not sensitive to the discarding rate within the range from 50% to 93%.
Though α can be tuned for each dataset, we find α = 1 works just well for most circumstances.

We test a variety of encoder backbones in Table A5, i.e., ResNet18, ResNet50, and WideResNet50
(default), and report their performances, model parameters, as well as multiply–accumulate operations
(MACs). The corresponding decoder is the reversed version of the encoder. Different encoders may
favor different training hyper-parameters such as learning rate and iteration. Though we do not further
tune each backbone, all backbones produce excellent results with default hyper-parameters, suggesting
the generality of our method. With each backbone, our method outperforms the corresponding feature
reconstruction counterpart RD4AD [8]. Notably. our method with ResNet18 is comparable to
RD4AD with WideResNet50.

The utilization of two encoders (one frozen, one trained domain-specific) in our method can function
as an ensembling, which may also contribute to performances. We conduct ablation experiments
using different encoder-decoder feature map pairs to generate anomaly maps in inference. The results
are shown in Table A6. On MVTec, using only the feature of domain-specific encoder produces an
I-AUROC of 99.38%, which is comparable to the 99.45% of the ReContrast default and outperforms
the 98.86% of baseline Config. B. In addition, we train an ensembling version of Config. B using
two different encoders (ResNet50 and WideResNet50), producing an I-AUROC of 98.94% which
is nearly identical to the baseline. On APTOS, using only the feature of domain-specific encoder
produces an I-AUROC of 97.73%, which outperforms both 97.51% of the ReContrast default and
92.49% of the baseline Config. B. The results indicate that the improvement due to ensembling is
small and the domain-specific encoder is vital.

Table A4: Ablation on the values of α in Lglobal−hm on MVTec AD (%).

α -inf (Lglobal) -2 -1 0 0.5 1 1.5 2

discard rate 0% 2.3% 15.9% 50% 69.1% 84.1% 93.3% 97.7%

I-AUROC 99.13 99.13 99.14 99.32 99.39 99.45 99.38 98.85
P-AUROC 98.09 98.11 98.13 98.30 98.31 98.37 98.39 98.25
AUPRO 94.59 94.62 94.65 94.97 95.00 95.20 95.28 95.13

Table A5: Ablation on the encoder backbones on MVTec AD (%).

Backbone ResNet18 ResNet50 WResNet50

Method RD4AD Ours RD4AD Ours RD4AD Ours

Params(M) 18.7 21.7 63.6 74.9 117 145
MACs(G) 4.95 10.1 19.4 42.0 36.0 75.2

I-AUROC 97.9 98.7 98.4 99.1 98.5 99.5
P-AUROC 97.1 97.9 97.7 98.3 97.8 98.4
AUPRO 91.2 94.2 93.1 95.0 93.9 95.2

Table A6: Ablation on the use of different encoder feature maps for calculating Smap (%).

encoder feature maps for calculating Smap MVTec AD APTOS

Config. B 3 frozen 98.86 92.49
Config. B (R50+WR50) 6 frozen 98.94 92.14
Ours 3 frozen only 99.16 95.32
Ours 3 trained only 99.38 97.73
Ours 3 trained + 3 frozen 99.45 97.51

E Limitations

Scope of Application. In this work, we mainly focus on UAD that detects regional defects (most
common in practical applications), which is distinguished from one-class classification (OCC, or
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Semantic AD). In our UAD, normal and anomalous samples are semantically the same objects except
local detects, e.g. good cable v.s. spoiled cable. In OCC, normal samples and anomalous samples
are semantically different, e.g. cat v.s. other animals. The slight difference in task setting makes
the focus of corresponding methods different. Most methods for UAD attempt to detect anomalies
by segmenting anomalous local regions, while methods for OCC detect anomalies based on the
representation deviation of the whole image [35; 36]. Though methods of these two tasks can be used
for each other to a certain extent, we mainly focus on UAD in this work.

Logical Anomaly. MVTec LOCO is a recently released dataset for evaluating the detection perfor-
mance of logical anomalies. It contains 5 sub-datasets, each comprised of both structural anomalies,
e.g. dents and scratches as in MVTec AD, and logical anomalies, e.g. dislocation and missing parts.
We find our method performing less favorably on logical anomalous images than GCAD [37] which
is specially designed for logical anomalies, as presented in Table A7. We still outperform other
vanilla UAD methods that are not specially designed for such anomalies.

Table A7: Anomaly Detection Performance on MVTec LOCO (%). Structural I-AUROC is calculated
on normal images and structural anomalous images. Logical I-AUROC is calculated on normal
images and logical anomalous images. Mean I-AUROC is the average of the above two scores.

RD4AD [8] DRAEM [15] PaDiM [17] PatchCore [18] GCAD [37] Ours

struct. I-AUROC 88.0 74.4 70.5 82.0 80.6 90.7
logic. I-AUROC 69.4 72.8 63.7 69.0 86.0 73.4
mean I-AUROC 78.7 73.6 67.1 75.5 83.3 82.1

Batch Normalization and Training Instability. As discussed in Appendix C, training instability
and performance drops are observed for a few categories when setting BN mode of the encoder to
train. The phenomenon of training instability is observed in many deep learning tasks. However,
validation sets are often allowed, which counteracts training instability and helps the choice of BN
mode.

On the one hand, it can be caused by the limited feature diversity of the one-class UAD dataset. First,
we recall the formulation of BN layer. Giving a d-dimensional feature x = (x(1), ..., x(d)), each
dimension (channel) is normalized in training:

x̂(k) =
x(k) − E

[
x(k)

]√
V ar

[
x(k)

]
+ ϵ

where the expectation E and variance V ar are computed over the batch, and ϵ is a small constant for
numerical stability. In most computer vision datasets, an input batch contains a variety of categories.
Each dimension is more or less activated by different image features so that V ar

[
x(k)

]
is not

zero. However, because a UAD dataset contains only one type of category, there is a chance that a
channel of pre-trained feature x(k) is barely activated or equally activated, e.g. a channel sensitive

to animals is dead on industrial objects. Thus, the denominator
√

V ar
[
x(k)

]
+ ϵ is nearly zero,

causing malfunction of batch normalization. This problem can be fixed by using pre-trained statistical
running_mean and running_var (eval mode), which loses the effect of BN.

On the other hand, this instability can be attributed to the feature of Adam optimizer. We found that a
number of UAD methods [8; 21; 16] are also subject to training instability when running their code.
Whether the last epoch (for reporting results) is in the middle of a loss spike and performance dip is
strongly related to random seed. In some works [38; 39], the authors attribute the training instability
to the historical estimation of squared gradients in Adam optimizer.

In our according explorations, we replace the batch variance V ar
[
x(k)

]
smaller than min(5e-4,

running_var) by pre-trained running_var and we reset the historical state buffer (gradient momentum
and second-order gradient momentum) of Adam every 500 iters. Without manually selecting BN
mode, such tricks enable training with more stability. It yields I-AUROC of 99.41% on MVTec and
97.28% on VisA, comparable to the 99.45% and 97.5% of our reported result and still outperforms
previous SOTAs. In the future, approaches to eliminating the problem of BN and optimizer can be
further investigated.
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Figure A1: Smap of our ReContrast trained by Lglobal or Lglobal−hm. Hard-normal regions are less
activated with Lglobal−hm.
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