
Published as a conference paper at ICLR 2024

APPENDIX

A PRE-TRAINING DATA DETAILS

We provide additional details regarding the pre-training data employed for pre-training SNIP. In
our approach, SNIP is pre-trained on a large synthetic dataset of paired numeric and symbolic data,
utilizing the data generation technique from (Kamienny et al., 2022). Each example consists of a
set of N points (x, y) ∈ RD+1 and an associated mathematical function f(·), such that y = f(x).
These examples are generated by first sampling a function f , followed by samplingN numeric input
points xi; i = 1, . . . , N ∈ RD from f , and then calculating the target value yi = f(xi).

A.1 SAMPLING OF FUNCTIONS

To generate random functions f , we employ the strategy outlined in (Kamienny et al., 2022;
Lample & Charton, 2020), building random trees with mathematical operators as nodes and vari-
ables/constants as leaves. This process includes:

Input Dimension Selection. We begin by selecting the input dimension D for the functions from a
uniform distribution U(1, Dmax). This step ensures variability in the number of input variables.

Binary Operator Quantity Selection. Next, we determine the quantity of binary operators b by
sampling from U(D − 1, D + bmax) and selecting b operators randomly from the set U(+,−,×).
This step introduces variability in the complexity of the generated functions.

Tree Construction. Using the chosen operators and input variables, we construct binary trees,
simulating the mathematical function’s structure. The construction process is performed following
the method proposed in (Kamienny et al., 2022; Lample & Charton, 2020).

Variable Assignment to Leaf Nodes. Each leaf node in the binary tree corresponds to a variable,
which is sampled from the set of available input variables (xd for d = 1, . . . , D).

Unary Operator Insertion. Additionally, we introduce unary operators by selecting their quantity
u from U(0, umax) and randomly inserting them from a predefined set (Ou) of unary operators
where Ou = [inv, abs,pow2,pow3, sqrt, sin, cos, tan, arctan, log, exp].

Affine Transformation. To further diversify the functions, we apply random affine transformations
to each variable (xd) and unary operator (u). These transformations involve scaling (a) and shifting
(b) by sampling values from Daff. In other words, we replace xd with axd + b and u with au + b,
where (a, b) are samples from Daff. This step enhances the variety of functions encountered during
pre-training and ensures the model encounters a unique function each time, aiding in mitigating the
risk of overfitting as well as memorization.

A.2 SAMPLING OF DATAPOINTS

Once have generated a sample function f , we proceed to generate N input points xi ∈ RD and
calculate their corresponding target value yi = f(xi). To maintain data quality and relevance, we
follow the guidelines from (Kamienny et al., 2022), which include: Discarding and Restarting: If
any input point xi falls outside the function’s defined domain or if the target value yi exceeds 10100,
we discard the sample function and restart the generation process. This ensures that the model learns
meaningful and well-behaved functions. Avoidance and Resampling: Avoidance and resampling of
out-of-distribution xi values provide additional insights into f as it allows the model to learn its
domain. This practice aids the model in handling input variations. Diverse Input Distributions:
To expose the model to a broad spectrum of input data distributions, we draw input points from a
mixture of distributions, such as uniform or Gaussian. These distributions are centered around k
randomly chosen centroids, introducing diversity and challenging the model’s adaptability.

The generation of input points involves the following steps:

Cluster and Weight Selection. We start by sampling the number of clusters k from a uniform dis-
tribution U(1, kmax). Additionally, we sample k weights {wj ∼ U(0, 1)}kj=1, which are normalized
to

∑
j wj = 1.

15

Published as a conference paper at ICLR 2024

Cluster Parameters. For each cluster, we sample a centroid µj ∼ N (0, 1)D, a vector of variances
σj ∼ U(0, 1)D, and a distribution shape Dj from {N ,U} (Gaussian or uniform). These parameters
define the characteristics of each cluster.

Input Point Generation. We sample [wjN] input points from the distribution Dj(µj , σj) for each
cluster j. This sampling with different weights from different distributions ensures the sampling of
a diverse set of input points with varying characteristics.

Normalization. Finally, all generated input points are concatenated and normalized by subtracting
the mean and dividing by the standard deviation along each dimension.

B PRE-TRAINING IMPLEMENTATION DETAILS

B.1 MODEL DESIGN DETAILS

Numeric Encoder. The numeric encoding mechanism of our SNIP closely follows the design
presented by (Kamienny et al., 2022), as highlighted in Sec. 3. Firstly, for each instance in a given
batch, the encoder receives N = 200 numeric input points, (x,y), from a space RD+1. Each of
these points is tokenized into a sequence of length 3(D + 1). An embedding module maps these
tokens into a dense representation with an embedding size of demb = 512. The sequences are then
processed in the embedder module by a 2-layer feedforward neural network. This network projects
input points to the desired dimension, demb. The output from the embedder is passed to a Transformer
encoder, a multi-layer architecture inspired by (Vaswani et al., 2017). Our specific implementation
has 8 layers, utilizes 16 attention heads, and retains an embedding dimension of 512. A defining
characteristic of our task is the permutation invariance across the N input points. To accommodate
this, we’ve adopted the technique from (Kamienny et al., 2022), omitting positional embeddings
within the numeric Transformer encoder. In our design, this specialized encoder variant is termed
EncV . The representation generated at the l-th layer of the encoder is represented as Vl. The
process can be summarized as Vl = EncVl (Vl−1). Here, the index l spans from 1 to LV , where
LV = 8 denotes our encoder’s total layers. Post encoding, for each instance in the batch, the numeric
encoder’s sequence outputs, VLV

∈ RN×demb , are compressed into a representation for the whole
sequence, ZV ∈ Rdemb . This representation captures the essence of the entire numeric sequence and
is achieved through an attention-pooling mechanism, detailed in Sec. 3.1.

Symbolic Encoder. Our SNIP’s symbolic encoding component draws inspiration from the model
used in (Lample & Charton, 2020), as highlighted in Sec. 3. This encoder is designed to process
mathematical symbolic expressions with a maximum length of 200. These expressions encapsulate
the true functional relationships underlying the numeric data fed to the numeric encoder. The ex-
pressions are tokenized using a prefix order tree traversal. We employ the vocabulary defined by
(Kamienny et al., 2022), crafted to comprehensively represent mathematical equations. It includes
symbolic entities like variables and operators, along with numeric constants. Constants are tokenized
into three parts, consistent with the tokenization method outlined in Sec. 3.1. Sequence boundaries
are indicated with special tokens [⟨BOS⟩] and [⟨EOS⟩]. Tokens are transformed into dense vectors of
dimension demb = 512 using an embedder module. This module essentially functions as an embed-
ding matrix for the employed vocabulary. To maintain uniform input lengths, sequences are padded
to a maximum length of M = 200 and then projected to the desired embedding dimension. This di-
mensionality is aligned with the numeric encoder’s. The embedded sequences are processed through
a Transformer encoder, characterized by its multi-layer architecture as described by (Vaswani et al.,
2017). Similarly, our specific configuration for this encoder consists of 8 layers, utilizes 16 attention
heads, and retains an embedding dimension of 512. Contrary to the numeric encoder, the sequence
order in symbolic expressions holds significance. Consequently, we are including positional embed-
dings into this Transformer encoder variant. We denote this encoder as EncS , and its layer-wise
representations are articulated as Sl = EncSl (Sl−1), iterating from layer 1 to the maximum layer
LS = 8. Similar to the numeric encoder’s approach, the symbolic encoder condenses its Trans-
former outputs SLS

∈ RM×demb for each expression into a compact representation, ZS ∈ Rdemb .
This aggregation leverages the attention-pooling technique detailed in Sec. 3.2.

B.2 TRAINING DETAILS

Following the extraction of coarse representations from both symbolic and numeric encoders, our
focus shifts to harmonizing the embeddings from these encoders. The aim is to closely align em-

16

Published as a conference paper at ICLR 2024

NCR

Upward/
Downward

Oscillations

Average of
Normalized 𝑦

Figure 7: Properties are qualitatively illustrated using five sample functions. Within each row, the plots are
arranged according to their respective property values. Colors represent distinct function phases corresponding
to the property (e.g., convexity vs. nonconvexity in the first row, upward vs. downward in the second row).
Additionally, in the third row, red points highlight instances of change in the y-coordinate.

beddings representing corresponding symbolic-numeric pairs, while ensuring a discernible distance
between unrelated pairs. As discussed in Sec. 3.3, this alignment process leverages a symmetric
cross-entropy loss calculated over similarity scores, with the specific approach being informed by a
contrastive loss mechanism. This ensures effective learning of the correspondence between numeric
and symbolic data pairs. Our optimization process is facilitated by the Adam optimizer, operating
on a batch size of B = 256 (symbolic, numeric) data pairs. The learning rate initiation is set at a
low 10−7, which is then gradually warmed up to 4× 10−5 over an initial span of 100K steps. Sub-
sequently, in line with the recommendations of (Vaswani et al., 2017), we apply an inverse square
root decay based on the step count to adjust the learning rate. Our model undergoes training for a
total of ≈ 220 epochs, with each epoch comprising 1, 000 steps. This translates to the processing
of 256 × 1K = 256K (symbolic, numeric) pair samples for each epoch. Given the on-the-fly data
generation mechanism, as highlighted in Sec. A, the cumulative volume of data encountered during
pre-training approximates a substantial 60M (symbolic, numeric) pair samples. For training, we
utilize 4 GPUs, each equipped with 48GB of memory. Given this configuration, the processing time
for a single epoch is approximately two hours.

C DETAILS OF USING SNIP FOR CROSS-MODAL PROPERTY PREDICTION

C.1 PROPERTIES DEFINITION

In this section, we define the numeric mathematical properties that we use to evaluate the pre-
trained SNIP model. The experiments include understanding and predicting numeric properties,
i.e., properties that describe the behavior of numeric dataset, from symbolic forms of functions.
The formal definitions of these properties are described in the following paragraphs and Fig. 7
qualitatively illustrates what each of the numeric properties represent.

Non-Convexity Ratio: Non-Convexity Ratio (NCR) is defined to quantify the relative convexity
(or non-convexity) of the functions as one of the properties depending on the numeric behavior of
the functions. Hence, directly predicting this property from the symbolic form of the function is a
complex task. To quantify the non-convexity ratio, we employ Jensen’s inequality as a fundamental
measure (Tamura & Gallagher, 2019). In our approach, we focus on the one-dimensional equations
with numeric dataset {x,y}. Considering a function f : D → R where D is a convex subset of R,
f is a convex function if ∀x1, x2 ∈ D and ∀λ ∈ [0, 1]:

f(λx1 + (1− λ)x2) ≤ λf(x1) + (1− λ)f(x2).

17

Published as a conference paper at ICLR 2024

We rely on the training datasets with non-regularly sampled points to calculate the approximate
NCR. To this end, we perform multiple trials to examine Jensen’s inequality criterion. For each
trial, we randomly select three data points {(xi, f(xi)), (xj , f(xj)), (xk, f(xk))} which are sorted
based on x in ascending order. The convexity criterion holds on these points if

f(xj) ≤
(xk − xj) · f(xi) + (xj − xi) · f(xk)

xk − xi
+ ϵ, (3)

where ϵ is a very small number (ϵ = 10−9) to avoid numerical precision errors. Therefore, for trial
t, we define the success as

ξt =

{
1 if (3) holds,
0 otherwise.

Finally, the non-convexity ratio (NCR) is computed over the total number of trials T as

NCR = 1− 1

T

T∑
t=1

ξt.

Therefore, if a function is always convex over the range of training data points, NCR=0, and if it is
always non-convex, it would have NCR=1. Functions that have both convex and non-convex sections
in the range of x will have NCR ∈ (0, 1).

Upwardness: The ‘Upward/Downwardness’ of a one-dimensional numeric dataset is defined to
gauge the proportion of points within the training range where the function exhibits increasing or
decreasing behavior. To compute this metric on the sorted dataset {xs,f(xs)}, we examine every
consecutive pair of points {xi, xi+1} to determine if they demonstrate an upward or downward
trend. We then define ui as follows:

ui =

1 if f(xi+1) > f(xi) + ϵ,

−1 if f(xi+1) < f(xi)− ϵ,

0 otherwise.

Finally, the upwardness metric UP is computed as the average upwardness UP =
∑N−1
i=1 ui, where

N is the number of points in the dataset. Therefore, if a function is monotonically increasing the
range of x in training points, the upwardness measure is 1, and if it is monotonically decreasing, the
metric will be −1. Functions that have both sections in the range of x will have UP ∈ (−1, 1).

Oscillation For this metric, we aim to quantify the degree of oscillatory behavior exhibited by the
numeric data. This is approximated by counting the instances where the direction of y changes.
Determining the direction of data points follows a similar process to that of the upwardness metric
for each consecutive pair. Thus, we tally the occurrences of direction changes while traversing the
sorted dataset. Due to the potential variation in the number of changes, we opt for a logarithmic
scale to color the plots.

Average of Normalized y The overall behavior of the numeric data points {x,y} are better rep-
resented when the values of y are scaled to a fixed range (here (0, 1)), giving {x,Y }. The average
of the normalized values, Ȳ can be a measure to distinguish different numeric behaviors, and it
can roughly approximate the numerical integral of the normalized function in the defined range of
training x.

C.2 ADDITIONAL QUANTITATIVE RESULTS OF CROSS-MODAL PROPERTY PREDICTION

Evaluation Metrics Overview. We continue to use NMSE as our primary regression metric, pro-
viding a standard comparison across different model variants for each cross-modal property pre-
diction task. We also report results for the Accuracy within Tolerance (Accτ) evaluation metric,
reflecting how closely the predicted values align with the true values, within a specified tolerance
level. To this end, we first normalize the true and predicted values for each property in the range of
(0, 1) based on the range of true values. Subsequently, we calculate the accuracy over Ntest = 1000

test examples as Accτ = 1
Ntest

∑Ntest

i=1 1 {|p̂i − pi| ≤ τ}, where pi and p̂i are the normalized true
and predicted values of the property for the i-th example, respectively. Here, we consider an absolute
tolerance τ = 0.1.

18

Published as a conference paper at ICLR 2024

Table 2: Full results of cross-modal property prediction on four properties showcase SNIP’s superiority over
the supervised baseline.

Model Non-Convexity Ratio Upwardness Normalized Average y Log Oscillations

↓ NMSE ↑ Acc0.1 ↓ NMSE ↑ Acc0.1 ↓ NMSE ↑ Acc0.1 ↓ NMSE ↑ Acc0.1
Base 1.0000 2.4% 1.0000 22.4% 1.0000 52.4% 1.0000 23.1%
Supervised 0.5299 56.5% 0.5356 56.3% 1.0406 49.3% 0.3079 75.2%
SNIP (frozen) 0.0731 86.1% 0.0540 84.7% 0.4532 64.5% 0.0683 92.6%
SNIP (finetuned) 0.0683 92.1% 0.0400 90.1% 0.4074 67.7% 0.0581 92.6%

Chance Level Baselines. For each metric, we establish a baseline or chance level to set a com-
parative standard to better show task difficulty. For NMSE, the chance level is at NMSE = 1, rep-
resenting a prediction that averages the property values without considering the input. The chance
level baseline for Acc0.1 is calculated based on the assumption that all predictions are equal to the
mean (average) property value, p̂i = p̄.

Detailed Results. To offer a more detailed and nuanced perspective on the performance of SNIP
for cross-modal property prediction, we delve into its performance across four fundamental proper-
ties: Non-Convexity Ratio (NCR), Upwardness, Average of y, and Oscillations. Table 2 showcases
a thorough comparison of the results from different model variants on these specified mathematical
properties. A key aspect of these experiments is the exclusive use of symbolic equations as input
for all models, aligning with the cross-modal essence of the tasks. The numeric properties are then
predicted for these symbolic inputs, demonstrating the models’ ability to bridge symbolic and nu-
meric domains. For consistency and fairness in our evaluation, all models were trained on uniform
datasets, each consisting of 10K equations, and then assessed using a separate set of 1K equations
for evaluation. These datasets were constructed following the methodology outlined in Sec. A. It’s
imperative to highlight that, in the context of cross-modal property prediction, SNIP operates with
the same quantity of labeled examples as the supervised baselines. However, a critical distinction
lies in SNIP’s pre-training phase, where it was not exposed to any labeled data. Instead, it engaged in
an unsupervised learning process, focusing on deciphering mutual symbolic-numeric similarities in
representations. The results presented in Table 2 demonstrate that SNIP, both in its original ’frozen’
state and when finetuned, consistently surpasses the performance of supervised models across all
evaluated properties. This superiority is evident in both metrics – NMSE and Acc0.1. The vari-
ation in chance levels across the different properties is particularly revealing, as it highlights the
unique challenges inherent to each property. This variance underscores the adaptability and robust-
ness of the SNIP model in navigating and excelling in the diverse landscape of cross-modal property
prediction tasks.

C.3 ADDITIONAL QUALITATIVE FINDINGS OF CROSS-MODAL PROPERTY PREDICTION

In addition to numerical results, we include visual representations of the model’s latent features for
each property. These visualizations offer a qualitative perspective on how our model captures and
represents the underlying characteristics of different properties. Fig. 8 shows a qualitative com-
parison of pre-finetuning and post-finetuning latent spaces of SNIP against that of supervised task
prediction models, using 2-dimensional t-SNE visualizations of the encoded representations. The
first two rows (NCR and Upwardness) are replicated from the main body (Fig. 2) for ease of com-
parison. In each task (row), the plots are colored by the values of the corresponding property. In
each task, a training dataset with 10K samples was used to train the model.

The observations from Fig. 8 show that the latent spaces of supervised models (without pre-trained
SNIP) are very weakly structured and barely exhibit a recognizable trend for the properties. On the
other hand, when the pre-trained SNIP is used, the latent spaces are shaped by the symbolic-numeric
similarities of the functions such that numeric properties can be clustered and/or show visible trends
in the symbolic encoded representation space ZS . Furthermore, fine-tuning the encoder, as shown
in Fig. 8(c), leads to more organized latent spaces with distinct linear property trends.

19

Published as a conference paper at ICLR 2024

Figure 8: 2D t-SNE plots of the symbolic encoded representations for the tasks of predicting numeric math-
ematical properties: Non-Convexity Ratio, Function Upwardness, Average of y, and Oscillations. The plots
compare the (a) supervised models without pre-training, (b) frozen pre-trained SNIP encoder, and (c) fine-tuned
SNIP encoders for each task.

D ADDITIONAL VISUALIZATIONS OF SNIP PRE-TRAINED LATENT SPACE

Numeric Encoded Representations. We show that akin to how symbolic encoded representations
are shaped by numeric behaviors, the numeric encoded vectors ZV are likewise influenced by the
symbolic attributes of the corresponding governing equations. To illustrate this, Fig. 9 showcases 2D
t-SNE visualizations depicting the learned latent space of SNIP’s numeric encoded vectors, color-
coded by function (a) complexity and (b) an arbitrarily defined categorization of the functions based
on their dominant operators. Further details regarding these two symbolic features are provided
below:

Function Complexity: Function complexity, as defined in Symbolic Regression (SR) tasks, pertains
to the length of the function expressed in prefix order notation,i.e., the number of nodes in the expres-
sion tree. Intuitively, functions with a greater number of operators and variables (resulting in longer
equations) are considered more complex, often exhibiting correspondingly complex behaviors.

20

Published as a conference paper at ICLR 2024

Figure 9: 2D t-SNE plots of the pretrained SNIP numeric encoded representations (ZV) colored by (a) Function
Complexity, and (b) Function Classes based on Operators.

Figure 10: 2D t-SNE plot of the pretrained SNIP symbolic encoded representations (ZS) colored by Non-
Convexity Ratio property. Adjacent to the corresponding locations of points in the latent space, the numeric
behaviors of selected sample equations are displayed, illustrating the interplay between their symbolic forms
and numeric properties. This visualization underscores how both the symbolic and numeric characteristics of
functions influence their representation in SNIP’s latent space.

Function Operator Classes: Mathematical functions can be broadly classified into different classes
based on the operators utilized in their expressions, which in turn influence the behavior of the
data they describe. It is important to note that a single function may incorporate multiple operators,
contributing to the overall complexity of the data’s behavior. Additionally, certain operators within a
function may hold more significance than others, exerting greater influence on the range and pattern
of the data. To categorize the functions, we employ the following guidelines:

First, we consider a prioritized set of unary operators: O = {arctan, tan, exp, sqrt, inv, cos, sin,
pow3,pow2}. If a function exclusively employs one of these operators, it is categorized accordingly.
For simplicity, we designate both pow2 and pow3 as Polynomial, and we employ sin for both
sin and cos. In the event that a function incorporates more than one operator, it is assigned to the
category corresponding to the operator of higher priority. It is worth noting that this categorization

21

Published as a conference paper at ICLR 2024

Figure 11: 2D t-SNE plots of the SNIP symbolic encoded representations on up to 10-dimensional datasets,
colored by (a) dimension of the functions, (b) Average of normalized y, and (c) classes of functions based on
their operators.

may not always perfectly capture the behavior of functions, as an operator with lower priority may
potentially exert a more dominant influence than another prioritized operator.

Annotated Latent Space. To have a closer look to the latent space representation, we also analyze
several functions with their position in the learned latent space t-SNE visualization. Fig. 10 shows
the same t-SNE plot of ZS (from the symbolic encoder) colored by NCR property and annotated by
the numeric behavior (scaled y) of some samples. We can observe that the latent space is shaped by
both symbolic input f(·) and numeric data, such that closer points have more similar symbolic and
numeric features.

10-Dimensional SNIP Latent Space Analysis. Fig. 11 shows the latent space representation of
the pre-trained SNIP with numeric datasets of up to 10 dimensions, which is used for the symbolic
regression task (so that we can evaluate on SRBecnh and compare with SOTA baselines). We ob-
serve that the model can cluster the functions with different dimensions, and within each cluster, it
is shaped by the symbolic-numeric similarity of the functions.

E DETAILS OF USING SNIP FOR SYMBOLIC REGRESSION

E.1 IMPLEMENTATION DETAILS

In this section, we provide the details of the model and training procedure for the symbolic regression
task. As illustrated in Fig. 4 of the main body, the training step includes learning a mapping module
and fine-tuning an expression generation decoder which is borrowed from (Kamienny et al., 2022).
We elaborate upon each of the modules and the details of training.

Expression Decoder. The pre-trained expression decoder from (Kamienny et al., 2022) is a
seq2seq transformer decoder (Vaswani et al., 2017) with 16 attention heads and the same embedding
dimensionality of 512. The decoder has 16 layers (deeper compared to the encoders) to enhance its
generation capacity.

Mapping Network. The learnable Mapping Network gγ translates SNIP’s numeric embeddings
ZV into a compatible input for the decoder DE2E

ϕ . Therefore, we can use the power of both pre-
trained encoder and decoder modules by learning a mapping between these two modules. In fact,
g : Rdemb → RL×demb reshapes SNIP embeddings into a sequence with maximum length L. To do so,
we use a simple Multi-Layer Perceptron (MLP) design with two linear layers. The first layer applies
a linear mapping from Rdemb to RLdemb , followed by a ReLU activation. This output is reshaped to
add the sequence dimension RL×demb , and then passed to the second layer, which applies a linear
mapping from Rdemb to Rdemb . Consequently, the final output retains the shape RL×demb .

Training Similar to the suggestions of (Mokady et al., 2021), we found that to effectively learn
the simple MLP mapping network, we can let the decoder network to be simultaneously fine-tuned.
In this way, the mapping training is less challenging since we have a control over both networks.
We train the whole model in two stages. In the first stage, we freeze the SNIP encoder’s parameters
and only update the mapping network and decoder’s parameters. This allows the model to learn the
mapping from the fixed encoded representations of numeric datasets to their corresponding symbolic
functions. Similar to the pre-training procedure, an Adam optimizer with learning rate warm-up
followed by a inverse square root decay based on number of steps is used to train the model with

22

Published as a conference paper at ICLR 2024

cross-entropy loss. In the second stage, to enhance the model’s generation capacity, we fine-tune
the SNIP’s encoder along with the other modules. This helps the model to distinguish between
the overlapped representations in the encoder, which were not originally trained for the expression
generation objective. It also maintains their relative positions obtained from the contrastive loss. In
both stages, we use batch size B = 128 for training.

E.2 SNIP LATENT SPACE OPTIMIZATION DETAILS

In this section, we provide the details of the Latent Space Optimization (LSO) on SNIP’s encoded
representations. This method combines three main advantages that make it suitable for the symbolic
regression task.

• By training an expression decoder on top of SNIP encoder, we learn a prior for function
generation given the numeric dataset, which is the main advantage of neural symbolic re-
gression models over traditional search methods.

• While neural SR models are trained using token-matching objectives, LSO utilizes a pow-
erful search with the objective of fitting accuracy. Therefore, it can also enjoy the main
advantage of the search methods over the pre-trained equation generation methods.

• The most important advantage of this method is that it exploits the well-organized la-
tent space of SNIP to perform the optimization in a continuous, low-dimensional, and
interpolatable latent space which provides it with a huge benefit over traditional GP func-
tions search techniques.

Algorithm 1 sketches the main steps of LSO. The red lines indicate when the modules of pre-trained
model are called, and blue lines indicate when other functions are called.

Algorithm 1: Latent Space Optimization (LSO) on SNIP Pre-trained Encodings
Input: Dataset {x,y}, sampling size b, stopping R2

stop, Maximum Iterations T
1. Population Generation
Generate the search population by following the steps below:

• Generating p1 < P points by randomly sampling subsets of the original dataset and
Encoding Zi

V for i ∈ {1, . . . , p1}.
• Generating p2 < P points by injecting Gaussian noise to the input data points and

Encoding Zi
V for i ∈ {1, . . . , p2}.

• Generating p3 < P points by first Encoding a fixed input dataset and then injecting
Gaussian noise to the encoded representation ZV to get Zi

V for i ∈ {1, . . . , p3}.
• Combining these points to have a population with size P = p1 + p2 + p3.

for T iterations do
2. Fitness Evaluation
for each population agent Zi

V , i ∈ {1, . . . , P} do
Compute the fitness value following steps below:
1. Decode the encoded representation with sampling size b to get {f̃ i

1, ..., f̃
i
b}.

2. Remove functions with duplicate skeletons.
3. Refine the constants of the remaining functions on the training set using BFGS.
4. Compute R2 score for each function; Store the highest score as the fitness value of
the agent at current iteration F i

t .
end
Set F∗

t = maxi(F i
t) as the best current score.

if F∗
t > R2

stop then
Return the best function f∗(·) to be evaluated on the testing dataset.

end
3. Optimization Step
Call the Gradient-Free Optimizer update rule with (ZV ,Ft) to get the updated population
ZV .

end
Report the best function f∗(·), and evaluate it on the testing dataset.

Some of the details of these steps are as follows:

Population Generation. To combine the use of prior knowledge with the search method, instead
of generating random agents in the latent space, we initialize the population by augmenting the
given dataset. In algorithm 1, p1, p2, and p3 are selected to be 15, 10, and 25, respectively, summing

23

Published as a conference paper at ICLR 2024

up to P = 50 to maintain a balance on the performance and the computation time. Each of the
augmentations provides a different perspective that we elaborate upon:

• In the first augmentation, P1, each augmented agent Zi
V is obtained by first uniformly

sampling a subset, with size n < N of the original dataset
(
xsubi ,ysubi

)
⊆ (x,y). Since

the maximum sequence length is 200, we set n = 200 if N > 400, and set n = ⌊N/2⌋ if
N < 400. Subsequently, we encode the sampled data to get Zi

V = EVθ
(
{
(
xsubi ,ysubi

)
}
)
.

• For the second augmentation, P2, each augmented agent ZiV is obtained by first perturbing
the target values with random Gaussian noise (x,y + ϵi), where ϵi ∼ N (0, σ2

i In), and
σi ∝ i to cover different ranges of perturbations for a more diverse search population.
Subsequently, we encode the perturbed data to get Zi

V = EVθ ({(x,y + ϵi)}).
• For the third augmentation, P3, each augmented agent ZiV is obtained by first encoding the

dataset to get ZV = EVθ ({(x,y)}), and then perturbing the encoded vectors using random
Gaussian noise. Zi

V = ZV +N (0, σ2
i Idemb), where σi varies randomly to achieve a more

diverse search population.

Fitness Evaluation. To evaluate the fitness of the population P at iteration t, we utilize the ex-
pression generation modules with sampling (Fan et al., 2018) to generate b = 2 candidates for each
agent Zi

V . Following this, candidates with duplicate skeletons are eliminated, and the remaining
candidate skeletons undergo a refinement process. In order to refine the constant values, a procedure
following (Kamienny et al., 2022) is employed. Specifically, the generated constants (model pre-
dictions) serve as initial points, and these constants are further optimized using the BFGS algorithm
(Fletcher, 1987). Subsequently, we calculate the R2 score on the training data points, which serves
as the fitness values for the population.

Optimization. Computing the fitness measure R2 from the generated equation f̃i is not a differ-
entiable process. Consequently, we resort to utilizing gradient-free optimization algorithms, which
operate without the need for gradient information to update the search population. In this context,
swarm intelligence algorithms have proven to be both computationally efficient and effective for
continuous spaces. Therefore, we opt for a recently developed swarm algorithm known as the Grey
Wolf Optimizer (GWO) (Mirjalili et al., 2014) for updating the population vectors. The GWO al-
gorithm employs a balanced exploration-exploitation strategy based on the current elite population
agents, i.e., those agents exhibiting the best fitness values. In this work, we select the maximum
iteration T = 80, and we use early stopping criterion R2

stop = 0.99. Also, at each iteration, we
establish lower and upper bounds for agent positions based on the minimum and maximum values
of ZV across both dimensions and all agents.

E.3 SRBENCH EVALUATION DATASET DETAILS

In our evaluation of SNIP, we resort to the widely-recognized SRBench, a benchmark known for
its challenging and diverse datasets in Symbolic Regression (La Cava et al., 2021). This benchmark
aggregates datasets from three primary groups: Feynman, Strogatz, and Black-box regression. A
visual representation of these datasets is presented in Fig. 12, illustrating the distribution across
groups in terms of dataset count, input dimensions, and the number of datapoints. More details on
each of these data groups are given below.

Feynman2: The Feynman dataset is a significant component of the broader landscape of symbolic re-
gression datasets, with its roots traced back to the renowned Feynman Lectures on Physics database
series (Udrescu & Tegmark, 2020). The dataset aggregates a collection of 119 distinct equations, as
visualized in Fig. 12(a). These equations encapsulate a wide range of physical phenomena, serving
as a testament to Feynman’s contributions to the realm of physics. The regression input points (x, y)
for these equations are meticulously indexed within the Penn Machine Learning Benchmark (PMLB)
(La Cava et al., 2021; Olson et al., 2017). The SRBench has further shed light on these equations,
adopting them as standards in the evaluation of symbolic regression methodologies. One of the
critical constraints of this dataset is the input dimensionality, which has been capped at D ≤ 10,
as depicted in Fig. 12(b). This limit ensures a consistent evaluation scale across multiple sym-
bolic regression challenges. Moreover, an advantage that researchers have with this dataset is the
availability of the true underlying functions, eliminating the ambiguity often present in black-box

2https://space.mit.edu/home/tegmark/aifeynman.html

24

https://space.mit.edu/home/tegmark/aifeynman.html

Published as a conference paper at ICLR 2024

Figure 12: Distribution of datasets across the SRBench Feynman, Strogatz, and Black-box groups: (a) Count of
datasets, (b) Spread of input dimensions, and (c) Number of datapoints per dataset.

datasets. Cumulatively, the dataset boasts an impressive count of 105 datapoints, as highlighted in
Fig. 12(c).

Strogatz3: The Strogatz dataset is a collection of symbolic regression challenges, drawing inspira-
tion from the realm of nonlinear dynamical systems. Its inclusion in the broader context of symbolic
regression evaluations offers a unique perspective, focusing on the intricacies of dynamical behav-
iors. At the heart of this dataset are 14 distinctive symbolic regression problems, extracted from the
esteemed ODE-Strogatz database (La Cava et al., 2016). Each of these problems has been crafted
to reflect the nuances of nonlinear dynamical systems, underscoring the rich tapestry of dynamical
phenomena. The regression input points (x, y) for these challenges are accessible from the Penn
Machine Learning Benchmark (PMLB) (Olson et al., 2017). The SRBench has also leveraged these
problems, incorporating them into an evaluation framework for symbolic regression (La Cava et al.,
2021). An inherent attribute of this dataset is the limitation on input dimensionality, fixed at D = 2
(as shown in Fig. 12(b)). This means that for each problem, there are two primary input variables.
This restriction facilitates a concentrated exploration of two-dimensional dynamical systems. The
true functions, which underlie and generate the data, are also available. Each problem in the Strogatz
collection features a dataset containing N = 400 data points.

Black-box4: The Black-box dataset group stands as a testament to the versatility and applicability
of symbolic regression to real-world complex datasets without known underlying functions, offering
challenges that are both diverse in nature and crucial for machine learning evaluations. Primarily
sourced from the comprehensive PMLB repository (Olson et al., 2017), the Black-box datasets have
garnered significant attention in the SRBench (La Cava et al., 2021), serving as key benchmarks
against various state-of-the-art ML regression methods. The primary objective of utilizing the Black-
box datasets for symbolic regression is not just about achieving fitting accuracy, but also deciphering
models that are interpretable yet better-fitting (compared to ML models), offering insight into the
underlying data processes. Ensuring compatibility with the latest methodologies, we constrain our
datasets to possess continuous features and an input dimension that doesn’t exceed 10: D ≤ 10. This
decision aligns with the training preconditions of the transformer-based SNIP numeric encoder and
E2E’s SR decoder (Kamienny et al., 2022), which are tailored for an upper limit of dmax = 10. As
a result, out of a broader set, 57 black-box datasets meet the constraint. Datasets of this group offer
a mosaic of challenges, stemming from both the real-world and synthetically generated scenarios.
An inherent characteristic of these datasets is the noise, varying in levels, which mimics real-world
data inconsistencies and imperfections, enhancing the robustness of evaluations. The Black-box
collection contains an impressive diversity in terms of number of data points per dataset, ranging
from as few as 47 to around 40K. To visually represent this, Fig. 12(c) demonstrates the distribution
of datasets across number of datapoints (N), with an observable average data point scale around 102

for this group.

3https://github.com/lacava/ode-strogatz
4https://github.com/EpistasisLab/pmlb/tree/master/datasets

25

https://github.com/lacava/ode-strogatz
https://github.com/EpistasisLab/pmlb/tree/master/datasets

Published as a conference paper at ICLR 2024

Figure 13: Performance comparison of SNIP and SRBench algorithms in terms of Accuracy-Complexity-Time
on Strogatz (top), Feynman (middle), and Black-box (bottom) datasets. For Feynman and Strogatz dataset,
algorithms are sorted based on mean accuracy defined as the ratio of solutions with R2 > 0.99 on test set under
various noise levels, and for Black-box datasets, the algorithms are sorted based on the median R2 score on test
set. SNIP demonstrates a strong balance of performance with relatively low model complexity and competitive
inference time compared to GP-based algorithms. The error bars represent the 95% confidence interval and ”∗”
refers to SR methods for Black-box dataset.

E.4 ADDITIONAL DETAILS FOR SRBENCH EVALUATION EXPERIMENTS

E.4.1 EXPERIMENT SETTINGS

Aligning with the SRBench evaluations and the methodology from (Kamienny et al., 2022), we
partition the observation points of each equation in the SRBench datasets (comprising Feynman,
Strogatz, and Black-box) into training and testing subsets with a 75%/25% split.

26

Published as a conference paper at ICLR 2024

E.4.2 RESULTS

Strogatz: In Fig. 13 (top), we compare the performance of SNIP with the SRBench algorithms
on the Strogatz dataset. As described in Sec. E.3, the Strogatz dataset includes 14 equations from
a two-state system governed by a first-order ODE. A key observation is that the end-to-end (E2E)
transformer SR model underperforms on this dataset compared to other GP-based models. This
underperformance can be attributed to the distinct time-ordered distribution of observations in the
Strogatz dataset, which deviates considerably from the E2E model’s pre-training data. Interest-
ingly, SNIP, despite not being trained on time-ordered data, significantly outperforms not only the
E2E transformer SR model but also many other leading SR baselines. In terms of accuracy, SNIP
ranks within the top three baselines, specifically when evaluating the proportion of solutions with
an R2 > 0.99 across varying target noise levels. Moreover, its inference time is competitive with
leading baselines such as GP-GOMEA and Operon. Crucially, SNIP shines in terms of model com-
plexity. It produces expressions that fit well but with lower complexity than top-ranked competitors
in Fig.13.

Figure 14: Pareto analysis on (a) Strogatz and (b) Feynman
datasets, contrasting methods based on fitting accuracy, pro-
portion of solutions with R2 > 0.99, and equation com-
plexity across different noise levels. In both datasets, SNIP
mostly stays in the desired upper-left corner, showcasing its
robustness in balancing fitting accuracy and complexity even
when noise is introduced.

This advantage in balancing accuracy and
complexity is also evident in Fig.6(a),
where SNIP is positioned on the first
Pareto-front, while competitors like GP-
GOMEA and Operon fall on the sec-
ond and third, respectively. This
suggests that SNIP offers a superior
Accuracy-Complexity trade-off for noise-
free data (γ = 0). Fig. 14(a) further under-
scores this point by illustrating the Pareto
performance of leading SR baselines on
the Strogatz dataset across various noise
levels. As expected, all methods experi-
ence a performance drop as target noise in-
creases. Yet, even amidst noise, SNIP con-
sistently maintains its advantageous posi-
tion in the upper-left corner, indicating its
ability to generate expressions that excel
both in accuracy and complexity.
Feynman: In Fig. 13 (middle), we
present a comparative analysis of SNIP
against the SRBench algorithms on the
Feynman dataset. As outlined in Sec. E.3,
the Feynman dataset encompasses 119
unique Feynman equations, representing
a broad spectrum of physical phenom-
ena. This figure delineates the positioning
of each algorithm in terms of Accuracy-
Complexity-Time. Notably, the E2E trans-
former model exhibits enhanced perfor-
mance on the Feynman dataset relative to
the Strogatz dataset, securing a fifth rank
in accuracy. SNIP, however, surpasses the
performance of not only the E2E trans-
former SR model but also many top GP
baselines. When focusing on accuracy,
SNIP clinches a spot among the top three baselines, especially when considering solutions boasting
anR2 > 0.99 across diverse target noise levels. SNIP often outperforms other competing baselines
like GP-GOMEA, SBP-GP, and Operon in terms of inference time. From a complexity perspective,
SNIP exhibits superior results against SBP-GP and Operon and demonstrates comparable perfor-
mance with the GP-GOMEA baseline. This optimal balance between accuracy and complexity was
also illustrated in Fig.6(c), showcasing ranking Pareto plots for both metrics. Here, SNIP commands
a position on the first Pareto-front, closely approximating the lower-left corner — an indicator of
its better ranking in both accuracy and complexity. Among competitors, GP-GOMEA is positioned

27

Published as a conference paper at ICLR 2024

on the secondary Pareto level, denoting an inferior Accuracy-Complexity balance relative to SNIP.
While Operon and SBP-GP are also placed on the first Pareto-dominance, their placement drifts
further to the upper-left corner than SNIP — suggesting the expressions they generate bear higher
complexity. This placement shows SNIP’s strong Accuracy-Complexity balance for data without
noise (γ = 0). To accentuate this advantage, Fig. 14(b) offers a deep dive into the Pareto Accuracy-
Complexity performances of leading SR baselines on the Feynman dataset across a spectrum of
target noise levels. Predictably, increased noise compromises the performance of all algorithms.
Still, SNIP consistently holds a favorable position, indicating it generates more accurate and less
complex expressions even with increased noise.
Black-box: The study by SRBench (La Cava et al., 2021) delved into black-box problems, which
were initially derived from OpenML5 and later incorporated into the PMLB datasets (Olson et al.,
2017). The intent behind assessing SR models on this dataset revolves around understanding how
SR methods measure up against conventional well-known machine learning techniques, especially
when faced with real-world, potentially noisy or sparse datasets. As delineated in Sec. E.3, the
Black-box dataset used here comprises 57 regression datasets. In Fig. 13(bottom), we compare
SNIP to the SRBench algorithms using this dataset. The figure shows how each algorithm performs
in terms of accuracy, complexity, and inference time. The “*” before some names means they’re SR
methods; others are machine learning methods. From the figure, it’s clear that SNIP does better than
both the E2E transformer SR model and many other top SR methods. For accuracy on Black-box
datasets, measured by the median R2 score in SRBench, SNIP is ranked fourth among all methods.
Its inference time on the Black-box dataset is similar to most other competing methods. Diving into
complexity, SNIP outperforms many of its top-tier peers. Specifically, SNIP provides an average
complexity score of 47.52 on the Black-box datasets, which decisively outperforms its counterparts
like Operon (64.95), SBP-GP (639.19), FEAT (74.18), EPLEX (55.82), and E2E (82.78). Fur-
ther analysis of this balanced accuracy and complexity is also provided in Fig.6(b), which presents
Pareto plots capturing both dimensions for the Black-box datasets. Consistent with earlier observa-
tions, SNIP holds its position on the first Pareto-front for this dataset. On the other hand, several
competitors, including SBP-GP, FEAT, and EPLEX, are located on the secondary Pareto level, with
E2E placing even further on the third. Such placements underscore their relative shortcomings in
balancing accuracy with complexity, especially compared to SNIP. While GP-GOMEA shares the
first Pareto-front with SNIP, its fitting accuracy is notably subpar, ranking 9th in Fig. 13–falling
behind conventional ML methods like XGBoost and LGBM. So, out of all methods, Operon is the
closest competitor to SNIP. Operon fits the data a bit better with a score of 0.933 compared to
SNIP ’s 0.872, but it offers more complex expressions with a score of 64.95 against SNIP ’s simpler
47.52.

E.5 ADDITIONAL RESULTS ON THE IN-DOMAIN SYNTHETIC DATASETS.

Detailed Results. We evaluate SNIP against the E2E transformer baseline on an in-domain syn-
thetic validation set. This set consists of 400 equation examples following the data generation
protocol from Sec. A. Functions uniformly vary across difficulty factors: input dimension d ∼
U(1, dmax), number of unary operators u ∼ U(0, umax), binary operators b ∈ U(d− 1, d+ bmax)
where dmax = 10, bmax = 4, umax = 4. We generated sequences of equation examples for each
function by providing 200 input points (x, y), and assessed prediction accuracy on another set of 200
test points. The fitting accuracy, denoted as Acc(R2 > 0.99) , is the proportion of solutions where
the R2 score exceeds 0.99. Additionally, the complexity is quantified as the number of nodes within
the expression tree of the generated equations. Figure 15 presents a detailed comparison between
SNIP and the E2E transformer baseline regarding fitting accuracy and the complexity of the derived
equations on the in-domain dataset. The results demonstrate how the models’ performance is af-
fected by increasing formula complexity, as characterized by a higher number of operators and input
dimensionality. Results show that as problem difficulty grows via more operators, SNIP maintains
higher accuracy with a lower corresponding complexity increase compared to the E2E baseline.

Ablation over Impact of Latent Space Optimization. To further demonstrate the impact of SNIP
Latent Space Optimization (LSO), we conducted additional experiments using optimizers from the
Nevergrad library (Rapin & Teytaud, 2018). The results on 400 held-out synthetic validation func-
tions are shown in Table 3. We evaluate four configurations: (1) SNIP without LSO, (2) SNIP

5https://www.openml.org/

28

https://www.openml.org/

Published as a conference paper at ICLR 2024

Figure 15: Detailed performance comparison of SNIP and the E2E Transformer baseline on 400 synthetic
validation functions. Performance is measured by Mean Accuracy (top) and Mean Expression Complexity
(bottom) across different levels of formula and input difficulties: (a) number of binary operators, (b) number of
unary operators, (c) input dimension, and (d) number of input centroids. Mean accuracy reflects the percentage
of solutions with R2 > 0.99. Mean expression complexity quantifies the average prefix length of generated
expressions.

with LSO using our employed Grey Wolf Optimizer (GWO), (3) SNIP with LSO using Nevergrad’s
NGOpt optimizer, and (4) SNIP with LSO using Nevergrad’s TwoPointsDE optimizer. Table 3
shows the results of experiments, highlighting the mean R2 score greater than 0.99 and the mean
complexity of the discovered equations. These metrics provide insight into the performance of the
SNIP model with LSO using different optimization strategies. The results conclusively demonstrate
the substantial gains provided by adding LSO to harness SNIP’s latent space for symbolic regres-
sion. With LSO, the mean accuracy improves from 0.683 to over 0.80 regardless of the gradient-free
optimization algorithm. The minor differences between optimizers can be attributed to variances in
implementation and parameter tuning. Therefore, these additional experiments and analysis help
demonstrate the significant benefits unlocked by performing LSO over SNIP’s semantic and contin-
uous latent representations. The substantial gains in accuracy underscore the importance of LSO as
an integral component of our overall approach in using SNIP for SR.

Table 3: Performance comparison of SNIP with different LSO configurations.

Model Configuration R2 > 0.99 Complexity

SNIP w/o LSO 0.683 28.43
SNIP (LSO w/ GWO) 0.820 29.95
SNIP (LSO w/ NGOpt) 0.805 30.21
SNIP (LSO w/ TwoPointsDE) 0.805 29.91

29

	Pre-training Data Details
	Sampling of functions
	Sampling of datapoints

	Pre-training Implementation Details
	Model Design Details
	Training Details

	Details of Using SNIP for Cross-Modal Property Prediction
	Properties Definition
	Additional Quantitative Results of Cross-modal Property Prediction
	Additional Qualitative Findings of Cross-modal Property Prediction

	Additional Visualizations of SNIP Pre-trained Latent Space
	Details of Using SNIP for Symbolic Regression
	Implementation Details
	SNIP Latent Space Optimization Details
	SRBench Evaluation Dataset Details
	Additional Details for SRBench Evaluation Experiments
	Experiment Settings
	Results

	Additional Results on the In-domain Synthetic Datasets.

