
Global Filter Networks for Image Classification
Supplementary Material

A Discrete Fourier transform

In this section, we will elaborate on the derivation and the properties of the discrete Fourier transform.

A.1 From Fourier transform to discrete Fourier transform

Discrete Fourier transform (DFT) can be derived in many ways. Here we will introduce the formula-
tion of DFT from the standard Fourier transform (FT), which is originally designed for continuous
signals. The FT converts a continuous signal from the time domain to the frequency domain and can
be viewed as an extension of the Fourier series. Specifically, the Fourier transform of the signal x(t)
is given by

X(jω) =

∫ ∞
−∞

x(t)e−jωtdt := F [x(t)]. (A.1)

The inverse Fourier transform (IFT) has a similar form to the Fourier transform:

x(t) =
1

2π

∫ ∞
−∞

X(jω)ejωtdω. (A.2)

From the formulas of the FT and the IFT we can have a glimpse of the duality property of the FT
between the time domain and the frequency domain. The duality indicates that the properties in the
time domain always have their counterparts in the frequency domain. There are a variety of properties
of Fourier transform. To name a few basic ones, the FT of a unit impulse function (a.k.a. Dirac delta
function) is

F [δ(t)] =
∫ ∞
−∞

δ(t)e−jωtdt =

∫ 0+

0−
δ(t)dt = 1, (A.3)

and the time shifting property:

F [δ(t− t0)] =
∫ ∞
−∞

x(t− t0)e−jωtdt = e−jωt0
∫ ∞
−∞

x(t)e−jωtdt = e−jωt0X(jω). (A.4)

However, we rarely deal with continuous signal in the real application. A general practice is to
perform sampling to the continuous signal to obtain a sequence of discrete signal. The sampling can
be achieved using a sequence of unit impulse functions,

xs(t) = x(t)

∞∑
n=−∞

δ(t− nTs) =
∞∑

n=−∞
x(nTs)δ(t− nTs), (A.5)

where Ts is the sampling interval. Taking the FT of the sampled signal xs(t) and applying Equa-
tion (A.3) and Equation (A.4), we have

Xs(jω) =

∞∑
n=−∞

x(nTs)e
−jωnTs . (A.6)

In the above equation, it is direct to show that Xs(jω) is a periodic function with the fundamental
period as 2π/Ts. Actually, there is always a correspondence between the discrete signal in one

35th Conference on Neural Information Processing Systems (NeurIPS 2021).

domain and the periodic signal in the other domain. Usually, we prefer a normalized frequency
ω ← ωTs such that the period of Xs(jω) is exact 2π. We can further denote x[n] = x(nTs) as the
sequence of discrete signal and derive the discrete-time Fourier transform (DTFT):

X(ejω) =

∞∑
n=−∞

x[n]e−jωn. (A.7)

If the discrete signal x[n] has finite length N (which is common in digital signal processing), the
DTFT becomes

X(ejω) =

N−1∑
n=0

x[n]e−jωn, (A.8)

where we assume the non-zero terms lie in [0, N−1] without loss of generality. Note that the DTFT is
a continuous function of ω and we can obtain a sequence of X[k] by sampling X(ejω) at frequencies
ωk = 2πk/N :

X[k] = X(ejω)|ω=2πk/N =
N−1∑
n=0

x[n]e−j(2π/N)kn, (A.9)

which is exactly the formulation of DFT. The extension from 1D DFT to 2D DFT is straightforward.
In fact, The 2D DFT can be viewed as performing 1D DFT on the two dimensions alternatively, i.e.,
the 2D DFT of x[m,n] is given by:

X[u, v] =

M−1∑
m=0

N−1∑
n=0

x[m,n]e−j2π(
um
M + vn

N). (A.10)

A.2 Some properties of DFT

DFT of real signals. Given a real signal x[n], the DFT of it is conjugate symmetric, which can be
proved as follows:

X[N − k] =
N−1∑
n=0

x[n]e−j(2π/N)(N−k)n =

N−1∑
n=0

x[n]ej(2π/N)kn = X∗[k]. (A.11)

For 2D signals, we have a similar result:

X[M − u,N − v] =
M−1∑
m=0

N−1∑
n=0

x[m,n]e−j2π(
(M−u)m

M +
(N−v)n

N)

=

M−1∑
m=0

N−1∑
n=0

x[m,n]ej2π(
um
M + vn

N) = X∗[u, v].

(A.12)

In our GFNet, we leverage this property to reduce the number of learnable parameters and redundant
computation.

The convolution theorem. One of the most important property of Fourier transform is the convo-
lution theorem. Specifically, for the DFT, the convolutional theorem states that the multiplication
in the frequency domain is equivalent to the circular convolution in the time domain. The circular
convolution of a signal x[n] and a filter h[n] can be defined as

y[n] =

N−1∑
m=0

h[m]x[((n−m))N], (A.13)

2

where we use ((n))N to denote n modulo N . Consider the DFT of y[n], we have

Y [k] =

N−1∑
n=0

N−1∑
m=0

h[m]x[((n−m))N]e−j(2π/N)kn

=

N−1∑
m=0

h[m]e−j(2π/N)km
N−1∑
n=0

x[((n−m))N]e−j(2π/N)k(n−m)

= H[k]

(
N−1∑
n=m

x[n−m]e−j(2π/N)k(n−m) +

m−1∑
n=0

x[n−m+N]e−j(2π/N)k(n−m)

)

= H[k]

(
N−m−1∑
n=0

x[n]e−j(2π/N)kn +

N−1∑
n=N−m

x[n]e−j(2π/N)kn

)

= H[k]

N−1∑
n=0

x[n]e−j(2π/N)kn = H[k]X[k],

(A.14)

where the right hand is exactly the multiplication of the signal and the filter in the frequency domain.
The convolution theorem in 2D scenario can be derived similarly. Therefore, our global filter layer is
equivalent to a depth-wise circular convolution, where the filter has the same size as the feature map.

B Implementation Details

The detailed architectures. To better compare with previous methods, we use the identical over-
all architecture to DeiT Samll [12] and ResMLP-12 [11] for GFNet-XS, where only the self-
attention/MLP sub-layers, the final classifier and the residual connection are modified (using a
single residual connection in each block will lead to 0.2% top-1 accuracy improvement on Ima-
geNet for GFNet-XS). We set the number of layers and embedding dimension to {12, 19, 19} and
{256, 384, 512} for GFNet-{Ti, S, B}, respectively. The architectures of our hierarchical models are
shown in Table 1. We use the similar strategy as ResNet [2] to increase network depth where we fix
the number of blocks for the stage 1,2,4 to 3 and adjust the number of blocks in stage 3. For small
and base hierarchical models, we adopt the LayerScale normalization [13] for more stable training.
The high efficiency of our GFNet makes it possible to directly process a large feature map in the early
stages (e.g., H/4×W/4) without introducing any handcraft structures like Swin [7].

Details about ImageNet experiments. We train our models for 300 epochs using the AdamW
optimizer [8]. We set the initial learning rate as batch size

1024 × 0.001 and decay the learning rate to 1e−5

using the cosine schedule. We use a linear warm-up learning rate in the first 5 epochs and apply
gradient clipping to stabilize the training process. We set the stochastic depth coefficient [3] to 0, 0,
0.15 and 0.25 for GFNet-Ti, GFNet-XS, GFNet-S and GFNet-B. For hierarchical models, we use the
stochastic depth coefficient of 0.1, 0.2, and 0.4 for GFNet-H-Ti, GFNet-H-S, and GFNet-H-B. During
finetuning at the higher resolution, we use the hyper-parameters suggested by the implementation
of [12] and train the model for 30 epochs with a learning rate of 5e−6 and set the weight decay to
1e−6. We set the stochastic depth coefficient to 0.1 for GFNet-S and GFNet-B during finetuning.

Details about transfer learning experiments. We evaluate generality of learned representation of
GFNet on a set of commonly used transfer learning benchmark datasets including CIFAR-10 [6],
CIFAR-100 [6], Stanford Cars [5] and Flowers-102 [9]. We follow the setting of previous works [10,
1, 12, 11], where the model is initialized by the ImageNet pre-trained weights and finetuned on the
new datasets. During finetuning, we use the AdamW optimizer and set the weight decay to 1e−4. We
use batch size 512 and a smaller initial learning rate of 0.0001 with cosine decay. Linear learning rate
warm-up in the first 5 epochs and gradient clipping with a max norm of 1 are also applied to stabilize
the training. We keep most of the regularization methods unchanged except for removing stochastic
depth following [12]. For relatively larger datasets including CIFAR-10 and CIFAR-100, we train
the model for 200 epochs. For other datasets, the model is trained for 1000 epoch. Our models are
trained and evaluated on commonly used splits following [10]. The detailed splits are provided in
Table 2.

3

Table 1: The detailed architectures of hierarchical GFNet variants. We adopt hierarchical archi-
tectures where the we use patch embedding layer to perform downsampling. “↓n” indicates the stride
of the downsampling is n. “GFBlock(D)” represents one building block of GFNet with embedding
dimension D. We set the MLP expansion ratio to 4 for all the feedforward networks.

Output Size GFNet-H-Ti GFNet-H-S GFNet-H-B

Stage1 H

4
× W

4

Patch Embedding↓4 Patch Embedding↓4 Patch Embedding↓4

GFBlock(64) × 3 GFBlock(96) × 3 GFBlock(96) × 3

Stage2 H

8
× W

8

Patch Embedding↓2 Patch Embedding↓2 Patch Embedding↓2

GFBlock(128) × 3 GFBlock(192) × 3 GFBlock(192) × 3

Stage3 H

16
× W

16

Patch Embedding↓2 Patch Embedding↓2 Patch Embedding↓2

GFBlock(256) × 10 GFBlock(384) × 10 GFBlock(384) × 27

Stage4 H

32
× W

32

Patch Embedding↓2 Patch Embedding↓2 Patch Embedding↓2

GFBlock(512) × 3 GFBlock(768) × 3 GFBlock(768) × 3

Classifier Global Average Pooling, Linear

1 2 3 4 5 6 7 8 9 10 11 12
Layer

2

4

6

8

10

Po
we

r (
dB

)

u, v [- /3, /3]
u, v [-2 /3, - /3] [/3, 2 /3]
u, v [- , -2 /3] [2 /3,]

Figure 1: The average power on different fre-
quency ranges of each layer. We can observe
that the global filters of different layers focus on
different frequencies.

128 160 192 224 256 288 320 352 384 416 448
Resolution

68

70

72

74

76

78

80

Im
ag

eN
et

 T
op

-1
 A

cc
 (%

)

GFNet-S
DeiT-S

Figure 2: ImageNet accuracy of GFNet and
DeiT [12] when directly evaluated on different
resolutions without fine-tuning. The GFNet can
better adapt to various resolutions.

C More Results & Analysis

Semantic segmentation. To show the potential of our models on dense prediction tasks, we evaluate
our GFNet on ADE20K [15], a challenging semantic segmentation dataset that is commonly used to
test vision transformers. We use the Semantic FPN framework [4] and follow the experiment settings
in PVT [14]. We train our model for 80K steps with a batch size of 16 on the training set and report
the mIoU on the validation set following common practice. We compare the performance and the
computational costs of the GFNet series and other commonly used baselines in Table 3. To produce
hierarchical feature maps, we adopt the GFNet-H series in the semantic segmentation experiments.
We observe that our GFNet works well on the dense prediction task and can achieve very competitive
performance in different levels of complexity.

Power distribution. We plot the power of the global filters on different frequency ranges of each
layer in Figure 1, where we can have a clearer picture of how the global filters of different layers
capture the information of different frequencies.

4

Table 2: Transfer learning datasets. We provide the training set size, test set size and the number
of categories as references.

Dataset Train Size Test size #Categories

CIFAR-10 [6] 50,000 10,000 10
CIFAR-100 [6] 50,000 10,000 100

Stanford Cars [5] 8,144 8,041 196
Flowers-102 [9] 2,040 6,149 102

Table 3: Semantic segmentation results on ADE20K. We report the mIoU on the validation set.
All models are equipped with Semantic FPN [4] and trained for 80K iterations following [14]. The
FLOPs are tested with 1024× 1024 input. We compare the models that have similar computational
costs and divide the models into three groups: 1) tiny models using ResNet-18, PVT-Ti and GFNet-
H-Ti; 2) small models using ResNet-50, PVT-S, Swin-Ti and GFNet-H-S and 3) base models using
ResNet-101, PVT-M, Swin-S and GFNet-H-B.

Backbone Tiny Small Base
FLOPs Params mIoU FLOPs Params mIoU FLOPs Params mIoU

ResNet [2] 127 15.5 32.9 183 28.5 36.7 260 47.5 38.8
PVT [14] 123 17.0 35.7 161 28.2 39.8 219 48.0 41.6
Swin [7] - - - 182 31.9 41.5 274 53.2 45.2

GFNet-H 126 26.6 41.0 179 47.5 42.5 261 74.7 44.8

Directly adapting to other resolutions. As is discussed in Section ??, one of the advantages of
GFNet is the ability to deal with arbitrary resolutions. To verify this, we directly evaluate GFNet-S
trained with 224× 224 images on different resolutions (from 128 to 448). We plot the accuracy of
GFNet-S and DeiT-S in Figure 2 and find our GFNet can adapt to different resolutions with less
performance drop than DeiT-S.

Filter visualization for hierarchical models. We also provide the visualization of the frequency-
domain global filters for the hierarchical model GFNet-H-B in Figure 3.

References
[1] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai,

Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly,
Jakob Uszkoreit, and Neil Houlsby. An image is worth 16x16 words: Transformers for image
recognition at scale. arXiv preprint arXiv:2010.11929, 2020. 3

[2] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In CVPR, pages 770–778, 2016. 3, 5

[3] Gao Huang, Yu Sun, Zhuang Liu, Daniel Sedra, and Kilian Q Weinberger. Deep networks with
stochastic depth. In ECCV, pages 646–661, 2016. 3

[4] Alexander Kirillov, Ross Girshick, Kaiming He, and Piotr Dollár. Panoptic feature pyramid
networks. In CVPR, pages 6399–6408, 2019. 4, 5

[5] Jonathan Krause, Michael Stark, Jia Deng, and Li Fei-Fei. 3d object representations for
fine-grained categorization. In ICCVW, pages 554–561, 2013. 3, 5

[6] Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images.
2009. 3, 5

[7] Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, and Baining
Guo. Swin transformer: Hierarchical vision transformer using shifted windows. arXiv preprint
arXiv:2103.14030, 2021. 3, 5

5

stage 1 (56×56)

stage 2 (28×28)

stage 3 (14×14)

stage 4 (7×7)

Figure 3: Visualization of the learned global filters in GFNet-H-B. We visualize the frequency
domain global filters from different stages with different sizes.

6

[8] Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. arXiv preprint
arXiv:1711.05101, 2017. 3

[9] Maria-Elena Nilsback and Andrew Zisserman. Automated flower classification over a large
number of classes. In ICVGIP, pages 722–729, 2008. 3, 5

[10] Mingxing Tan and Quoc Le. Efficientnet: Rethinking model scaling for convolutional neural
networks. In ICML, pages 6105–6114. PMLR, 2019. 3

[11] Hugo Touvron, Piotr Bojanowski, Mathilde Caron, Matthieu Cord, Alaaeldin El-Nouby,
Edouard Grave, Armand Joulin, Gabriel Synnaeve, Jakob Verbeek, and Hervé Jégou. Resmlp:
Feedforward networks for image classification with data-efficient training. arXiv preprint
arXiv:2105.03404, 2021. 3

[12] Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco Massa, Alexandre Sablayrolles, and
Hervé Jégou. Training data-efficient image transformers & distillation through attention. arXiv
preprint arXiv:2012.12877, 2020. 3, 4

[13] Hugo Touvron, Matthieu Cord, Alexandre Sablayrolles, Gabriel Synnaeve, and Hervé Jégou.
Going deeper with image transformers. arXiv preprint arXiv:2103.17239, 2021. 3

[14] Wenhai Wang, Enze Xie, Xiang Li, Deng-Ping Fan, Kaitao Song, Ding Liang, Tong Lu, Ping
Luo, and Ling Shao. Pyramid vision transformer: A versatile backbone for dense prediction
without convolutions, 2021. 4, 5

[15] Bolei Zhou, Hang Zhao, Xavier Puig, Sanja Fidler, Adela Barriuso, and Antonio Torralba.
Scene parsing through ade20k dataset. In CVPR, pages 633–641, 2017. 4

7

	Discrete Fourier transform
	From Fourier transform to discrete Fourier transform
	Some properties of DFT

	Implementation Details
	More Results & Analysis

