
Published as a conference paper at ICLR 2025

A REVIEW OF ROBUST LIST LEARNING OF SPARSE LINEAR CLASSIFIERS

Algorithm 4: Robust list learning of sparse linear classifiers
1 procedure SPARSELIST(D,m)
2 L← ∅
3 ν ← 2−(bs+s log s)

4 Sample (x(1), y(1)), . . . , (x(m), y(m)) ∼ D
5 foreach (i1, . . . , is) ∈ [d]s and (js) ∈ [m]s do

6 w ←


y(j1)x

(j1)
i1

· · · y(j1)x
(j1)
is

...
y(js)x

(js)
i1

· · · y(js)x
(js)
is


−1  y(j1) − ν

...
y(js) − ν


7 L← L ∪ {w}
8 end
9 return L

For completeness, we now describe an algorithm to solve the robust list learning problem for sparse
linear classifiers. It is based on the approach used in the algorithm for conditional sparse linear
regression (Juba, 2017), using an observation by Mossel & Sudan (2016). We will prove the following:

Theorem A.1. Suppose the numbers are b-bit rational values, Algorithm 4 solves robust list-learning
of linear classifiers with s = O(1) nonzero coefficients and margin ν ≥ 2−(bs+s log s) from m =
O( 1

αϵ (s log d+ log 1
δ )) examples in polynomial time with list size O((md)s).

Proof. We observe that the running time and list size of Algorithm 4 is clearly as promised. To see
that it solves the problem, we first recall that results by Blumer et al. (1989) and Hanneke (2016)
showed that given O( 1ϵ (D + log 1

δ )) examples labeled by a class of VC-dimension D, any consistent
hypotheses achieves error ϵ with probability 1− δ. In particular, halfspaces in Rd have VC-dimension
d; Haussler (1988) observed that s-sparse linear classifiers in Rd have VC-dimension s log d. Hence,
if the data includes a set S of at least Ω( 1ϵ (s log d+ log 1

δ )) inliers and we find a s-sparse classifier
that agrees with the labels on S, it achieves error 1 − ϵ on S with probability 1 − δ/2. Observe
that in a sample of size O( 1

αϵ (s log d + log 1
δ )), with an α fraction of inliers, we indeed obtain

Ω( 1ϵ (s log d+ log 1
δ )) inliers with probability 1− δ/2.

Now, suppose we write our linear threshold function with a standard threshold of 1, and suppose
are examples are drawn from Rd × {−1, 1}. Then a classifier with weight vector w labels x with
1 if ⟨w,x⟩ ≥ 1, and labels x with −1 if ⟨w,x⟩ < 1. We observe that by Cramer’s rule, we can
find a value ν∗ > 0 (of size at least 2−(bs+s log s) if the numbers are b-bit rational values) such that
if ⟨w,x⟩ < 1, ⟨w,x⟩ ≤ 1 − ν∗. So, it is sufficient for ⟨w, yx⟩ ≥ y − ν for a given (x, y), for
some margin ν ≥ 2−(bs+s log s). Thus, to find a consistent w, it suffices to solve the linear program〈
w, y(j)x(j)

〉
≥ y(j) − ν for each jth example in S. Observe that if we parameterize w by only the

nonzero coefficients, we obtain a linear program in s dimensions, for which we can obtain a feasible
solution at a vertex, given by s tight constraints. Now, Algorithm 4 enumerates all s-tuples of indices
and examples, which in particular therefore must include any s-tuple of examples in the inlier set S
and the s nonzero coordinates of w. Hence, with probability at least 1− δ, L indeed contains some
w that attains error ϵ on S, as needed.

B CONVERGENCE ANALYSIS OF PROJECTED SGD

We show our formal analysis of the Projected SGD (Algorithm 2) in this section.

We first show that the gradient of statistic ReLU, ∇wLD(w), is almost Lipschitz continuous, which
will be a critical piece in our convergence analysis of Projected SGD.

Lemma B.1 (Relative Smoothness Of Statistic ReLU). LetD be a distribution on Rd× [−1,+1] with
standard normal x-marginal, LD(w) = E(x,y)∼D[y · max(0, ⟨x,w⟩)]. Then, for any v,w ∈ Rd
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such that at least one of ∥v∥2, ∥w∥2 is non-zero, we have

∥∇wLD(w)−∇vLD(v)∥2 ≤
2

max(∥v∥2, ∥w∥2)
∥w − v∥2 (1)

Proof. Without loss of generosity, assume ∥v∥2 ≥ ∥w∥2, we prove the approximate Lipschitz
continuity of ∇wLD(w) by showing that, for every w,v ∈ Rd, ∥∇wLD(w)−∇vLD(v)∥2 is
upper bound by L · ∥w − v∥2/∥v∥2 for some constant L ≥ 1.

We firstly show that ∥∇wLD(w)−∇vLD(v)∥2 = O(θ(v,w)), then we will prove θ(v,w) can be
upper bounded by ∥w − v∥2/∥v∥2 asymptotically for θ(v,w) ∈ [0, π/2] and θ(v,w) ∈ [π/2, π]
separately.

Recall that∇wLD(w) = E(x,y)∼D[y · x · 1{x ∈ h(w)}]. For conciseness of the proof, we define

u = argmax
∥z∥2=1

⟨∇wLD(w)−∇vLD(v), z⟩ .

Then, we have

∥∇wLD(w)−∇vLD(v)∥2 = ⟨∇wLD(w)−∇vLD(v),u⟩
=E[y · ⟨x,u⟩ (1{x ∈ h(w) ∩ hc(v)} − 1{x ∈ hc(w) ∩ h(v)})]
≤E[|⟨x,u⟩| (1{x ∈ h(w) ∩ hc(v)}+ 1{x ∈ hc(w) ∩ h(v)})]. (2)

Now, let’s notice that the expectation above only has constraints on a 2-dimensional subspace spanned
by {v,w}. Thus, will show that |⟨x,u⟩| is essentially upper bounded by the l2 norm of the projection
of x onto a 3-dimensional subspace, which will allow us to use polar coordinates to calculate the
above expectation.

We construct a set of orthonormal basis v = {e1, e2, e3} as follow. At first, let θ1 = θ(v,w) so
that θ1 ∈ [0, π], and we define w̄ = e2 as well as v̄ = −e1 sin θ1 + e2 cos θ1. Then, denote uW to
be the projection of u on to the subspace spanned by W = {e1, e2} and θ2 = θ(uW , e1) so that
ūW = e1 cos θ2 + e2 sin θ2. At last, we define θ3 = θ(u,uW ) so that θ3 ∈ [0, π/2] and e3 to be
such that

u =ūW cos θ3 + e3 sin θ3

=e1 cos θ2 cos θ3 + e2 sin θ2 cos θ3 + e3 sin θ3.

Denote xi = ⟨x, ei⟩ and xV to be the projection of x onto the subspace spanned by V , by Cauchy
inequality, there is

⟨x,u⟩ =x1 cos θ2 cos θ3 + x2 sin θ2 cos θ3 + x3 sin θ3

= ⟨xV ,u⟩
≤∥xV ∥2

Then, we transform the standard 3-dimensional coordinate system into a spherical coordinate system,
also see figure 3. For any xV = (x1, x2, x3), let ϕ = θ(xV , e3), θ = θ(xV e⊥

3
, e1), and r = ∥xV ∥2,

then we have x3 = r cosϕ, x1 = r sinϕ cos θ, and x2 = r sinϕ sin θ. Now, applying the standard
Jacobian matrix that maps the spherical coordinates to 3-dimensional Cartesian coordinates yields
dx1dx2dx3 = r2 sinϕdrdϕdθ. Therefore, following with inequality (2), we have

∥∇wLD(w)−∇vLD(v)∥2 ≤2E[∥xV ∥21{x ∈ h(w) ∩ hc(v)}]
=2E[∥xV ∥21{x2 cos θ1 ≤ x1 sin θ1, x2 ≥ 0, x3 ∈ R}]
(i)
=

1√
2π3

∫ θ1

0

∫ π

0

∫ +∞

0

r3 sinϕe−r
2/2drdϕdθ

=θ1

√
2

π3

∫ +∞

0

r3e−r
2/2dr

(ii)
= θ

(2/π)
1

3/2
∫ +∞

0

re−r
2/2dr

=θ
(2/π)
1

3/2
(3)
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Figure 3: Spherical coordinate interpretation.

where the first inequality holds because {xV | xV ∈ h(w)∩hc(v)} and {xV | xV ∈ hc(w)∩h(v)}
are symmetric under Gaussian measure, the integral domain in equation (i) is valid for θ, θ1 ∈ [0, π]
because x2 cos θ1 ≤ x1 sin θ1 implies cot θ1 ≤ cot θ, which, in turn, indicates 0 ≤ θ ≤ θ1 as cot θ is
a monotone decreasing function on θ ∈ (0, π), and x2 ≥ 0 implies ϕ ∈ [0, π] as we know r, sin θ ≥ 0
by construction, inequality (ii) is obtained by using the law of integration by parts.

For the case of θ1 ∈ [0, π/2], it is easy to see that

∥w − v∥2 ≥∥w̄ · ∥v∥2 cos θ1 − v∥2
=∥v∥2 sin θ1
(i)

≥∥v∥2θ1 cos
π

2
√
3

(ii)

≥
(π
2

)3/2
cos

π

2
√
3
∥v∥2 · ∥∇wLD(w)−∇vLD(v)∥2

≥∥v∥2 · ∥∇wLD(w)−∇vLD(v)∥2
where the first inequality holds because the RHS represent the shortest distance from vector v to vector
w, (i) is by the elementary inequality x cos(x/

√
3) ≤ sinx as well as the assumption θ1 ∈ [0, π/2],

(ii) is by inequality (3), the last inequality holds due to 3/5 < cos(π/2
√
3) and 5/3 < (π/2)3/2.

For the case of θ1 ∈ [π/2, π], by inequality (3) and ∥w − v∥2 ≥ ∥v∥2, we simply have

∥∇wLD(w)−∇vLD(v)∥2 ≤
√
π/2 ≤ 2

∥v∥2
∥w − v∥2

which completes the proof by taking L = 2.

Now we are ready to show the convergence of the gradient norm in Algorithm 2. We first prove a
more general version of Proposition 3.3 as follow, and then give Proposition 3.3 as its corollary.
Proposition B.2. Let D be any distribution on Rd × {0, 1} with x-marginal such that
maxu∈Rd ∥̂⟨ū,x⟩∥̂p ≤ K for all p ∈ {1, 2} and some absolute constant K > 0. Define
LD(w) = E(x,y)∼D[y · max(0, ⟨x,w⟩)] as well as gw(x, y) = y · xw⊥1{x ∈ h(w)}. Suppose
∥∇uLD(u)−∇wLD(w)∥2 ≤ L · ∥u−w∥2/max(∥u∥2, ∥w∥2) for some constant L > 0, then,
with β =

√
2/TKLd, after T iterations, the output (w(1), . . . ,w(T )) in algorithm 2 will satisfies

E
D̂(1),...,D̂(T )∼D

[
1

T

T∑
i=1

∥∥∥∥ E
(x,y)∼D

[gw(i)(x, y)]

∥∥∥∥2
2

]
≤
√
K3Ld

2T
.
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In addition, if T ≥ (2K3Ld+8K4d2 ln(1/δ))/ϵ4, it holds mini=1,...,T ∥E(x,y)∼D[gw(i)(x, y)]∥2 ≤
ϵ, with probability at least 1− δ.

Proof. Consider the ith iteration of algorithm 2. Based on the gradient step u(i) = w(i−1) −
β ED̂(i) [gw(i−1)(x, y)], we have

LD(u
(i))− LD(w

(i−1))

=
〈
∇wLD(w

(i−1)),u(i) −w(i−1)
〉

+

∫ 1

0

〈
∇wLD(w

(i−1) + t(u(i) −w(i−1)))−∇wLD(w
(i−1)),u(i) −w(i−1)

〉
dt

≤− β
〈
∇wLD(w

(i−1)), Ê
D(i)

[gw(i−1)(x, y)]

〉
+

∫ 1

0

∥∇wLD(w
(i−1) + t(u(i) −w(i−1)))−∇wLD(w

(i−1))∥2∥u(i) −w(i−1)∥2dt

(i)

≤ − β
〈
E
D
[gw(i−1)(x, y)], Ê

D(i)

[gw(i−1)(x, y)]

〉
+

∫ 1

0

t

max(∥(1− t)w(i−1) + tu(i)∥2, ∥w(i−1)∥2)
∥u(i) −w(i−1)∥22

≤− β
〈
E
D
[gw(i−1)(x, y)], Ê

D(i)

[gw(i−1)(x, y)]

〉
+
β2L

2

∥∥∥∥ Ê
D(i)

[gw(i−1)(x, y)]

∥∥∥∥2
2

(4)

where the first term of inequality (i) holds because x = w(i−1)⊗2x + xw(i−1)⊥ and
⟨zw(i−1)⊥ ,w(i−1)⊗2x⟩ = 0 for any z ∈ Rd, which implies ⟨x,E[gw(i−1)(x, y)]⟩ =
⟨xw(i−1)⊥ ,E[gw(i−1)(x, y)]⟩, the second term holds due to our assumption, the last inequality
is obtained by observing that ED̂(i) [gw(i−1)(x, y)] lies on the orthogonal subspace of w(i−1) so
that ∥u(i)∥22 = ∥w(i−1)∥22 + β∥ED̂(i) [gw(i−1)(x, y)]∥22 ≥ ∥w(i−1)∥22 and that 1 = ∥w(i−1)∥22 ≤
∥(1− t)w(i−1) + tu(i)∥22 because of the projection step (line 6) of Algorithm 2 and that (1 −
t)w(i−1) + tu(i) is a convex combination of u(i) and w(i−1).

Now, since LD(w) = E(x,y)∼D[y · max(0, ⟨x,w⟩)] by definition, there is LD(w) = ∥w∥2 ·
LD(w̄), which, along with the fact that ∥u(i)∥2 ≥ ∥w(i−1)∥2 = 1, indicates LD(w

(i)) ≤ LD(u
(i)).

Therefore, applying LD(w
(i)) ≤ LD(u

(i)) to the LHS of inequality (4) gives

LD(w
(i))− LD(w

(i−1)) ≤− β
〈
E
D
[gw(i−1)(x, y)], Ê

D(i)

[gw(i−1)(x, y)]

〉
+
β2L

2

∥∥∥∥ Ê
D(i)

[gw(i−1)(x, y)]

∥∥∥∥2
2

.

Then, conditioning on the previous samples D̂(1), . . . , D̂(i−1), we have, by the independence between
D and D̂(i) and Jensen’s inequality, that

E
D̂(i)∼D

[LD(w
(i))− LD(w

(i−1)) | D̂(1), . . . , D̂(i−1)]

=− β
∥∥∥E
D
[gw(i−1)(x, y)]

∥∥∥2
2
+
β2L

2
E

D̂(i)∼D

[∥∥∥∥ Ê
D(i)

[gw(i−1)(x, y)]

∥∥∥∥2
2

]
(i)

≤ − β
∥∥∥E
D
[gw(i−1)(x, y)]

∥∥∥2
2
+
β2L

2
E

D̂(i)∼D

[
Ê

D(i)

[
∥gw(i−1)(x, y)∥22

]]
≤− β

∥∥∥E
D
[gw(i−1)(x, y)]

∥∥∥2
2
+ β2K2Ld/2

where inequality (i) is obtained by applying Jensen’s inequality to the second term, and the last inequal-
ity holds because ED̂(i)∼D[ED̂(i) [∥gw(i−1)(x, y)∥22]] = ED[∥gw(i−1)(x, y)∥22] and property (3) of
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lemma B.5 gives ED[∥gw(i−1)(x, y)∥22] ≤ dmax∥u∥2=1 ∥̂⟨x,u⟩∥̂
2

2, where max∥u∥2=1 ∥̂⟨x,u⟩∥̂
2

2 ≤
K2 because of our assumption on Dx. Averaging the above inequality over all T iterations and using
the law of total expectation gives

1

T

T∑
i=1

∥∥∥E
D
[gw(i)(x, y)]

∥∥∥2
2
≤
LD(w

(0))− ED̂(T+1)∼D[LD(w
(T+1))]

βT
+ βK2Ld/2

(i)

≤LD(w
(0))

βT
+ βK2Ld/2

≤ K

βT
+ βK2Ld/2

where inequality (i) holds because LD(w) ≥ 0, the last inequality is derived by property (1) of
lemma B.5 with ∥w(i)∥2 = 1 for all i = 0, . . . , T + 1 and the K-bounded property of Dx. Taking
β =

√
2/TKLd gives the first claim.

To obtain the high-probability version, we define

GT (w
(1), . . . ,w(T )) =

1

T

T∑
i=1

∥∥∥∥ E
(x,y)∼D

[gw(i)(x, y)]

∥∥∥∥2
2

which implies ∣∣∣GT (w(1), . . . ,w(i), . . . ,w(T ))−GT (w(1), . . . ,w(i)′, . . . ,w(T ))
∣∣∣

≤ 1

T

∣∣∥E[gw(i)(x, y)]∥22 − ∥E[gw(i)′(x, y)]∥22
∣∣

≤2dK2

T
where the last step holds due to property (2) of lemma B.5 and that Dx is K-bounded. Now using
lemma B.4, we get

Pr

{
GT (w

(1), . . . ,w(T ))− E
D̂(1),...,D̂(T )∼D

[GT (w
(1), . . . ,w(T ))] ≥ t

}
≤ exp

(
−t2T/2K4d2

)
Choosing T ≥ (2K3Ld + 8K4d2 ln(1/δ))/ϵ4 gives both E[GT (w(1), . . . ,w(T ))] ≤ ϵ2/2, by our
first claim, and

Pr

{
1

T

T∑
i=1

∥E[gw(i)(x, y)]∥22 ≤ ϵ2
}

=Pr
{
GT (w

(1), . . . ,w(T )) ≤ ϵ2
}

≥1− δ
Finally, since mini=1,...,T ∥E[gw(i)(x, y)]∥22 is at most the average, we obtain the second claim.

An immediate consequence of Lemma B.1 and Proposition B.2 is as follow.
Corollary B.3 (Proposition 3.3). Let D be any distribution on Rd × {0, 1} with standard normal
x-marginal. Define LD(w) = E(x,y)∼D[y ·max(0, ⟨x,w⟩)] and gw(x, y) = y · xw⊥1{x ∈ h(w)},
then, with β =

√
1/Td, after T ≥ 12d2 ln(1/δ)/ϵ4 iterations, the output (w(1), . . . ,w(T )) in

algorithm 2 will satisfies that mini=1,...,T ∥E(x,y)∼D[gw(i)(x, y)]∥2 ≤ ϵ, with probability at least
1− δ.

Below are a few tools we needed in the proof of proposition B.2.
Lemma B.4 (Theorem 2.2 of Devroye & Lugosi (2001)). Suppose that x1, . . . , xd ∈ X are indepen-
dent random variables, and let f : X d → R. Let c1, . . . , cn satisfies

sup
x1,...,xd,xi

′
|f(x1, . . . , xi, . . . , xd)− f(x1, . . . , xi′, . . . , xd)| ≤ ci

for i ∈ [d]. Then

Pr{f(x)− E[f(x)] ≥ t} ≤ exp

(
− 2t2∑

i∈[d] c
2
2

)
.

18



Published as a conference paper at ICLR 2025

Lemma B.5. Let D be any distribution on Rd × [−1,+1]. Define LD(w) = E(x,y)∼D[y ·
max(0, ⟨x,w⟩)] and gw(x, y) = y · xw⊥1{x ∈ h(w)}, then, for any w ∈ Rd, we have the
following properties:

1. LD(w) ≤ ∥w∥2∥̂⟨x, w̄⟩∥̂1,

2. ∥E(x,y)∼D[gw(x, y)]∥2 ≤
√
dmax∥u∥2=1 ∥̂⟨x,u⟩∥̂1,

3. E(x,y)∼D[∥gw(x, y)∥22] ≤ dmax∥u∥2=1 ∥̂⟨x,u⟩∥̂
2

2.

Proof. To show the first claim, notice that y ≤ 1, so we have

LD(w) =E[y ·max(0, ⟨x,w⟩)]
≤E[⟨x,w⟩ · 1{⟨x,w⟩ ≥ 0}]
≤E[|⟨x,w⟩|]

=∥w∥2∥̂⟨x, w̄⟩∥̂1

where inequality (i) holds because (E[xp])1/p is a increasing function in p, and the last inequality
holds since D is in isotropic position.

To prove property (2), because, again, y ≤ 1, we have

∥E[y · xw⊥1{x ∈ h(w)}]∥2 ≤∥E[|x|]∥2
≤
√
dmax
i∈[d]

E[|xi|]

≤
√
d max
∥u∥2=1

∥̂⟨x,u⟩∥̂1

where the absolute operator on the RHS of the first inequality is an element-wise operation.

To obtain the last property, notice that ∥xw⊥∥2 ≤ ∥x∥2 because xw⊥ is a projection of x, then we
have

E[∥y · xw⊥1{⟨x,w⟩ > 0}∥22] ≤E[∥x∥22]

≤d max
∥u∥2=1

∥̂⟨x,u⟩∥̂
2

2.

C OPTIMALITY ANALYSIS OF APPROXIMATE STATIONARY POINT

We present our analysis for the main theorem of our algorithmic results in this section.

Theorem C.1 (Theorem 3.1). Let D be a distribution on Rd × {0, 1} with standard normal x-
marginal, and C be a class of binary classifiers on Rd × {0, 1}. If there exists a unit vector v ∈ Rd
and a c ∈ C such that, for some sufficiently small ϵ ∈ [0, 1/e], Pr(x,y)∼D{x ∈ h(v)∩ c(x) ̸= y} ≤ ϵ,
then, with at most Õ(d2/ϵ6) examples, Algorithm 1 will return a w(c′), with probability at least 1− δ,
such that Pr(x,y)∼D{x ∈ h(w(c′)) ∩ c′(x) ̸= y} = Õ(

√
ϵ) and run in time O(d2 |C| /ϵ6).

Proof. For conciseness of the proof, let the error indicator function f (c)w : Rd × {0, 1} → {0, 1} be
such that f (c)w (x, y) = 1{x ∈ h(w) ∩ c(x) ̸= y}.

Consider the c ∈ C that satisfies minw PrD

{
f
(c)
w (x, y) = 1

}
≤ ϵ. For T = 12d2 ln(8/δ1)/ϵ

4,

N ≥ Ω(ln(16T/δ1)/ϵ
2 ln ϵ−1), lemma C.5 and a union bound over the two calls of algorithm 2

guarantees that there exists a w′ ∈ W(c) such that Pr(x,y)∼D{f
(c)
w′ (x, y)} ≤ 5

2 (ϵ
√
ln ϵ−1)1/2 with

probability at least 1− δ1/2.
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While estimating each w ∈ W(c) at line 9 with ln(4T/δ1)/2ϵ samples in D̂, we know that

Pr

{∣∣∣∣Ê
D
[f (c)w (x, y)]− E

D
[f (c)w (x, y)]

∣∣∣∣ > √ϵ} ≤ δ1/2T
by lemma F.4. Taking a union bound over all w ∈ W(c) gives

Pr

{
Ê
D
[f

(c)

w(c)(x, y)] > E
D
[f

(c)
w′ (x, y)] + 2

√
ϵ

}
≤ δ1

Therefore, we can conclude that Pr(x,y)∼D
{
x ∈ h(w(c)) ∩ c(x) ̸= y

}
= Õ(

√
ϵ) with probability

at least 1− δ1 in this iteration.

Finally, taking an union bound again over all c ∈ C and choosing δ1 = δ/ |C|, we know that the total
number of examples needed is O(TN) = O(d2 ln(16T |C| /δ)/ϵ6) = Õ(d2/ϵ6) and the running
time is simply O(|C|TN) = Õ(d2 |C| /ϵ6), since we can reuse the example for each c ∈ C.

Proposition C.2 (Proposition 3.2). Let D be a distribution on Rd × {0, 1} with standard normal
x-marginal, and gw(x, y) = y · xw⊥1{x ∈ h(w)}. Suppose v,w ∈ Rd are unit vectors such that
Pr(x,y)∼D{x ∈ h(v) ∩ y = 1} ≤ ϵ and θ(v,w) ∈ [0, π/2), then, if Pr(x,y)∼D{x ∈ h(w) ∩ y =

1} ≥ 5
2 (ϵ
√
ln ϵ−1)1/2, it holds that〈

E
(x,y)∼D

[−gw(x, y)], v̄w⊥

〉
≥ 2

5
ϵ
√
ln ϵ−1

for some sufficiently small ϵ ∈ [0, 1/e].

Proof. For conciseness, let θ = θ(v,w) and define two orthonormal basis e1, e2 such that w = e2
and v = −e1 sin θ + e2 cos θ, which implies e1 = −v̄w⊥ . Denote xi = ⟨x, ei⟩ so that ⟨x,w⟩ = x2
and ⟨x,v⟩ = −x1 sin θ+x2 cos θ. Because ⟨x, e1⟩ = ⟨x2e2 +xe⊥

2
, e1⟩ = −⟨xw⊥ , v̄w⊥⟩, we have

⟨E[−gw(x, y)], v̄w⊥⟩ =− E[y · ⟨xw⊥ , v̄w⊥⟩1{x ∈ h(w)}]
=E[y · ⟨x, e1⟩1{x ∈ h(w)}]
=E[y · x1 · (1{x ∈ h(w) ∩ h(v)}+ 1{x ∈ h(w) ∩ hc(v)})]
≥E[|x1|1{x1 tan θ > x2 ≥ 0, y = 1}]︸ ︷︷ ︸

I1

− E[|x1|1{x2 ≥ 0, x2 ≥ x1 tan θ, y = 1}]︸ ︷︷ ︸
I2

. (5)

where the last inequality holds because cos θ > 0 by our assumption that θ(v,w) ∈ [0, π/2),
and h(w) = {x | ⟨x,w⟩ ≥ 0}, h(v) = {x | ⟨x,v⟩ ≥ 0} imply that x2 ≥ 0, x2 ≥ x1 tan θ by
construction. This decomposition above can also be seen from figure 4. Then, we will apply lemma
C.3 to bound the above two terms.

O
e1

e2(w)

v

θ(v,w)

I2 I1

Figure 4: Blue area represent h(v) ∩ h(w), while orange area represents h(w) ∩ hc(v).

Observe that, since x is sampled from a standard normal distribution and e1, e2 are two orthonormal
basis, x1, x2 are two independent one-dimension standard normal random variables. Then, observe
that we can bound I1 and I2 by applying lemma C.3 with carefully chosen α and β.
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To apply lemma C.3 on I2, by treating x2 ≥ 0 to be the event T and the rest to be S in lemma C.3,
we show that there exists an α > 0 such that Pr{x2 ≥ 0 ∩ x2 ≥ x1 tan θ ∩ y = 1} ≤ Pr{x2 ≥
0 ∩ |x1| ≥ α}.
First of all, notice that Pr{x2 ≥ 0 ∩ x2 ≥ x1 tan θ ∩ y = 1} = Pr{x ∈ h(v) ∩ y = 1} ≤ ϵ

by our assumption. Suppose α =

√
2 ln ϵ−1 − 2 ln(κ

√
ln ϵ−1) for some κ > 1, then, due to the

independence between x1, x2 as well as lemma F.9, there is

Pr{x2 ≥ 0 ∩ |x1| ≥ α} ≥
exp

(
− ln ϵ−1 + ln(κ

√
ln ϵ−1)

)
√
2π

(√
2 ln ϵ−1 − 2 ln(κ

√
ln ϵ−1) + 1

)
=

ϵκ
√
2π

(√
2− 2 ln(κ

√
ln ϵ−1)/ ln ϵ−1 + 1/

√
ln ϵ−1

)
≥ ϵκ√

2π
(√

2 + 1
)

where the last inequality holds because κ > 1 and ϵ ∈ [0, 1/e] so that ln(κ
√
ln ϵ−1)/ ln ϵ−1 ≥ 0 as

well as ln ϵ−1 ≥ 1. Taking κ =
√
2π
(√

2 + 1
)

results to Pr{x2 ≥ 0 ∩ |x1| ≥ α} ≥ ϵ. Then, lemma
C.3 gives

I2 ≤E[|x1|1{x2 ≥ 0, |x1| ≥ α}]

=
1√
2π

∫
≥α

x1e
−x2

1/2dx1

=
exp

(
ln ϵ+ ln

(√
2π
(√

2 + 1
)√

ln ϵ−1
))

√
2π

≤3ϵ
√
ln ϵ−1. (6)

To apply lemma C.3 on I1, notice that the event x1 tan θ > x2 ≥ 0 in I1 is a subset of event
x1 ≥ 0 ∩ x2 ≥ 0 because θ(v,w) ∈ [0, π/2). Therefore, we can view the event x1 ≥ 0 ∩ x2 ≥ 0
as T in lemma C.3 and show that there exists a β > 0 such that Pr{0 ≤ x1 ≤ β ∩ x2 ≥ 0} ≤
Pr{x1 tan θ > x2 ≥ 0 ∩ y = 1} to apply lemma C.3.

At first, observe that, by our assumption that Pr{x ∈ h(v) ∩ y = 1} ≤ ϵ as well as Pr{x ∈

h(w) ∩ y = 1} ≥ 5
2

(
ϵ
√
ln ϵ−1

)1/2
, there is(

e−1/2 + e1/2
)(

ϵ
√
ln ϵ−1

)1/2
− ϵ <5

2

(
ϵ
√
ln ϵ−1

)1/2
− ϵ

≤Pr{x ∈ h(w) ∩ y = 1} − Pr{x ∈ h(v) ∩ x ∈ h(w) ∩ y = 1}
=Pr{x ∈ hc(v) ∩ x ∈ h(w) ∩ y = 1}
=Pr{x1 tan θ > x2 ≥ 0 ∩ y = 1}

where the first inequality holds because e−1/2 + e1/2 ≤ 5/2. Then, taking β =

2
√
2eπ

(
ϵ
√
ln ϵ−1

)1/2
yields

Pr{0 ≤ x1 ≤ β ∩ x2 ≥ 0} =1

2
Pr{0 ≤ x1 ≤ β}

(i)

≤
√
e
(
ϵ
√
ln ϵ−1

)1/2
=
(
e−1/2 + e1/2

)(
ϵ
√
ln ϵ−1

)1/2
− e−1/2

(
ϵ
√
ln ϵ−1

)1/2
≤
(
e−1/2 + e1/2

)(
ϵ
√
ln ϵ−1

)1/2
− ϵ
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where the first equation holds because x1, x2 are independent, inequality (i) holds due to the fact
that standard normal density is never greater than 1/

√
2π, and the last inequality holds because

ϵ ∈ [0, 1/e] so that e−1/2 ≥
√
ϵ/ ln1/4 ϵ−1. Applying lemma C.3 gives

I1 ≥E[x1 · 1{0 ≤ x1 ≤ 2
√
2eπ(ϵ

√
ln ϵ−1)1/2, x2 ≥ 0}]

=
1

2
√
2π

∫ 2
√
2eπ(ϵ

√
ln ϵ−1)1/2

0

x1e
−x2

1/2dx1

=
1− exp

(
−4eπϵ

√
ln ϵ−1

)
2
√
2π

≥
√
π

2
eϵ
√
ln ϵ−1 (7)

where the last inequality holds because of the fundamental inequality x/2 ≤ 1−e−x for x ∈ [0, 1.59].

At last, since e
√
π/2 − 3 > 2/5, taking inequalities (7) and (6) back to inequality (5) gives the

desired result.

The following lemma plays a key role in proving proposition 3.2.

Lemma C.3. Let D be an arbitrary distribution on Rd, and S, T be any events such that PrD{S ∩
T} = p for some p ∈ (0, 1). Then, for any unit vector u ∈ Rd, and parameters α, β that satisfies
Pr{T ∩ |⟨x,u⟩| ≤ β} ≤ p ≤ Pr{T ∩ |⟨x,u⟩| ≥ α}, it holds that

E
D
[|⟨x,u⟩|1{T, |⟨x,u⟩| ≤ β}] ≤ E

D
[|⟨x,u⟩|1{S, T}] ≤ E

D
[|⟨x,u⟩|1{T, |⟨x,u⟩| ≥ α}].

Proof. For conciseness of the proof, we denote E≥t = {x | T ∩ |⟨x,u⟩| ≥ t}, E≤t =
{x | T ∩ |⟨x,u⟩| ≤ t}, and ES = {x | S ∩ T}.
To show the first property, let α > 0 be such that p ≤ Pr{T ∩ |⟨x,u⟩| ≥ α} = Pr{x ∈ E≥α}. Then,
if x ∈ ES\E≥α, there must be |⟨x,u⟩| ≤ α. Therefore, we have

E
x∼D

[|⟨x,u⟩|1{S, T}] =E[|⟨x,u⟩|1{x ∈ ES}]

=E[|⟨x,u⟩|1{x ∈ ES ∩ E≥α}] + E[|⟨x,u⟩|1{x ∈ ES\E≥α}]
≤E[|⟨x,u⟩|1{x ∈ ES ∩ E≥α}] + E[α1{x ∈ ES\E≥α}]
(i)

≤ E[|⟨x,u⟩|1{x ∈ ES ∩ E≥α}] + E[|⟨x,u⟩|1{x ∈ E≥α\ES}]
=E[|⟨x,u⟩|1{T, |⟨x,u⟩| ≥ α}]

where inequality (i) holds because Pr{x ∈ ES} ≤ Pr{x ∈ E≥α} by construction, which implies
Pr{x ∈ ES\E≥α} ≤ Pr{x ∈ E≥α\ES}, and every x ∈ E≥α satisfies |⟨x,u⟩| ≥ α.

To prove the second claim, we similarly define β > 0 be such that p ≥ Pr{T ∩ |⟨x,u⟩| ≤ β} =
Pr{x ∈ E≤β}. Similar to the case of |⟨x,u⟩| ≤ α, we should notice that, if x ∈ ES\E≤β , there is
|⟨x,u⟩| ≥ β. Hence, with a similar argument as above, we have

E
x∼D

[|⟨x,u⟩|1{S, T}] =E[|⟨x,u⟩|1{x ∈ ES}]

=E[|⟨x,u⟩|1{x ∈ ES ∩ E≤β}] + E[|⟨x,u⟩|1{x ∈ ES\E≤β}]
≥E[|⟨x,u⟩|1{x ∈ ES ∩ E≤β}] + E[β1{x ∈ ES\E≤β}]
≥E[|⟨x,u⟩|1{x ∈ ES ∩ E≤β}] + E[|⟨x,u⟩|1{x ∈ E≤β\ES}]
=E[|⟨x,u⟩|1{T, |⟨x,u⟩| ≤ β}]

which completes the proof.

The following corollary is an immediate result of Proposition C.2.
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Corollary C.4. Let D be a distribution on Rd × {0, 1} with standard normal x-marginal,
and gw(x, y) = y · xw⊥1{x ∈ h(w)}. Suppose v,w ∈ Rd are unit vectors such that
Pr(x,y)∼D{x ∈ h(v) ∩ y = 1} ≤ ϵ and θ(v,w) ∈ [0, π/2), then, if a unit vector w satisfies
that ∥E(x,y)∼D[gw(x, y)]∥2 < 2

5ϵ
√
ln ϵ−1, we have

Pr
(x,y)∼D

{x ∈ h(w) ∩ y = 1} < 5

2
(ϵ
√
ln ϵ−1)1/2

for some small enough ϵ ∈ [0, 1/e].

Proof. By Cauchy’s inequality and our assumption, it holds that〈
E

(x,y)∼D
[−gw(x, y)], v̄w⊥

〉
≤
∥∥∥∥ E
(x,y)∼D

[gw(x, y)]

∥∥∥∥
2

<
2

5
ϵ
√
ln ϵ−1

Then, negating Proposition 3.2 gives the desired result.

Now we are ready to prove that at least one of the halfspaces selector returned by the Projected SGD
is close to the optimal one of the classifier c ∈ C in one iteration in Algorithm 1.

Lemma C.5 (Lemma 3.4). Let D be a distribution on Rd × {0, 1} with standard normal x-marginal,
and gw(x, y) = y · xw⊥1{x ∈ h(w)}. Suppose v ∈ Rd is a unit vectors such that Pr(x,y)∼D{x ∈
h(v) ∩ y = 1} ≤ ϵ, if T ≥ 12d2 ln(2/δ)/ϵ4, N ≥ ln(4T/δ)/Cϵ2 ln ϵ−1 for some constant C > 0,
and θ(v,w(0)) ∈ [0, π/2), it holds that at least one of w ∈ W returned by algorithm 2 will satisfies

Pr
(x,y)∼D

{x ∈ h(w) ∩ y = 1} ≤ 5

2
(ϵ
√
ln ϵ−1)1/2

with probability at least 1− δ for some sufficiently small ϵ ∈ [0, 1/e].

Proof. By Corollary B.3 with T ≥ 12d2 ln(2/δ)/ϵ4, there exists a w ∈ W such that
∥ED[gw(x, y)]∥2 ≤ ϵ with probability at least 1 − δ/2. Suppose w ∈ W is indexed in the same
order that the iterations happened in algorithm 2, and let w(t) be the first parameter in that order such
that ∥ED[gw(t)(x, y)]∥2 ≤ ϵ.

Consider now the subset S = {w(1), . . . ,w(t−1)} ⊂ W , there are two possible cases, either there
already exists a w ∈ S such that Pr{h(x,w) ≥ 0 ∩ y = 1} ≤ 5

2 (ϵ
√
ln ϵ−1)1/2, or none of them

have low error rate. The former case already satisfies the desired requirement, hence, we will focus
on prove the latter case also implies the existence of a good parameter.

We first show that, by induction, every w(i) ∈ {w(0), . . . ,w(t)} satisfies θ(v,w(i)) ∈ [0, π/2) with
high probability.

For w(0) = e1, since we assumed θ(e1,v) ∈ [0, π/2), it is trivially true.

Inductively, assume θ(v,w(i)) ∈ [0, π/2). Then, due to our previous assumption in this case that
Pr{h(x,w(i)) ≥ 0 ∩ y = 1} > 5

2 (ϵ
√
ln ϵ−1)1/2 for every w(i) ∈ S and some sufficiently small

ϵ, we can refer proposition C.2 to obtain ⟨E[−gw(i)(x, y)], v̄w(i)⊥⟩ ≥ 2
5ϵ
√
ln ϵ−1. Notice that, in

algorithm 2, the update step in algorithm 2 tells us that

u(i+1) = w(i) + β E
(x,y)∼D̂(i+1)

[−gw(i)(x, y)].

Referring lemma F.8 for ED̂(i+1) [⟨gw(i)(x, y), v̄w(i)⊥⟩] and some absolute constant C > 0 gives

Pr
D

{∣∣∣∣〈 E
D̂(i+1)

[gw(i)(x, y)]− E
D
[gw(i)(x, y)], v̄w(i)⊥

〉∣∣∣∣ ≥ 2

5
ϵ
√
ln ϵ−1

}
≤ 2e−CNϵ

2 ln ϵ−1
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which implies
〈
ED̂(i+1) [−gw(i)(x, y)], v̄w(i)⊥

〉
≥ 0 with probability at least 1− 2e−CNϵ

2 ln ϵ−1

for
some sufficiently small ϵ. Therefore, we have〈

E
D̂(i+1)

[−gw(i)(x, y)],v

〉
=

〈
E

D̂(i+1)

[−gw(i)(x, y)],vw(i)⊥

〉
=∥vw⊥(i)∥2

〈
E

D̂(i+1)

[−gw(i)(x, y)], v̄w(i)⊥

〉
≥0

Now, by lemma C.6, we can conclude that
〈
w(i+1),v

〉
≥
〈
w(i),v

〉
, which implies θ(w(i+1),v) ∈

[0, π/2) with probability at least 1− 2e−CNϵ
2 ln ϵ−1

. Taking a union bound over all T ≥ t iterations
gives that θ(w(t),v) ∈ [0, π/2) with probability 1− 2Te−CNϵ

2 ln ϵ−1

.

At last, combining θ(w(t),v) ∈ [0, π/2) and the assumption that ∥ED[gw(t)(x, y)]∥2 ≤ ϵ, corollary
C.4 gives Pr{h(x,w) ≥ 0 ∩ y = 1} ≤ 5

2 (ϵ
√
ln ϵ−1)1/2. Taking N ≥ ln(4T/δ)/Cϵ2 ln ϵ−1

completes the proof.

We need the following lemma to aid the above argument.
Lemma C.6 (Correlation Improvement Diakonikolas et al. (2020a)). For unit vectors v,w ∈ Rd, let
u ∈ Rd be such that ⟨u,v⟩ ≥ c, ⟨u,w⟩ = 0, and ∥u∥2 ≤ 1, with c > 0. Then, for w′ = w + λu,
we have that ⟨w̄′,v⟩ ≥ ⟨w,v⟩+ λc/8.

D ANALYSIS OF ALGORITHM 3

We prove the generalization of our conditional learning algorithms from finite classes to sparse linear
classes in this section.
Theorem D.1 (Theorem 3.5). Let D be a distribution on Rd × {0, 1} with standard normal x-
marginal, and C be a class of sparse linear classifiers on Rd×{0, 1} with sparsity s = O(1). If there
exist a unit vector v ∈ Rd and a classifier c ∈ C such that, for some sufficiently small ϵ ∈ [0, 1/e],
Pr(x,y)∼D{x ∈ h(v) ∩ c(x) ̸= y} ≤ ϵ, then, with at most poly(d, 1/ϵ, 1/δ) examples, Algorithm 3
will return a w(c), with probability at least 1− δ, such that Pr(x,y)∼D{x ∈ h(w(c)) ∩ c(x) ̸= y} =
Õ(
√
ϵ) and run in time poly(d, 1/ϵ, 1/δ).

Proof. We first show that the returned list of Algorithm 4 will contain a classifier c′ such that
Pr(x,y)∼D{x ∈ h(v) ∩ c′(x) ̸= y} ≤ 2ϵ.

We decompose distribution D into a convex combination of an inlier distribution D∗ and a outlier
distribution D̃ in the following way. Let D∗ be a distribution on Rd × {0, 1} with standard normal
x-marginal such that its labels are generated by c(x), while D̃ be any distribution on Rd × {0, 1}
with standard normal x-marginals. Observe that, since Pr{x ∈ h(v) ∩ c(x) ̸= y} ≤ ϵ and
Pr{x ∈ h(v)} = 1/2, there are at least 1/2(1− ϵ) fraction (weighted by Gaussian density) of the
labels of D is consistent with c(x). Therefore, there must exist some α ≥ 1/2(1− ϵ) such that the
labels of Dx can be generated by selecting labels from D∗ with probability mass α and from D̃ with
probability mass 1− α, namely D = αD∗ + (1− α)D̃.

Hence, we can refer Theorem A.1 and Definition 1.3 to conclude that there exists a classifier c′ in the
returned list of Algorithm 4 such that Pr{x ∈ h(v) ∩ c′(x) ̸= y} ≤ 2ϵ. Meanwhile, it is easy to see
that Algorithm 4 takes only poly(d, 1/ϵ, 1/δ) examples and runs in poly(d, 1/ϵ, 1/δ) time since α is
a constant.

At last, by Theorem C.1, we obtained the claimed result.

E ANALYSIS OF HARDNESS RESULTS

We denote Zq := {0, 1, . . . , q − 1}, Rq := [0, q), and modq : Rd → Rdq to be the function that
applies modq operation on each coordinate of x.
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Assumption E.1 (Sub-exponential LWE Assumption). For q, κ ∈ N, α ∈ (0, 1) and C > 0 being
a sufficiently large constant, the problem LWE(2O(dα),Zdq ,Zdq ,N (0, σ),modq) with q ≤ dκ and
σ = C

√
d cannot be solved in 2O(dα) time with 2−O(dα) advantage.

For convenience, we restate the notations been used in section 4 at first.

For simplicity, we define y ≡ 1{c(x) ̸= y′} for (x, y′) ∼ D′ and only consider the distribution
(x, y) ∼ D for the rest of this section. Notice that, for agnostic setting, since D′ is adversarial, D is
also adversarial in the worst case. Therefore, such replacement does not affect the difficulty of the
problems we concerned about.

Normally, one would consider the classification loss to be the expected disagreement between the
classifier and the labelling. However, it is more convenient for us to view a labelling y = 1 as an
”occurrence of error” and define the loss in terms of such occurrences. Specifically, for any subset
S ⊆ Rd and any distribution D on Rd × {0, 1}, we define the classification loss as

errD(S) = Pr
(x,y)∼D

{y = 1{x ∈ S}}. (8)

Note that this definition of classification loss is essentially the same as the “traditional” classification
loss that defined in terms of disagreement since we can convert from one to another by simply
negating the labelling.

Analogously, for any subsets S, T ⊆ Rd and any distribution D on Rd × {0, 1}, we denote the
conditional classification loss as

errD|T (S) = Pr
(x,y)∼D

{y = 1{x ∈ S} | x ∈ T}. (9)

For simplicity, we write errD|T instead of errD|T (S) when S ≡ T .

Lemma E.2 (Lemma 4.4). Let D be any distribution on Rd × {0, 1} and S be any subset of Rd,
we have errD(S) = 2errD|S PrD{x ∈ S} + PrD{y = 0} − PrD{x ∈ S} as well as errD(S) =
2errD|Sc(S) PrD{x ∈ Sc}+ PrD{y = 1} − PrD{x ∈ Sc}.

Proof. By the law of total probability and definition (8), we have
errD(S) =Pr{y = 1{x ∈ S}}

=Pr{y = 1 ∩ x ∈ S}+ Pr{y = 0 ∩ x /∈ S} (10)
Again, by the law of total probability, we have that

Pr{y = 0 ∩ x /∈ S} =Pr{y = 0} − Pr{y = 0 ∩ x ∈ S}
=Pr{y = 0} − Pr{x ∈ S}+ Pr{y = 1 ∩ x ∈ S} (11)

Taking equation (11) back into (10) gives
errD(S) =2Pr{y = 1 | x ∈ S}Pr{x ∈ S}+ Pr{y = 0} − Pr{x ∈ S}

=2errD|S Pr{x ∈ S}+ Pr{y = 0} − Pr{x ∈ S}
where the last equation holds due to definition (9). Similar to equation (11), we have

Pr{y = 1 ∩ x ∈ S} = Pr{y = 1} − Pr{x /∈ S}+ Pr{y = 0 ∩ x /∈ S}
which, when plugging back to equation 10, gives

errD(S) =2Pr{y = 0 | x /∈ S}Pr{x /∈ S}+ Pr{y = 1} − Pr{x /∈ S}
=2Pr{y = 1{x ∈ S} | x ∈ Sc}Pr{x ∈ Sc}+ Pr{y = 1} − Pr{x ∈ Sc}
=2errD|Sc(S) Pr{x ∈ Sc}+ Pr{y = 1} − Pr{x ∈ Sc}.

The proof is completed.

Proposition E.3 (Proposition 4.5). Let D be any distribution on Rd × {0, 1}, H be any subset of
the power set of Rd closed under complement, and defineHa,bD = {S ∈ H | PrD{x ∈ S} ∈ [a, b]}
for any 0 ≤ a ≤ b ≤ 1. For any 0 ≤ a ≤ b ≤ 1 and ϵ, δ > 0, given sample access to
D, if there exists an algorithm A1(ϵ, δ, a, b) runs in time poly(d, 1/ϵ, 1/δ), and outputs a subset
S1 ∈ Ha,bD such that errD|S1

≤ minS∈Ha,b
D

errD|S + ϵ with probability as least 1 − δ, there exists
another algorithm A2(ϵ, δ), runs in time poly(d, 1/ϵ, 1/δ), and outputs a subset S2 ∈ H such that
errD(S2) ≤ minS∈H errD(S) + 6ϵ with probability at least 1− δ.
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Proof. We prove the proposition by showing that there exists a efficient reduction from the problem
of agnostic classification to conditional classification in terms of their loss functions.

Fix a subset S∗ ∈ H such that S∗ = argminS∈H errD(S) and define p = Pr{x ∈ S∗}. Then, let
pl, pu ≥ 0 be any constants such that pu − pl = ϵ as well as p ∈ [pl, pu].

Consider now another subset S′ ∈ Hpl,puD such that S′ = argminS∈Hpl,pu
D

errD|S . Notice that S∗ is
a feasible solution for the conditional classification problem on Hpl,puD , i.e. S∗ ∈ Hpl,puD , because
Pr{x ∈ S∗} = p ∈ [pl, pu] by construction.

Let S1 be the subset returned by algorithm A1(ϵ, δ, pl, pu). Then, with probability at least 1 − δ,
there is

errD(S1) =2errD|S1
Pr{x ∈ S1}+ Pr{y = 0} − Pr{x ∈ S1}

(i)

≤2
(
errD|S′ + ϵ

)
Pr{x ∈ S1}+ Pr{y = 0} − Pr{x ∈ S1}

(ii)

≤2errD|S∗ Pr{x ∈ S1}+ Pr{y = 0} − Pr{x ∈ S1}+ 2ϵ

(iii)

≤ 2errD|S∗ (p+ ϵ) + Pr{y = 0} − (p− ϵ) + 2ϵ

(iv)

≤ 2errD|S∗ Pr{x ∈ S∗}+ Pr{y = 0} − Pr{x ∈ S∗}+ 5ϵ

=errD(S
∗) + 5ϵ (12)

where the first equation is derived by lemma E.2, inequality (i) holds due to the error guarantee
of algorithm A1(ϵ, δ, pl, pu), inequality (ii) holds because of the optimality of S′ as well as S∗ ∈
Hpl,puD , inequality (iii) holds since algorithm A1(ϵ, δ, pl, pu) guarantees S1 ∈ Hpl,puD , which implies
pl ≤ Pr{x ∈ S1} ≤ pu, and, by definition, there are pl ≥ p− ϵ, pu ≤ p+ ϵ, inequality (iv) holds
because p = Pr{x ∈ S∗} by definition as well as errD|S∗ = Pr{y = 1 | x ∈ S∗} ≤ 1, and the last
equation is, again, by referring lemma E.2.

Although we do not know what value should p take exactly, we only need to guess a small range where
p lies in to make inequality (12) holds with high probability. Specifically, we construct algorithm
A2(ϵ, δ) by using algorithm A1 as a subroutine in the following way.

For k = 1, 2, . . . , ⌈1/ϵ⌉, we run algorithmA1(ϵ, ϵδ/2, (k−1)ϵ, kϵ). Observe that, when we “guessed”
the correct k such that p ∈ [(k − 1)ϵ, kϵ], inequality (12) must holds with probability at least
1 − ϵδ/2 because of the parameters we passed into A1. Let S(k) be the solution returned by
algorithm A1 during the kth call, we construct an empirical distribution D̂ i.i.d.∼ D and choose S2

such that errD̂(S2) ≤ mink∈[⌈1/ϵ⌉] errD̂(S
(k)). Notice that we only need the sample size of D̂ to

be polynomially large to guarantee that errD(S2) ≤ mink∈[⌈1/ϵ⌉] errD(S
(k)) + ϵ with probability

at least 1− δ/2 by lemma F.4 (Chernoff Bound). Further, by a union bound over all ⌈1/ϵ⌉ calls of
algorithm A1 and the estimation of classification error on D̂, we have, with probability at least 1− δ,
that

errD(S2) ≤ min
k∈⌈1/2ϵ⌉

errD(S
(k)) + ϵ

(i)

≤errD(S∗) + 6ϵ

=min
S∈H

errD(S) + 6ϵ

where inequality (i) alone holds with probability at least 1− δ/2 because the second argument, ϵδ/2,
we passed in algorithm A1 guarantees that inequality (12) holds with probability at least 1− ϵδ/2
when we guessed p = Pr{x ∈ S∗} correctly, and taking a union bound over the ⌈1/ϵ⌉ guesses gives
probability at least 1 − δ/2. It is easy to see that each call, A1(ϵ, ϵδ, (k − 1)ϵ, kϵ), runs in time
polyd, 1/ϵ, 1/ϵδ, and we only called A1 for at most ⌈1/ϵ⌉ times, the resulting running time is still
poly(d, 1/ϵ, 1/δ), which completes the proof.

Claim E.4 (Claim 4.7). Let D be any distribution on Rd × {0, 1}, H be any subset of the power
set of Rd closed under complement, and define Ha,bD = {S ∈ H | PrD{x ∈ S} ∈ [a, b]} for any
0 ≤ a ≤ b ≤ 1. For any 0 ≤ a ≤ b ≤ 1, α, ϵ, δ > 0, given sample access to D, if there exists
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an algorithm A1(α, δ, a, b), runs in time poly(d, 1/α, 1/δ), and outputs a subset S1 ∈ Ha,bD such
that errD|S1

≤ (1 + α)minS∈Ha,b
D

errD|S with probability as least 1 − δ, there exists another
algorithm A2(α, ϵ, δ), runs in time poly(d, 1/α, 1/ϵ, 1/δ), and outputs a subset S2 ∈ H such that
errD(S2) ≤ (1 + α)(minS∈H errD(S) + 4ϵ) with probability at least 1− δ.

Proof. Fix a subset S∗ ∈ H such that S∗ = argminS∈H errD(S) and define p = Pr{x ∈ S∗}. This
proof generally follows the same strategy of the analysis of proposition E.3. However, differing from
the proof of proposition E.3, to complete the multiplicative reduction, we have to deal with two cases,
2errD|S PrD{x ∈ S} ≤ errD(S) and 2errD|Sc(S) PrD{x ∈ Sc} ≤ errD(S), because errD(S) can
be expressed in two forms according to lemma E.2.

Briefly speaking, when prove the additive reduction, the additive error will be carried through from
conditional classification loss to classification loss no matter if 2errD|S PrD{x ∈ S} ≤ errD(S)
because errD(S) is affinely related to errD|S by lemma E.2. However, whether a multiplicative error
can be passed from one loss to another depends on whether 2errD|S PrD{x ∈ S} ≤ errD(S), which,
of course, is not always true. Nonetheless, it is easy to see either 2errD|S PrD{x ∈ S} ≤ errD(S)
or 2errD|Sc(S) PrD{x ∈ Sc} ≤ errD(S) based on lemma E.2: observe that Pr{y = 0} − Pr{x ∈
S∗}+Pr{y = 1}−Pr{x /∈ S∗} = 0, so either Pr{y = 0}−Pr{x ∈ S∗} or Pr{y = 1}−Pr{x /∈
S∗} must be nonnegative. We show that the multiplicative factor can be preserved through the
reduction for both of these cases.

Case I, Pr{y = 0}−Pr{x ∈ S∗} ≥ 0. Let pl, pu ≥ 0 be any constants such that pu−pl = ϵ as well
as p ∈ [pl, pu]. Consider now another subset S′ ∈ Hpl,puD such that S′ = argminS∈Hpl,pu

D
errD|S .

Notice that S∗ is a feasible solution for the conditional classification problem onHpl,puD , i.e. S∗ ∈
Hpl,puD , because Pr{x ∈ S∗} = p ∈ [pl, pu] by construction.

Let S1 be the subset returned by algorithm A1(ϵ, δ, pl, pu). Then, with probability at least 1 − δ,
there is

errD(S1) =2errD|S1
Pr{x ∈ S1}+ Pr{y = 0} − Pr{x ∈ S1}

(i)

≤2 (1 + α) errD|S′ Pr{x ∈ S1}+ Pr{y = 0} − Pr{x ∈ S1}
(ii)

≤2 (1 + α) errD|S∗ Pr{x ∈ S1}+ Pr{y = 0} − Pr{x ∈ S1}
(iii)

≤ 2 (1 + α) errD|S∗ (p+ ϵ) + Pr{y = 0} − (p− ϵ)
(iv)

≤ 2 (1 + α) errD|S∗ Pr{x ∈ S∗}+ (1 + α) (Pr{y = 0} − Pr{x ∈ S∗}) + 3 (1 + α) ϵ

=(1 + α) (errD(S
∗) + 3ϵ) (13)

where the first equation is derived by lemma E.2, inequality (i) holds due to the error guarantee
of algorithm A1(ϵ, δ, pl, pu), inequality (ii) holds because of the optimality of S′ as well as S∗ ∈
Hpl,puD , inequality (iii) holds since algorithm A1(ϵ, δ, pl, pu) guarantees S1 ∈ Hpl,puD , which implies
pl ≤ Pr{x ∈ S1} ≤ pu, and, by definition, there are pl ≥ p − ϵ, pu ≤ p + ϵ, inequality
(iv) holds because p = Pr{x ∈ S∗} by definition, errD|S∗ = Pr{y = 1 | x ∈ S∗} ≤ 1, and
Pr{y = 0} − Pr{x ∈ S∗} ≥ 0 by assumption, the last equation is, again, by referring lemma E.2.

Case II, Pr{y = 1} − Pr{x /∈ S∗} ≥ 0. Let pl, pu ≥ 0 be any constants such that pu − pl = ϵ as
well as 1− p ∈ [pl, pu]. Further, let D0 be the distribution on Rd × {0, 1} constructed by flipping
the labels of D. Notice that, for any S ∈ H, we have, by definition 9, that

errD0|S = Pr
(x,y)∼D0

{y = 1{x ∈ S} | x ∈ S}

= Pr
(x,y)∼D0

{y = 1 | x ∈ S}

(i)
= Pr

(x,y)∼D
{y = 0 | x ∈ S}

= Pr
(x,y)∼D

{y = 1{x ∈ Sc} | x ∈ S}

=errD|S(S
c) (14)
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where equation (i) is because D0 has reversed labelling from D so that every y = 1 in D0 is y = 0 in
D, and the last equation is by definition (9).

Consider now another subset S′ ∈ Hpl,puD0
such that S′ = argminS∈Hpl,pu

D0

errD0|S . Notice that S∗c

is a feasible solution for the conditional classification problem onHpl,puD , i.e. S∗ ∈ Hpl,puD , because
Pr{x ∈ S∗c} = Pr{x /∈ S∗} = 1− p ∈ [pl, pu] by construction. Observe now that, since D0 only
differ from D on the labelling, any subset S ∈ Hpl,puD must also be inHpl,puD0

, vice versa. Therefore,
we also have S′ ∈ Hpl,puD as well as S∗c ∈ Hpl,puD0

Let S1 be the subset returned by algorithm A1(ϵ, δ, pl, pu) given sample access to D0. Then, with
probability at least 1− δ, there is

errD(S
c
1) =2errD|S1

(Sc1) Pr{x ∈ S1}+ Pr{y = 1} − Pr{x ∈ S1}
(i)
=2errD0|S1

Pr{x ∈ S1}+ Pr{y = 1} − Pr{x ∈ S1}
(ii)

≤2 (1 + α) errD0|S′ Pr{x ∈ S1}+ Pr{y = 1} − Pr{x ∈ S1}
(iii)

≤ 2 (1 + α) errD0|S∗c Pr{x ∈ S1}+ Pr{y = 1} − Pr{x ∈ S1}
(iv)
= 2 (1 + α) errD|S∗c(S∗) Pr{x ∈ S1}+ Pr{y = 1} − Pr{x ∈ S1}
(v)

≤2 (1 + α) errD|S∗c(S∗) (1− p+ ϵ) + Pr{y = 1} − (1− p− ϵ)
(vi)

≤ 2 (1 + α) errD|S∗c(S∗) Pr{x /∈ S∗}+ (1 + α) (Pr{y = 1} − Pr{x /∈ S∗}) + 3 (1 + α) ϵ

=(1 + α) (errD(S
∗) + 3ϵ) (15)

where the first equation is derived by lemma E.2, inequality (i) holds through using equation (14)
reversely on errD|S1

(Sc1), inequality (ii) holds due to the error guarantee of algorithmA1(ϵ, δ, pl, pu),
inequality (iii) holds because of the optimality of S′ as well as S∗c ∈ Hpl,puD0

as we discussed
previously, inequality (iv) holds by applying equation 14 on errD0|S∗c , inequality (v) holds since
algorithm A1(ϵ, δ, pl, pu) guarantees S1 ∈ Hpl,puD0

, which implies pl ≤ Pr{x ∈ S1} ≤ pu, and, by
definition that 1−p ∈ [pl, pu], there are pl ≥ 1−p− ϵ, pu ≤ 1−p+ ϵ, inequality (vi) holds because
1− p = Pr{x ∈ S∗c} = Pr{x /∈ S∗} by definition, errD|S∗c(S∗) = Pr{y = 0 | x /∈ S∗} ≤ 1, and
Pr{y = 1} − Pr{x /∈ S∗} ≥ 0 by assumption, the last equation is, again, by referring lemma E.2.

Given inequalities (13) and (15), we can conclude that, when Pr{x ∈ S∗} is known, we
can always use A1 to find a subset S such that, with probability at least 1 − δ, errD(S) ≤
(1 + α) (errD(S

∗) + 3ϵ).

Then, the construction and analysis ofA2 is rather identical to those ofA2 in the proof of proposition
E.3. We will then refer the proof of proposition E.3 to completes the analysis.

F GAUSSIAN PROPERTIES AND CONCENTRATION TOOLS

In this section, we show some common properties of Gaussian distributions for completeness.

Definition F.1 (Sub-gaussian norm Vershynin (2018)). For any random variable x ∼ D on R, we
define ∥x∥ψ2

= inf
{
t > 0 | Ex∼D[e

x2/t2 ] ≤ 2
}

.

Fact F.2 (Gaussian ψ2-norm). Let z ∼ N (0, σ2), we have ∥z∥ψ2 =
√
8/3σ.

Fact F.3 (Gaussian Tail Bound). Let z ∼ N (0, σ2), we have Pr{z ≥ t} ≤ e−t2/2σ2

.

Lemma F.4 (Chernoff Bound). Let x1, . . . , xm be a sequence of m independent Bernoulli trials,
each with probability of success E[xi] = p, then with γ ∈ [0, 1], we have

Pr{

∣∣∣∣∣ 1m
m∑
i=1

xi − p

∣∣∣∣∣ > γ} ≤ 2e−2mγ2

.
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Lemma F.5 (General Hoeffding Bound (Vershynin, 2018)). Let x1, . . . , xm be a sequence of m
independent mean-zero sub-gaussian random variables. Then, for all t ≥ 0 and some absolute
constant c > 0, we have

Pr

{∣∣∣∣∣ 1m
m∑
i=1

xi

∣∣∣∣∣ ≥ t
}
≤ 2 exp

(
− cm2t2∑m

i=1∥xi∥2ψ2

)
.

Lemma F.6. Let D be any distribution on Rd × {0, 1} with x-marginal such that ∥⟨x,u⟩∥ψ2
≤ K

for some unit vector u ∈ Rd. For any event T ⊆ Rd, we have ∥y · ⟨x,u⟩1{x ∈ T}∥ψ2
≤ K.

Proof. Because y and 1{x ∈ T} are boolean valued, we have

E[exp
(
(y · ⟨x,u⟩1{x ∈ T})2/K2

)
] ≤E[exp(⟨x,u⟩2 /K2)]

(i)

≤ E[exp(⟨x,u⟩2 /∥⟨x,u⟩∥2ψ2
)]

≤2

where inequality (i) holds because E[exp(⟨x,u⟩2 /t2)] is a decreasing function of t2, and the last
inequality is by Definition F.1. By the same definition, the above inequality implies the claimed
result.

Lemma F.7 (Lemma 2.6.8 in Vershynin (2018)). If x ∼ D is a sub-gaussian random variable on R
such that ∥x∥ψ2 ≤ K, then there exists some absolute constant C such that ∥x− ED[x]∥ψ2 ≤ CK.

Corollary F.8. Let D be any distribution on Rd × {0, 1} with standard normal x-marginal and

D̂ i.i.d.∼ D be an m-sample. Define gw(x, y) = y ·xw⊥1{x ∈ h(w)}. Fix some v ∈ Rd, then, for any
w ∈ Rd, it holds that

Pr

{∣∣∣∣〈Ê
D
[gw(x, y)]− E

D
[gw(x, y)], v̄

〉∣∣∣∣ > t

}
≤ e−Cmt

2

where C > 0 is an absolute constant.

Proof. Let’s first notice that, since xw⊥ is a projection of x to a space of lower dimension, the
variance of ⟨v̄,xw⊥⟩ must be no larger than that of ⟨v̄,x⟩ and, hence, ∥⟨v̄,xw⊥⟩∥ψ2 ≤

√
8/3 by

Fact F.2. Then, combining Lemma F.6 and Lemma F.7 results to ∥⟨gw(x, y), v̄⟩∥ψ2 ≤ C ′
√
8/3 for

some C ′ > 0. At last, applying Lemma F.5 on ⟨gw(x, y), v̄⟩ gives the claimed tail bound.

Lemma F.9. Let x ∼ N (0, 1), then Pr{x ≥ t} ≥ 1√
2π(t+1)

e−t
2/2 for every t ≥ 0.

Proof. Define f : R→ R as

f(t) =
√
2πPr{x ≥ t} − 1

t+ 1
e−t

2/2

=

∫ +∞

t

e−x2/2dx− 1

t+ 1
e−t

2/2.

Observe that f(0) =
√
π/2− 1 > 0 and

∇tf(t) =− e−t
2/2 −

(
− 1

(t+ 1)2
e−t

2/2 − t

t+ 1
e−t

2/2

)
(16)

=− t

(t+ 1)2
e−t

2/2 (17)

≤0 (18)

for t ≥ 0. Furthermore, we have limt→+∞ f(t) = 0, which implies f(t) is always positive on
t ∈ [0,+∞) and, hence, the claimed result.

29


