
Appendices

A Batch Thompson Sampling for Multi-armed Bandit

In this section, we follow the notations used in Agrawal and Goyal [2012, 2017] and adapt them to
the batch setting.

A.1 Notations and Definitions

Definition A.1. For a Binomial distribution with parameters α and β, we refer to its CDF as FBn,p(.),
and pdf as fBn,p(.). We furthermore denote by F betaα,β (.) the CDF of Beta distribution. It is easy to
show that for all α, β > 0,

F betaα,β (y) = 1− FBα+β−1,y(α− 1) .

Definition A.2 (History/filtration Ft). For time steps t = 1, · · · , T , we define Ft as the history of
the arms that have been played upto time t, i.e.,

Ft = {a(τ), ra(t)(τ), τ ≤ t} .
Definition A.3. For a given arm a, we denote by τj the time step in which a has been queried for
the j-th time. We let τ0 = 0. Note that τT ≥ T .
Definition A.4. We denote by θa(t) the sample for arm a at time t from the posterior distribution at
time B(t), namely Beta(Sa(B(t)) + 1, ka(B(t))− Sa(B(t)) + 1).
Definition A.5. Without loss of generality, we assume that a = 1 is the optimal arm. For a non-
optimal arm a 6= 1, we have two thresholds xa, ya depending on the type of upper bounds we are
proving (i.e., problem dependent or independent) such that µa < xa < ya < µ1.

Definition A.6. We denote by ∆′a := µ1 − ya and Da := ya ln ya
µ1

+ (1− ya) ln 1−ya
1−µ1

. Also define
d(µa, µ1) := µ log µa

µ1
+ (1− µa) log 1−µa

1−µ1
.

Definition A.7. For a non-optimal arm a (i.e., a 6= 1), we use Eµa (t) for the event {µ̂a(B(t)) ≤ xa}
and we use Eθa(t) for the event {θa(t) ≤ ya}.
Definition A.8. The (conditional) probability that for a non-optimal arm a, the generated sample
for the optimal arm a = 1 at time t exceeds the threshold ya is defined as

pa,t := Pr(θ1(t) > ya|FB(t)) .

Here is our first lemma regarding the relationship between batch bandit and sequential bandit.
Lemma A.9. For any arm a, we have ka(B(t)) ≥ 1

2ka(t).

Proof. The reason is that if ka(B(t)) < 1
2ka(t) then B-TS (Algorithm 1) should have queried a

batch after time B(t) which is a contradiction.

A.2 Problem-dependent Regret Bound with Beta Priors

Theorem 4.1. The total number of batches carried out by B-TS is at most O(N log T ).

Proof. Every time we query a batch, there is one arm a, for which ka = 2`a . In order to count the
total number of batches, we assign each time step t to a batch B. Note that the assigned batch for t
is not necessarily the batch that a(t) will be added to. Suppose ka = 2`a , and the algorithm queries
a batch B, we assign time steps in which arm a was queried for the 2`a−1 + 1, · · · , 2`a -th times to
the batch B (although some of the elements might have been queried in the previous batches). Let’s
denote this set by Ta(B). Then for each arm a, the total number of batches corresponding to arm a
is at most O(log T ) (since the last time step arm a is being played is at most T ). Therefore, we can
upper bound the total number of batches by O(N log T ) batches.

First, note that in the batch algorithm B-TS (Algorithm 1), we define θa(t) based on FB(t). As a
result of these modifications the following lemma is immediate. It is a batch variation of [Agrawal
and Goyal, 2017, Lemma 2.8].
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Lemma A.10. For all t,all suboptimal arm a 6= 1, and all instantiation FB(t) we have

Pr(a(t) = a,Eµa (t), Eθa(t)|FB(t)) ≤
1− pa,t
pa,t

Pr(a(t) = 1, Eµa (t), Eθa(t)|FB(t)) .

Proof. Eµa (t) is determined byFB(t). Therefore it is enough to show that for any instantiationFB(t)

Pr(a(t) = a|Eθa(t),FB(t)) ≤
1− pa,t
pa,t

Pr(a(t) = 1|Eθa(t),FB(t)) .

Now given Eθa(t), we have a(t) = a only if θj(t) ≤ ya,∀j. Therefore, for a 6= 1 and any instantia-
tion FB(t) we have

Pr(a(t) = a|Eθa(t),FB(t)) ≤ Pr(θj(t) ≤ ya,∀j|Eθa(t),FB(t))

= Pr(θ1(t) ≤ ya|FB(t)).Pr(θj(t) ≤ ya,∀j 6= 1|Eθa(t),FB(t))

= (1− pa,t).Pr(θj(t) ≤ ya,∀j 6= 1|Eθa(t),FB(t)) .

In the first equality given FB(t), the random variable θ1(t) is independent of all other θj(t) and
Eθa(t). The argument for a = 1 is similar.

Now we prove the main lemma which provides a problem-dependent upper bound on the regret.
Theorem 4.3. Without loss of generality, let us assume that the first arm has the highest mean value,
i.e., µ∗ = µ1. Then, the expected regret of B-TS, outlined in Algorithm 1, with Beta priors can be
bounded as follows

R(T ) = (1 + ε)O

(
N∑
a=2

lnT

d(µa, µ1)
∆a

)
+O

(
N

ε2

)
,

where d(µa, µ1) := µa log µa
µ1

+ (1− µa) log (1−µa)
1−µ1

and ∆a = µ1 − µa.

Proof. The proof closely follows [Agrawal and Goyal, 2017, Theorem 1.1] and is adapted to the
batch setting. For a non optimal arm a 6= 1, we decompose the expected number of plays of arm a
as follows

E [ka(t)] =

T∑
t=1

Pr(a(t) = a)

=

T∑
t=1

Pr(a(t) = a,Eµa (t), Eθa(t)) +

T∑
t=1

Pr(a(t) = a,Eµa (t), Eθa(t)) +

T∑
t=1

Pr(a(t) = a,Eµa (t)) .

(6)

The first term can be bounded by lemma A.10 as follows:

T∑
t=1

Pr(a(t) = a,Eµa (t), Eθa(t)) ≤
T∑
t=1

E
[
Pr(a(t) = a,Eµa (t), Eθa(t)|FB(t))

]
≤

T∑
t=1

E
[

(1− pa,t)
pa,t

Pr(a(t) = 1, Eθa(t), Eµa (t))|FB(t)

]

=

T∑
t=1

E
[
E
[

1− pa,t
pa,t

I(a(t) = 1, Eθa(t), Eµa (t))|FB(t)

]]

≤
T∑
t=1

E
[

1− pa,t
pa,t

I(a(t) = 1, Eθa(t), Eµa (t))

]
.
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Note that as before, given FB(t), the probability pa,t is fixed which implies the second inequality.
The difference between this argument and that of the proof closely follows [Agrawal and Goyal,
2017, Theorem 1.1] is that conditioning is until the last time the B-TS algorithm has queried a
batch, i.e., B(t). Note that pa,t = Pr({θ1(t) > ya|FB(t)}) changes only after a batch queries the
optimal arm. Hence as before pa,t remains the same at all time steps t ∈ {τk + 1, · · · , τk+1} (refer
to Definition A.3). Thus we can get the following decomposition

T∑
t=1

E
[

1− pa,t
pa,t

I(a(t) = 1, Eθa(t), Eµa (t))

]
≤
T−1∑
k=0

E

[
(1− pa,τk+1)

pa,τk+1

τk+1∑
t=τk+1

I(a(t) = 1, Eθa(t), Eµa (t))

]

≤
T−1∑
k=0

E
[

1− pa,τk+1

pa,τk+1

]
. (7)

Now for the term E
[

1
pa,τk+1

]
, since ka(B(t)) ≥ 1/2ka(t) (Lemma A.9), we can get a modification

of the bound provided in Agrawal and Goyal [2017, Lemma 2.9], as follows.

Lemma A.11. Let τk be the time step that optimal arm 1 has been played for the k-th time, Then
for non optimal arm a 6= 1 we have,

E
[

1

pa,τk+1
− 1

]
=

{
3

∆′a
, for k < 16

∆′a
,

Θ
(

exp(−∆
′2
a k/4) + exp(−Dak/2)

(k/2+1)∆′2a
+ 1

exp(∆′2a k/16)−1

)
, otherwise.

Similar to Agrawal and Goyal [2017, Lemma 2.10], we obtain the following lemma.

Lemma A.12. For a non optimal arm a 6= 1, we have
T∑
t=1

Pr(a(t) = a,Eµa (t), Eθa(t)) ≤ 48

∆′2a
+

∑
j>16/∆′a

Θ

(
e−∆′2a j/4 +

2

(j + 1)∆′2a

)
e−Daj/2+

1

e∆′2a j/8 − 1
.

Now by substituting the above lemma into equation 7, we can upper bound other terms in equa-
tion (6) to prove the following lemma.

Lemma A.13. For a non optimal arm a 6= 1, we have
T∑
t=1

Pr(a(t) = a,Eµa (t)) ≤ 2

d(xa, µa)
+ 1 .

Proof. Let τk be the k-th play of arm a. The LHS can be upper bounded by
∑T−1
k=0 Pr(Eµa (τk+1)).

Note that µ̂a will be updated when the algorithm queries a batch. Using Chernoff-Hoeffding bound

Pr(µ̂a(B(τk+1)) > xa) ≤ e− 1
2kd(xa,µa),

where xa is defined in Definition A.5. Note that at time B(τk+1), arm a has been played at least
k/2 times. Thus,
T∑
t=1

Pr(Eµa (τk+1)) =

T−1∑
k=0

Pr(µ̂a(B(τk+1)) > xa) ≤ 1+

T−1∑
k=1

exp(−1

2
kd(xa, µa)) ≤ 1+

2

d(xa, µa)
.

The statement of the following lemma is similar to [Agrawal and Goyal, 2017, Lemma 2.12]. How-
ever, we prove it for the batch policy.

Lemma A.14. For a non optimal arm a 6= 1, we have
T∑
t=1

Pr(a(t) = a,Eθa(t), Eµa (t)) ≤ La(t) + 1,

where La(t) = lnT
d(xa,ya) .
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Proof. We can consider two cases when ka(B(t)) is large (greater than La(t)) or small (less than
La(t)). This way, we have

T∑
t=1

Pr(a(t) = a,Eθa(t), Eµa (t)) =

T∑
t=1

Pr(a(t) = a, ka(B(t)) ≤ La(t), Eθa(t), Eµa (t))

+

T∑
t=1

Pr(a(t) = a, ka(B(t)) > La(t), Eθa(t), Eµa (t)). (8)

Same as before the first term is bounded by E
[∑T

t=1 I(a(t) = a, ka(B(t)) ≤ La(t))
]

which is
bounded by La(t). Again we bound the second term by 1. The main idea is to show that for
large enough ka(B(t)), and given Eµa (t) is true, the probability of Eθa(t) being false is small. We
can write
T∑
t=1

Pr(a(t) = a, ka(B(t)) > La(t), Eθa(t), Eµa (t)) = E

[
T∑
t=1

I(ka(t) > La(t), Eµa (t)) Pr(a(t) = a,Eθa(t)|FB(t))

]

≤ E

[
T∑
t=1

I(ka(t) > La(t), ˆµa(B(t)) ≤ xa) Pr(θa(t) > ya|FB(t))

]
.

Note that FB(t) determines both ka(B(t)) and Eµa (t). Now, θa(t) is distributed according to

θa(t) ∼ Beta(µ̂a(B(t))ka(B(t) + 1, (1− µ̂a(B(t))ka(B(t)))).

Given Eµa (t), it is stochastically dominated by Beta(xaka(B(t)) + 1, (1 − xa)ka(B(t))). Now, if
FB(t) contains the events Eµa (t) and {ka(B(t)) > La(t)}, we have

Pr(θa(t) > ya|FB(t)) ≤ 1− F betaxaka(B(t))+1,(1−xa)ka(B(t))(ya) .

Using the Chernouf-Hoefding inequality, we can show that the RHS of the above inequality is at
most

1− F betaxaka(B(t))+1,(1−xa)ka(B(t))(ya) = FBka(B(t))+1,ya
(xa(ka(t) + 1))

≤ exp(−(ka(B(t)) + 1)d(xa, ya))

≤ exp(−(La(t))d(xa, ya))

≤ 1/T .

Summing over t yields the upper bound 1 for the second term in 8.

The rest of the proof is by combining the above lemmas and by setting the right value for xa and
ya as discussed in Agrawal and Goyal [2017]. In particular, by combining Lemma A.12, A.13,
and A.14 we have

E [ka(t)] ≤ 48

∆′2a
+

∑
j>16/∆′a

Θ(e−∆′2a j/4+
2

(j + 1)∆′2a
)e−(Da)j/2+

1

e∆′2a j/8 − 1
)+La(t)+1+

1

d(xa, µa)
+1 .

Now we should set the right value to parameters xa, ya. For 0 ≤ ε < 1, set xa ∈ (µa, µ1) such that
d(xa, µ1) = d(µa, µ1)/(1 + ε) and set ya ∈ (xa, µ1) such that d(xa, ya) = d(xa, µ1)/(1 + ε) =
d(µa, µ1)/(1 + ε)2. For these values, the regret bound easily follows. We will use different values
for problem independent case in the next section.

A.3 Problem-independent Regret Bound with Beta Priors

Now we prove the problem independent regret bound.
Theorem 4.6. Batch Thompson Sampling, outlined in Algorithm 1 and instantiated with Beta priors,
achievesR(T ) = O(

√
NT lnT ) with O(N log T ) batch queries.
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Proof. The proof follows [Agrawal and Goyal, 2017, Theorem 1.2] and adapted to the batch setting.
For each sub-optimal arm a 6= 1, in the analysis of the algorithm we use two thresholds xa and ya
such that µa < xa < ya < µ1. These parameters respectively control the events that the estimate
µ̂a and sample θa are not too far away from the mean of arm a, namely, µa. To remind the notation
in Definition A.7, Eµa (t) represents the event {µ̂a(B(t)) ≤ xa} and Eθa(t) represents the event
{θa(t) ≤ ya}. The probability of playing each arm will be upper bounded based on whether or not
the above events are satisfied.

Furthermore, the threshold ya is also used in the definition of pa,t (see Definition A.8) and
Lemma A.10 to bound the probability of playing any suboptimal arm a 6= 1 at the current step
t by a linear function of pa,t. Additionally, in Lemma A.13 we show an upper bound for the proba-
bility of selecting arm a in terms of xa and ya, i.e., La(T ) := O(lnT/d(xa, ya)).

For the problem-independent setting, we need to set xa = µa + ∆a/3 and ya = µ1 − ∆a/3.
This choice implies ∆

′2
a = (µ1 − ya)2 = ∆2

a/9. Then we can lower bound d(xa, µa) ≥ 2∆2
a/9.

Thus La(T ) = O( lnT
∆2
a

). Now by substituting ∆a and d(xa, µ − a) in Theorem 4.3 for a 6= 1, we

get E[ka(T )] ≤ O( lnT
∆2
a

). Now for arms with ∆a >
√

N lnT
T , we can upper bound the regret by

∆aE[ka(T )] = O(
√

T lnT
N ), and for arms with ∆a ≤

√
N lnT
T , we can upper bound the expected

regret by
√
NT lnT . All in all, it results in the total regret of O(

√
NT lnT ).

A.4 Problem-independent Regret Bound with Gaussian Priors

Theorem 4.7. Batch Thompson Sampling, outlined in Algorithm 1 and instantiated with Gaussian
priors, achieves E[R(T )] = O(

√
NT lnN) with O(N log T ) batch queries.

The proof is similar to the proof of Theorem 4.6 and follows essentially [Agrawal and Goyal, 2017,
Theorem 1.3]. with Beta priors. We set xa = µa + ∆a/3 and ya = µ1 −∆a/3. The lemmas in the
previous section for Beta priors hold here with slight modifications. The main lemma that changes
for the Gaussian distributions is Lemma A.14.
Lemma A.15. Let τj be the j-th time step in which the optimal arm 1 has been queried. Then

E
[

1

pa,τj+1
− 1

]
≤

{
e11 + 5, ∀j,

4
T∆2

a
, j > 8La(t),

where La(t) =
18 ln(T∆2

a)
∆2
a

.

Proof. Note that pa,t is the probability Pr(θa(t) > ya|FB(t)). If the prior comes from the Gaussian
distribution then θa(t) has distributionN (µ̂a(t), 1

ka(B(t))+1 ). Given the definition of τ and pa,t, the
proof follows from Agrawal and Goyal [2017, Lemma 2.13].

By using Lemma A.15 and substituting it in eq. (7), we can easily obtain the following lemma.
Lemma A.16. For any arm a ∈ [n] we have

T∑
t=1

Pr(a(t) = a,Eµa (t), Eθa(t)) ≤ (e64 + 4)(8La(t)) +
8

∆2
a

.

Lemma A.17. For any arm a ∈ [n], we have
T∑
t=1

Pr(a(t) = a,Eµa (t)) ≤ 1

d(xa, ya)
+ 1 ≤ 9

2∆2
a

+ 1.

Similar to Lemma A.14, we can prove the following lemma.
Lemma A.18. For any arm a ∈ [n], we have

T∑
t=1

Pr(a(t) = a,Eθa(t), Eµa (t)) ≤ La(t) +
1

∆2
a

.
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where La(t) =
36 ln(T∆2

a)
∆2
a

.

Proof. The proof follows from [Agrawal and Goyal, 2017, Lemma 2.16] and is adapted to the batch
setting. The decomposition is as in Lemma A.14. As before, the first term in the decomposition can
be upper bounded by La(t). Instead of bounding the second term with 1, we should bound it with
1/∆2

a. First, note that
T∑
t=1

Pr
(
a(t) = a, ka(B(t)) > La(t), Eθa(t), E

µ
a (t))

)
≤ E

[
T∑
t=1

Pr(θa(t) > ya|ka(B(t)) > La(t), µ̂a(B(t)) ≤ xa),FB(t)

]
.

We also know that θa(t) is distributed as N (µ̂a(t), 1
ka(B(t))+1 ). So given {µ̂a(t) ≤ xa}, we have

that θa(t) is stochastically dominated by N (xa,
1

ka(B(t))+1 ). Therefore,

Pr(θa(B(t)) > ya|ka(B(t)) > La(t), µ̂a(B(t)) ≤ xa,FB(t)) ≤ Pr

(
N
(
xa,

1

ka(B(t)) + 1

)
> ya|FB(t), ka(B(t)) > La(t)

)
.

By using concentration bounds, we have

Pr

(
N
(
xa,

1

ka(B(t)) + 1

)
> ya

)
≤ 1

2
e−

La(t)(ya−xa)2

4 ≤ 1

T∆2
a

.

Thus,

Pr(θa(t) > ya|ka(B(t)) > La(t), µ̂a(t) ≤ xa,FB(t)) ≤ 1/T∆2
a . (9)

Summing over t will follow the result.

Using lemmas A.18, A.16, A.17 we can upperbound

E [ka(t)] ≤ (e64 + 4)
2× 72 ln(T∆2

a)

∆2
a

+
2× 4

∆2
a

+
18 ln(T∆2

a)

∆2
a

+
1

∆2
a

+
9

∆2
a

+ 1.

Thus, we can upper bound the expected regret due to arm a. Similar to the previous proofs we can
upper bound

∆aE[ki(T )] ≤ O
(

1

∆a
+

ln(T∆2
a)

∆a

)
+ ∆a.

Then, if ∆a > e
√

N lnN
T we can upper bound the regret byO(

√
N lnT
N +1). If ∆a ≤ e

√
N lnN
T we

can upper bound the regret with O(
√
NT lnT ). Consequently, we can upper bound the total regret

by O(
√
NT lnT ) assuming T ≥ N .

B Batch Minimax Optimal Thompson Sampling

In order to increase clarity, we first introduce the main notations used in the proofs. We follow
closely the notations used in Jin et al. [2020] and adapt them to the batch setting.

B.1 Notations and Definitions

Without loss of generality, we assume the optimal arm is arm a = 1 with µ1 = maxa∈[N ] µa.
Definition B.1. Define µ̂as to be the average reward of arm a when it has been played s times.
Definition B.2. We denote by Fs the history of plays of Algorithm 3 (B-MOTS) up to the s-th pull
of arm 1.
Definition B.3. Let h(j) be the largest power of 2 that is less than or equal to j.
Definition B.4. Define

B = {s = 2i|i = 0, · · · , log T} .

We slightly modify Jin et al. [2020, eq.(16)] as follows.
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Definition B.5. Define

∆ = µ1 −min
s∈B

{
µ̂1s +

√
α

s
log+

(
T

sN

)}
. (10)

Definition B.6. Similar to the definitions of Da(t) and θa(t), we define Das as the distribution of
arm a when it is played for the s-th time. Also, we define θas as a sample from distribution Das.

Lemma B.7. Let X1, X2, · · · be independent 1-subgaussian random variables with zero mean.
Let’s define µ̂t = 1/t

∑t
s=1Xs. Then for α ≥ 4 and any ∆ > 0

Pr

(
∃s ∈ B : µ̂s +

√
α

s
log+(T/sN) + ∆ ≤ 0

)
≤ 15N

T∆2
.

The above lemma follows immediately from Lattimore and Szepesvári [2020, Lemma 9.3] as we
consider B ⊆ [T ]. We can strengthen Lemma B.7 for Gaussian variables, as described by Jin et al.
[2020, Lemma 1] as follows.

Lemma B.8. Let Xa’s be independent Guassian r.v. with zero mean and variance 1. Denote β̂t =
1/t
∑t
s=1Xs. Then for α > 2 and any ∆ > 0,

Pr

(
∃s ∈ B : β̂s +

√
α

s
log+(T/sN) + ∆ ≤ 0

)
≤ 4N

T∆2
.

Now similar to eq.(19) in Jin et al. [2020], define τas as follows.

Definition B.9. Define

τas = µ̂as +

√
α

s
log+(

T

sN
) . (11)

Definition B.10. We define Fas as the CDF of distribution for arm a when ka(t − 1) = s. Also
Gas(ε) is defined as 1− Fas(µ1 − ε).

Definition B.11. Let us define F ′as to be the CDF of N (µ̂as, 1/(ρs)). Moreover, let us define
G′as(ε) = 1− F ′as(µ1 − ε). Let θ̃as denote a sample from N (µ̂as, 1/(ρs)).

Definition B.12. Define the event Ea(t) = {θa(t) ≤ µ1 − ε}.

The following two lemata deal with concentration inequalities that we need for subGaussian random
variables.

Lemma B.13 (Jin et al. [2020], Lemma 2). Letw > 0 be a constant andX1, X2, · · · be independent
and 1-subGaussian r.v. with zero mean. Denote by µ̂n = 1

n

∑n
s=1Xs. Then for α > 0 and any

N ≤ T ,

T∑
n=1

Pr

(
µ̂n +

√
α

n
log+(N/n) ≥ w

)
≤ 1 +

α log+(Nw2)

w2
+

3

w2
+

√
2α log+(Nw2)

w2
.

The following lemma is a variant of Jin et al. [2020, Lemma4].

Lemma B.14. Let ρ ∈ (1/2, 1) be a constant and ε > 0. Assuming the reward of each arm is
1-sbuGaussian with mean µa. For any fixed ρ ∈ (1/2, 1) and α > 4, there exists a constant c > 0
s.t.

E

[
T−1∑
s=1

(
1

G′1h(s)(ε)
− 1

)]
≤ c

ε2
. (12)

Proof. The proof closely follows the steps of Jin et al. [2020, Lemma4]. However, for completeness,
and for a few differences, we provide the full proof. The main difference is that in Lemma B.14 we
have the terms G′1h(s) instead of G′1s. We will prove the following two parts:
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• First, there exists a constant c′ such that

E

[
1

G′1h(s)(ε)
− 1

]
≤ c′, ∀s,

and

• Second, for L =
[
64/ε2

]
, we have

E

[
T∑
s=L

(
1

G′1h(s)(ε)
− 1)

]
≤ 4

e2
(1 +

16

ε2
) .

Denote by Θs = N (µ̂1h(s), 1/(ρh(s))). Also, let Ys be the number of trials until a sample from Θs

becomes greater than µ1 − ε. By the definition of G′ah(s) we have

E

[
1

G′1h(s)(ε)
− 1

]
= E [Ys] .

Similar to [Jin et al., 2020, Eq. (59)] one can show that

Pr(Ys < r) ≥ 1− r−2 − r−
ρ′
ρ .

Define z =
√

2ρ′ log r, for r ≥ 1, where ρ′ ∈ (ρ, 1). Also let Mr be the maximum of r independent
samples from Θs. Thus

Pr(Ys < r) ≥Pr(Mr > µ1 − ε)

≥E

[
E

[
I(Mr > µ̂1h(s) +

z√
ρh(s)

, µ̂1h(s) +
z√
ρh(s)

≥ µ1 − ε)

]
|Fh(s)

]

=E

[
I(µ̂1h(s) +

z√
ρh(s)

≥ µ1 − ε)× Pr

(
Mr > µ̂1h(s) +

z√
ρh(s)

|Fh(s)

)]
.

For a random variable Z ∼ N (µ, σ2) we have the following tail bound

Pr(Z > µ+ xσ) ≥ 1√
2π

x

x2 + 1
e−

x2

2 .

Thus, for r > e2,

Pr

(
Mr > µ̂1h(s) +

z√
ρh(s)

|Fh(s)

)
≥ 1− exp

(
− r1−ρ′

√
8π log r

)
.

Similar to Jin et al. [2020], we can show that if r ≥ exp(10/(1− ρ′)2) we have

Pr

(
Mr > µ̂1h(s) +

z√
ρh(s)

|Fh(s)

)
≥ 1− 1

r2
.

Also, for ε > 0, we have

Pr

(
µ̂1h(s) +

z√
ρh(s)

≥ µ1 − ε

)
≥ 1− r−ρ

′/ρ .

Therefore, for r ≥ exp(10/(1− ρ′)2), we obtain

Pr(Ys < r) ≥ 1− r−2 − r−ρ
′/ρ .

For any ρ′ > ρ we get

E [Ys] =

∞∑
r=0

Pr(Ys ≥ r) ≤ 2 exp

(
10

(1− ρ′)2

)
+

1

(1− ρ)− (1− ρ′)
.
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By setting 1− ρ′ = (10ρ)/2,

E

[
1

G′1h(s)(ε)
− 1

]
≤ 2

(
40

(1− ρ)2

)
+

2

1− ρ
.

Now because ρ is fixed, there exists a universal constant c′ > 0 s.t.

E

[
1

G′1h(s)(ε)
− 1

]
≤ c′ .

Proof of the second part is similar.

In the above proof, we had to be careful about the conditional expectations as the history in the batch
mode, namely, Fh(s), is different from the sequential setting Fs. Apart from that, as we stated, the
proof is identical to Jin et al. [2020, Lemma4].

B.2 Clipped Gaussian Distribution

Theorem 5.1. If the reward of each arm is 1-subgussian then the regret of B-MOTS is bounded by
R(T ) = O(

√
NT +

∑
a:∆a>0 ∆a). Moreover, the number of batches is bounded by O(N log T ).

Proof. We closely follow the proof of of the fully sequential algorithm, provided in Jin et al. [2020,
Theorem 1], and adapt it to the batch setting. Let us define

S := {a : ∆a > max{2∆, 8
√
N/T}} .

Then, as Jin et al. [2020, eq. (17)] argued, we have

R(T ) ≤
∑

a:∆a>0

∆aE [ka(t)]

≤ E [2T∆] + 8
√
NT + E

[∑
a∈S

∆aka(t)

]
. (13)

where as in Jin et al. [2020, eq. (18)] (which immediately follows from Lemma B.8) we have
E [2T∆] ≤ 4/

√
15NT . By Definition B.9, we have τas = τa(t) when ka(t) = s. Thus, for a ∈ S,

we get

τ1s ≥ µ1 −∆ ≥ µ1 −
∆a

2
.

Therefore, for θ̃is as defined in the definition B.11, we have

Pr(θ̃1s ≥ µ1 −∆a/2) = Pr(θ1s ≥ µ1 −∆a/2).

Hence for a ∈ S, we have
G1s(∆a/2) = G′1s(∆a/2).

For Algorithm 3, we need to revise Theorem 36.2 in Lattimore and Szepesvári [2020] as follows.
Note that we start from t = N + 1 and s = 1 since the algorithm plays each arm once in the
beginning.

Lemma B.15. For ε > 0, the expected number of times Algorithm 3 plays arm a is bounded by

E [ka(t)] ≤E

[
T∑
t=1

I{a(t) = a,Ea(t)}

]
+ E

[
T∑
t=1

I{a(t) = a,Ea(t)}

]

≤1 + E

[
T−1∑
t=0

(
1

G1k1(p1(t))
− 1

)
I{a(t) = 1}

]
+ E

[
T−1∑
t=N+1

I{a(t) = a,Ea(t)}

]
(14)

≤2 + E

[
T−1∑
s=0

(
1

G1h(s)(ε)
− 1

)]
+ E

[
T−1∑
s=0

I{Gah(s)(ε) > 1/T}

]
. (15)
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Proof. We follow the steps in Lattimore and Szepesvári [2020] and make appropriate modifications
for our batch mode algorithm. As defined in Definition B.12, Ea(t) = {θa(t) ≤ µ1 − ε}. Thus,

Pr(θ1(t) ≥ µ1 − ε|FB(t)) = G1k1(B(t)) .

Now we consider the following decomposition based on Ea(t) as follows,

E [ka(t)] = E

[
T∑
t=1

I{a(t) = a,Ea(t)}

]
+ E

[
T∑
t=1

I{a(t) = a,Ea(t)}

]
. (16)

An upper bound for the first terms is as follows. Let a′(t) = argmaxa 6=1 θa(t). Then,

Pr(a(t) = 1, Ea(t)|FB(t)) ≥ Pr(a′(t) = a,Ea(t), θ1(t) ≥ µ1 − ε|FB(t))

= Pr(θ1(t) ≥ µ1 − ε|FB(t)) Pr(a′(t) = a,Ea(t)|FB(t))

≥
G1k1(B(t))

1−G1k1(B(t))
Pr(a(t) = a,Ea(t)|FB(t)) .

In the first equality, we use the fact that θ1(t) is conditionally independent of a′(t) and Ea(t), given
FB(t). For the second inequality we use

Pr(a(t) = a,Ea(t)|FB(t)) ≤ (1− Pr(θ1(t) > µ1 − ε|FB(t))) Pr(a′(t) = a,Ea(t)|FB(t)) .

Therefore,

Pr(a(t) = a,Ea(t)|FB(t)) ≤
(

1

G1k1(B(t))
− 1

)
Pr(a(t) = 1|FB(t)) .

By substituting this into (16), we obtain

E

[
T∑
t=1

I{a(t) = a,Ea(t)}

]
≤E

[
T∑
t=1

(
1

G1k1(B(t))
− 1)I{a(t) = 1}|FB(t)

]

=E

[
T∑
t=1

(
1

G1k1(B(t))
− 1)I(a(t) = 1)

]

≤E

[
T−1∑
s=0

(
1

G1h(s)
− 1)

]
.

Now define
τ = {t ∈ [T ] : 1− Faka(B(t))(µ1 − ε) > 1/T} .

For the second expression in (16), we get

E

[
T∑
t=1

I(a(t) = a,Ea(t))

]
≤E

[∑
t∈τ

I(a(t) = a)

]
+ E

[∑
t/∈τ

I(Ea(t))

]

≤ E

[
T−1∑
s=0

I{1−Fah(s)(µ1 − ε)} > 1/T

]
+ E

[∑
t/∈τ

1

T

]

≤ E

[
T−1∑
s=0

I(Gah(s) > 1/T )

]
+ 1.

Now by setting ε = ∆a/2 we can show that

∆aE [ka(t)] ≤ ∆a + ∆aE

[
T−1∑
N+1

I{a(t) = a,Ea(t)}

]
+ ∆aE

[
T−1∑
t=1

(
1

G′1k1(B(t))(∆a/2)
− 1)I(a(t) = 1)

]
.

(17)
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To bound the first term we note that

Ea(t) ⊆

{
µ̂a(B(t)) +

√
α

ka(B(t))
log+

(
T

Nka(B(t))

)
> µ1 −∆a/2

}
.

Define κa as the sum of the event in the right hand side of the above equation, namely,

κa =

T∑
s=1

I
{
µ̂ah(s) +

√
α/h(s) log+(T/h(s)N) > µ1 −

∆a

2

}
. (18)

Hence,

∆aE

[
T−1∑
N+1

I{a(t) = a,Ea(t)}

]
≤ ∆aE [κa] = ∆aE

[
T∑
s=1

I

{
µ̂ah(s) +

√
α

h(s)
log+

(
T

h(s)N

)
> µ1 −∆a/2

}]
.

Using

Lemma B.13 and the fact that ∆a = µ1 − µa we have

∆aE [κa] ≤ ∆a

T∑
s=1

Pr

{
µ̂ah(s) − µa +

√
α

h(s)
log+(T/h(s)N) >

∆a

2

}
(19)

≤ ∆a +
12

∆a
+

4α

∆a

(
log+(

T∆2
a

4N
) +

√
2απ log+(

T∆2
a

4N
)

)
. (20)

Now it implies that E [∆aκa] = O(
√
T/k + ∆a). For bounding the second term of (17), a slight

modification of Lemma B.14, provides

∆aE

[
T−1∑
t=1

(
1

G′1k1(B(t))(∆a/2)
− 1

)
I(a(t) = 1)

]
= ∆aE

[
T−1∑
s=1

(
1

G′1h(s)(∆a/2)
− 1

)]
= O(

√
T/N) .

B.3 MOTS 1-subgaussian asymptotic regret bound

Theorem 5.2. Assume that the reward of each arm a ∈ [N ] is 1-subgaussian with mean µa. For any

fixed ρ ∈ (1/2, 1), the regret of B-MOTS can be bounded asR(T ) = O
(

log(T )
∑
a:∆a>0

1
ρ∆a

)
.

First we should prove the following lemma, which a simple variant of Jin et al. [2020, Lemma 6] for
the batch setting.
Lemma B.16. For any εT > 0, and ε > 0 that satisfies ε+ εT < ∆a, it holds that

E

[
T−1∑
s=1

I{G′ah(s) > 1/T}

]
≤ 1 +

4

ε2T
+

4 log T

ρ(∆a − ε− εT )2
.

Proof. The proof closely follows Jin et al. [2020, Lemma 6] and adapted to the batch setting. As
before µa + εT ≤ µ1 − ε, and by using the tail-bound for σ-subGaussian random variables we have

Pr(µ̂ah(s) > µa + εT ) ≤ exp(−h(s)ε2T /2) ≤ exp(−sε2T /4).

Furthermore
∞∑
s=1

exp

(
−sε

2
T

4

)
≤ 4/ε2T .

Define
La = 4 log T/(ρ(∆a − ε− εT )2).
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For s ≥ La, let Xas be sampled from N (µ̂ah(s), 1/(ρh(s))). Then if we have µ̂ah(s) ≤ µa + εT ,
the Guassian tail bound implies

Pr(Xas ≥ µ1 − ε) ≤
1

2
exp

(
−ρh(s)(∆a − ε− εT )2

2

)
≤ 1/T .

Now, denote the event {µ̂ah(s) ≤ µa + εT } by Yas. By using the fact that Pr(A) ≤ Pr(A|B) + 1−
Pr(B), we have

E

[
T−1∑
s=1

I{G′ah(s)(ε) > 1/T}

]
=

T−1∑
s=1

Pr({G′ah(s)(ε) > 1/T})

≤
T−1∑
s=1

Pr({G′ah(s)(ε) > 1/T}|Yas) +

T−1∑
s=1

(1− Pr(Yas))

≤ dLae+

T−1∑
s=1

(1− Pr(Yas))

≤ 1 +
4

ε2T
+

4 log T

ρ(∆a − ε− εT )2
.

Now, closely following the proof of Jin et al. [2020, Theorem 2], we define

Z(ε) =

{
∀s ∈ B : µ̂1s +

√
α

s
log+(

T

sN
) ≥ µ1 − ε

}
. (21)

For an arm a ∈ [N ], we have
E [ka(t)] ≤E [ka(t)|Z(ε)] Pr(Z(ε)) + T (1− Pr(Z(ε)))

≤2 + E

[
T−1∑
s=1

(
1

G1h(s)(ε)
− 1)|Z(ε)

]
+ T (1− Pr(Z(ε))) + E

[
T−1∑
s=1

I(Gah(s)(ε) > 1/T )

]

≤2 + E

[
T−1∑
s=1

(
1

G′1h(s)(ε)
)

]
+ T (1− Pr(Z(ε))) + E

[
T−1∑
s=1

I(G′ah(s)(ε) > 1/T )

]
.

The second inequality is due to Lemma B.15 and the last inequality is due to the fact that given Z(ε),
we have G1h(s)(ε) = G′1h(s)(ε). Also, note that if

µ̂ah(s) +

√
α

h(s)
log+(T/h(s)N) ≥ µ1 − ε,

then we have Gah(s)(ε) = G′ah(s)(ε), or otherwise we have Gah(s)(ε) = 0 ≤ G′as(ε).

Now from Lemma B.7 and by setting ε = εT = 1
log log T , we have

T (1− Pr(Z(ε))) ≤ 15N(log log T )2.

By using Lemma B.14

E

[
T−1∑
s=1

(
1

G′1h(s)(ε)
− 1)

]
≤ O((log log T )2) .

Then, by Lemma B.16

E

[
T−1∑
s=1

I(G′ah(s)(ε) > 1/T )

]
≤ 1 + 4(log log T )2 +

4 log T

ρ(∆a − 2/ log log T )2
.

The theorem will follow easily by combining the above equations, namely,

lim
T→∞

E [∆aka(t)]

log T
=

2

ρ∆a
.
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B.4 MOTS for Gaussian Rewards

Theorem 5.3. Assume that the reward of each arm a is sampled from a Gaussian distribution
N (µa, 1) and α > 2. Then, the regret of B-MOTS-J can be bounded as follows:

R(T ) = O(
√
KT +

k∑
a=2

∆a), lim
T→∞

R(T )

log(T )
=

∑
a:∆a>0

2

∆a
.

Recall that F ′as denotes the CDF of J (µ̂as, 1/s) for any s ≥ 1 and G′as = 1 − F ′as(µ1 − ε). We
closely follow the recipe of [Jin et al., 2020, Theorem 4]. The proof of the minimax and asymptotic-
optimal bounds are similar to the proof of Theorem 5.1 and 5.2 with a few differences. Note that
in the proof of Theorem 5.1, we used the fact that ρ < 1 (used in the definition of the Gaussian
distribution θ̃a). In Theorem 5.3, we do not have the parameter ρ. Therefore instead of Lemma B.14
we prove the following, which is a batch variant of Jin et al. [2020, Lemma 9].

Lemma B.17. There exists a universal constant c, s.t.,

E

[
T−1∑
s=1

(
1

G′1h(s)(ε)
− 1)

]
≤ c/ε2 .

Proof. Similar to (Lemma B.14), the following two statements need to be proven:
(i) there exists a universal constant c′ s.t.

L∑
s=1

E

[
1

G′1h(s)(ε)
− 1

]
≤ c′

ε2
,∀s .

(ii) for L =
[
64/ε2

]
E

[
T∑
s=L

(
1

G′1h(s)(ε)
− 1)

]
≤ 4

e2
(1 + 16/ε2) .

The proof of statement (ii) is similar to the one in Lemma B.8. Therefore, We focus on the first
statement here, which closely follows the proof of Jin et al. [2020, Lemma 9].

Let µ̂1h(s) = µ1 +x. Let Z be a sample from J (µ̂1h(s), 1/h(s)). For x < −ε, applying Lemma B.8
with z = −

√
h(s)(ε+ x) > 0 we have

G′1h(s)(ε) = Pr(Z > µ1 − ε) =
1

2
exp

(
−h(s)(ε+ x)2

2

)
. (22)

Note that x ∼ N (0, 1/h(s)). Let f(x) be the PDF of N (0, 1/h(s)).

Ex∼N (0,1/h(s))

[(
1

G′1h(s)(ε)
− 1

)]
=

∫ −ε
∞

f(x)

(
1

G′1h(s)(ε)
− 1

)
dx+

∫ −∞
−ε

f(x)

(
1

G′1h(s)(ε)
− 1

)
dx

≤
∫ −ε
−∞

f(x)

(
2 exp

(
h(s)(ε+ x)2

2

)
− 1

)
dx+

∫ ∞
−ε

f(x)

(
1

G′1h(s)

(ε)− 1

)
dx

≤
∫ −ε
−∞

f(x)

(
2 exp

(
h(s)(ε+ x)2

2

)
− 1

)
dx+

∫ ∞
−ε

f(x)dx

≤
√

2
e−sε

2/4

√
sε

+ 1

The first inequality is because of eq. (22). The second inequality is because G′1h(s)(ε) = Pr(Z >

µ1 − ε) ≥ 1/2, since µ̂1h(s) = µ1 + x ≥ µ1 − ε. And the last inequality is due to the definition of
h(s).
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Also for s ≤ L, we have e−sε
2/4 = O(1), thus for L =

[
64
ε2

]
,

L∑
s=1

E

[(
1

G′1h(s)(ε)
− 1

)]
= O

(
L∑
s=1

1√
sε

)
= O(1/ε2) .

From the above lemma we have

∆aE

[
T−1∑
s=1

(
1

G′1h(s)

(∆a/2)− 1

)]
≤ O(

√
T/K + ∆a).

The rest of the proof for minimax optimality is similar to the proof of Theorem 5.1.

For the asymptotic regret bound, we first state the following lemma, which the batch mode version
of

Lemma B.18. for any εT > 0, ε > 0 that satisfies ε+ εT < ∆a, we have

E

[
T−1∑
s=1

I{G′ih(s) > 1/T}

]
≤ 1 +

4

ε2T
+

4 log T

(∆a − ε− εT )2
.

Proof. The proof is similar to the proof of Lemma B.16.

The proof asymptotic regret bound is similar to the proof of Theorem 5.2 where we use Lem-
mas B.17, B.8, and B.18.

C Batch Thompson Sampling for Contextual Bandits

First, we reintroduce a number of notations from Agrawal and Goyal [2013b] and adapt them to the
batch setting.

C.1 Notations and Definitions

In time step t of the B-TS-C algorithm, we generate a sample µ̃(t) fromN (µ̂(B(t)), v2B(B(t))−1)
and play the arm a with maximum θa(t) = ba(t)T µ̃(t).

Definition C.1. Let us define the standard deviation of empirical mean in the batch setting as

sa(B(t)) :=
√
ba(t)TB(B(t))−1ba(t).

Definition C.2. Let us define the history of the process up to time t by

Ht = {a(τ), ra(τ)(τ), ba(τ)|a ∈ [N ], τ ∈ [t]},

where a(τ) indicates the arm played at time τ , ba(τ) indicates the context vector associated with
arm a at time τ , and ra(τ) indicates the reward at time τ .

Definition C.3. Define the filtration FB(t) as the union of history until time B(t), and the context
vectors up to time t, i.e.,

FB(t) = {HB(t), ba(t′)|a ∈ [N ], t′ ∈ (B(t), t]}.

Definition C.4. We assume that ηa,t = ra(t)− 〈ba(t), µ〉, conditioned on FB(t), is σ-subGaussian
for some σ ≥ 0.
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Definition C.5. Define

l(t) = σ

√
d ln

t3

δ
+ 1,

v(t) = σ

√
9d ln

t

δ
,

p =
1

4e
√
π
,

g(t) = min{
√

4d ln(t),
√

4 log(tN)}v(t) + l(t).

Definition C.6. Define Eµ(t) as the event that for any arm a{
|〈ba(t), µ̂(B(t))− ba(t)>µ〉| ≤ l(t)sa(B(t))

}
.

Definition C.7. Define Eθ(t) as the event

{∀a : |θa(t)− 〈ba(t), µ̂(B(t))〉| ≤ (g(t)− l(t))sa(B(t))} .

Definition C.8. Define the difference between the mean reward of the optimal arm at time t, denoted
by a∗(t), and arm a as follows

∆a(t) = 〈ba∗(t)(t), µ〉 − 〈ba(t), µ〉 .

Definition C.9. We say that an arm is saturated at time t if ∆a(t) > g(t)sa(B(t)). We also denote
by C(t) the set of saturated arms at time t. An arm a is unsaturated at time t of a /∈ C(t).
Lemma C.10 (Abbasi-Yadkori et al. [2011]). Let F ′t be a filteration. Consider two random pro-
cesses mt ∈ Rd and µt ∈ R where mt is F ′t−1-measurebale and µt is a martingale difference
process and F ′t-measurebale. Define, ξt =

∑t
τ=1mτµt and Mt = Id +

∑t
τ=1mτm

>
τ . Assume

that given F ′t , µt is σ-subGaussian. Then, with probability 1− δ,

‖ξt‖M−1
t
≤ σ

√
d ln

t+ 1

δ
.

C.2 Analysis

Theorem 6.1. The B-TS-C algorithm (Algorithm 2) achieves the total regret of

R(T ) = O
(
d3/2
√
T (ln(T ) +

√
ln(T ) ln(1/δ))

)
with probability 1− δ. Moreover, B-TS-C carries out O(N log T ) batch queries.

The proof closely follows [Agrawal and Goyal, 2013b, Theorem 1]. We first start with the following
lemma, that is a batch version of [Agrawal and Goyal, 2013b, Lemma 1].
Lemma C.11. For all t, and 0 < δ < 1, we have Pr(Eµ(B(t))) ≥ 1 − δ/t2. Moreover, For all
filtration FB(t), we have Pr(Eθ(t)|FB(t)) ≥ 1− 1/t2.

Proof. The proof closely follows Agrawal and Goyal [2013b, Lemma 1] where we adapt it to
the batch setting. We only prove the first part as the second part very similar. We first invoke
Lemma C.10 as follows. Set mt = ba(t)(t), ηt = ra(t)(t)− ba(t)(t)

Tµ, and

F ′t = {a(τ + 1),mτ+1 : τ ≤ t} ∪ {ητ : τ ≤ B(t)}.

Note that ηt is conditionally σ-subgaussian, and is a martingale difference process. Therefore,

E
[
ηt|F ′B(t)

]
= E

[
ra(t)|ba(t)(t), a(t)

]
− 〈ba(t)(t), µ〉 = 0 .

Thus, we have

Mt = Id +

t∑
τ=1

mτm
>
τ
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and

ξt =

t∑
τ=1

mτητ .

Similar to Agrawal and Goyal [2013b, Lemma 1], we have B(t) = Mt−1, but we need to change
µ̂(t)− µ = M−1

B(t)(ξB(t) − µ). For any vector y ∈ R and matrix A ∈ Rd×d, let us define the norm

‖y‖A :=
√
yTAy. Hence, for all a,

|〈ba(t), µ̂(t)〉 − 〈ba(t), µ〉| = ‖ba(t)‖B(t)−1 × ‖ξB(t) − µ‖M−1
B(t)

.

Since B(t) ≤ t− 1, Lemma C.10 implies that with probability at least 1− δ′,

‖ξB(t)‖M−1
B(t)
≤ σ

√
d ln(t/δ′).

Thus,
‖ξB(t) − µ‖M−1

B(t)
≤ σ

√
d ln(t/δ′) + ‖µ‖M−1

B(t)
≤ σ

√
d ln(t/δ′) + 1.

Now by setting δ′ = δ
t2 we have with probability 1− δ/t2, and for all arms a,

|〈ba(t), µ̂(B(t))〉 − 〈ba(t), µ〉| ≤ l(t)sa(B(t)) .

Now, we lower bound the probability that θa∗(t)(t) becomes larger than 〈ba∗(t)(t), µ〉.
Lemma C.12. For any filtration FB(t), if Eµ(t) holds true, we have

Pr
(
θa∗(t)(t) > 〈ba∗(t)(t), µ〉|FB(t)

)
≥ p.

Proof. The proof easily follows from Agrawal and Goyal [2013b, Lemma 2]. Suppose Eµ(t) holds
true, then

|〈ba∗(t)(t), µ̂(t)〉 − 〈ba∗(t)(t), µ〉| ≤ `(t)sa∗(t)(B(t)) .

The Gaussian random variable θa∗(t)(t) has mean 〈ba∗(t)(t), µ̂(t)〉 and standard deviation
vtsa∗(t)(B(t)). Therefore, we have

Pr(θa∗(t)(t) ≥ 〈ba∗(t)(t), µ〉|FB(t)) ≥
1

4
√
π
e−Z

2
t .

where |Zt| =
∣∣∣ 〈ba∗(t)(t),µ̂(t)〉−〈ba∗(t)(t),µ〉

v(t)sa∗(t)(B(t))

∣∣∣ ≤ 1.

The following lemma bounds the probability that an arm played at time t is not saturated.
Lemma C.13. Given FB(t), if Eµ(t) is true,

Pr(a(t) /∈ C(t)|FB(t)) ≥ p−
1

t2
.

Proof. The proof is a slight modification of Agrawal and Goyal [2013b, Lemma 3] for the batch
setting. If ∀j ∈ C(t) we have θa∗(t)(t) > θj(t), then one of the unsaturated actions much be played
which leads us to

Pr(a(t) /∈ C(t)|FB(t)) ≥ Pr(θa∗(t)(t) > θj(t),∀j ∈ C(t)|FB(t)).

Note that for all saturated arms j ∈ C(t), we have

∆j(t) > g(t)sj(B(t)).

In the case that Eµ(t) and Eθ(t) are both true, we have

θj(t) ≤ 〈bj(t), µ〉+ g(t)sj(B(t)).

Hence, conditioned on FB(t) if Eµ(t) is true, we have either the event Eθ(t) is false or for all
j ∈ C(t),

θj(t) ≤ 〈bj(t), µ〉+ g(t)sj(B(t)) ≤ 〈ba∗(t)(t), µ〉,
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Thus, for any FB(t) that Eµ(t) holds,

Pr(θa∗(t)(t) > θj(t),∀j ∈ C(t)|FB(t)) ≥Pr(θa∗(t)(t) > 〈ba∗(t)(t), µ〉|FB(t))− Pr(Eθ(t)|FB(t))

≥p− 1

t2
.

The above inequalities are due to Lemmas C.11 and C.12.

Lemma C.14. For any filtration FB(t), assuming Eµ(t) holds true,

E
[
∆a(t)(t)|FB(t)

]
≤ 3g(t)

p
E
[
sa(t)(B(t))|FB(t)

]
+

2g(t)

pt2
.

Proof. The proof follows closely Agrawal and Goyal [2013b, Lemma 4] and adapts it to the batch
setting. First define

ā(t) = arg min
a/∈C(t)

sa(B(t)),

Since FB(t) defines B(B(t)) and also ba(t) are independent of unobserved rewards (before making
a batch query) thus given FB(t) and context vectors ba(t), the value of ā(t) is determined. Now by
applying Lemma C.13, for any FB(t) and by assuming that Eµ(θ) is true, we have

E
[
sa(t)(B(t))|FB(t)

]
≥ E

[
sa(t)(B(t))|FB(t), a(t) /∈ C(t)

]
· Pr(a(t) /∈ C(t)|FT−1)

≥ sā(t)(B(t))(p− 1

t2
).

Again if both Eµ(t) and Eθ(t) are true, then for all a we have,

θa(t) ≤ 〈ba(t), µ〉+ g(t)sa(B(t)).

Moreover, we know that for all a, θa(t)(t) ≥ θa(t), thus

∆a(t)(t) = ∆ā(t)(t) + (〈bā(t)(t), µ〉 − 〈ba(t)(t), µ〉)
≤ 2g(t)sā(t)(B(t)) + g(t)sa(t)(B(t)).

Consequently,

E
[
∆a(t)|FB(t)

]
≤ 2g(t)

p− 4
t2

E
[
sa(t)(B(t))|FB(t)

]
+ g(t)E

[
sa(t)(B(t))|FB(t)

]
+

1

t2

≤ 3

p
g(t)E

[
sa(t)(B(t))|FB(t)

]
+

2g(t)

pt2
.

The first inequality is because ∆a ≤ 1 for all a. The second inequality uses Lemma C.11 to get
Pr(Eθ(t)) ≤ 1

t2 . Furthermore, in the last inequality we use the fact that 0 ≤ sa(t)(B(t)) ≤
|ba(t)(t)| ≤ 1.

Similar to Agrawal and Goyal [2017] we have the following definitions.
Definition C.15.

R′(t) := R(t)× I(Eµ(t)).

Definition C.16. Define

Xt = R′(t)− 3g(t)

p
sa(t)(B(t))− 2g(t)2

pt2

Yt =

t∑
w=1

Xw.

Becasue of the way we defined Yt, namely, the filteration FB(t), we can easily show the following
lemma.
Lemma C.17. The sequence {Yt}Tt=0 is a super martingale with respect to FB(t).
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Proof. The proof follows closely Agrawal and Goyal [2013b, Lemma 5] and adapts it to filtration
FB(t) induced by the batch algorithm. Basically, we need to show that for all t ≥ 0,

E
[
Yt − Yt−1|FB(t)

]
≤ 0,

In other words

E
[
R′(t)|FB(t)

]
≤ 3g(t)

p
E
[
sa(B(t))(t)|FB(t)

]
+

2g(t)

pt2
,

First, note that FB(t) determines the event Eµ(t). Assuming that FB(t) is such that Eµ(t) is not
true, then R′(t) = 0 ] and the above inequality is trivial. Otherwise, if for FB(t), the event Eµ(t)
holds, Lemma C.14 implies the result.

The following Lemma is a batch variant of Chu et al. [2011, Lemma 3].

Lemma C.18.
T∑
t=1

sa(t)(B(t)) ≤ 5
√
dT lnT . (23)

Proof. Upper bounding the expression
∑
t sa(t)(B(t)) follows by the same steps in Chu et al. [2011,

Lemma 3] for the matrix B(B(t)) (we loose a constant factor in the process). The reason is that the
term

∑
sB(t),a(t) can be written in terms of eigenvalues of B(B(t)) matrices. More precisely, from

Lemma 2 in Chu et al. (2011) we can arrange eigenvalues of B(t) to obtain the following bound

sa(t)(B(t))2 ≤ 10
∑
j

λt+1,j − λt,j
λt,j

.

Note that the above upper bound is independent of our batch algorithm. Then for ψ = |ΨT+1| (in
Chu et al. [2011, Lemma 3]) we have∑

t∈ΨT+1

sa(t)(B(t)) =
∑

t∈ΨT+1

√
10
∑
j

(
λt+1,j

λt,j
− 1),

for each matrix B(B(t)) in ΨT+1. The function f can be defined similar to Chu et al. [2011, Lemma
3] for ΨT+1. As in Lemma 3, the ratio of eigenvalues remain greater than or equal 1. The following
sum product can be bounded by ψ+ d since the norm of each xta(t) is bounded by 1. For t′ = B(t)
between T/2 and T + 1,∑

j

∏
t

λt+1,j

λt,j
≤
∑
j

λt′,j =
∑
t

||xt,a(t)||2 + d ≤ ψ + d.

So, we can similarly bound∑
t∈ΨT+1

sa(t)(B(t)) ≤ ψ
√

10d
√

(ψ + 1)1/ψ − 1.

Thus, by using Chu et al. [2011, Lemma 9] for ψ we can obtain eq. (23).

Proof of Theorem 6.1. We rely on the proof technique by Agrawal and Goyal [2013b, Theorem 1].
First, note that Xt is bounded as

|Xt| ≤ 1 +
3

p
g(t) +

2

pt2
g(t) ≤ 6

p
g(t).

Also g(t) ≤ g(T ). Thus, by applying Azuma-Hoeffding inequality for Martingale sequences, we
have

Pr

(
T∑
t=1

R′(t) ≤ 3g(T )

p

T∑
t=1

sa(t)(B(t)) +
2g(T )

p

T∑
t=1

1

t2
+

6g(T )

p

√
2T ln(2/δ)

)
≥ 1− δ

2
.
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Therefore, by invoking Lemma C.18 we know that with probability 1− δ
2 we have

T∑
t=1

R′(t) = O
(
d
√
T × (min{

√
d,
√

logN})× (ln(T ) +
√

ln(T ) ln(1/δ))
)
.

Furthermore, Lemma C.11 implies that with probability of at least 1 − δ/2, the event Eµ(t) holds
for all t. Thus, with probability of at least 1− δ,

R(T ) = O
(
d
√
T × (min{

√
d,
√

logN})× (ln(T ) +
√

ln(T ) ln(1/δ))
)
.
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