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Abstract

Federated learning methods typically learn a model by iteratively sampling updates
from a population of clients. In this work, we explore how the number of clients
sampled at each round (the cohort size) impacts the quality of the learned model
and the training dynamics of federated learning algorithms. Our work poses three
fundamental questions. First, what challenges arise when trying to scale federated
learning to larger cohorts? Second, what parallels exist between cohort sizes in
federated learning, and batch sizes in centralized learning? Last, how can we design
federated learning methods that effectively utilize larger cohort sizes? We give
partial answers to these questions based on extensive empirical evaluation. Our
work highlights a number of challenges stemming from the use of larger cohorts.
While some of these (such as generalization issues and diminishing returns) are
analogs of large-batch training challenges, others (including catastrophic training
failures and fairness concerns) are unique to federated learning.

1 Introduction

Federated learning (FL) [52] considers learning a model from multiple clients without directly
sharing training data, often under the orchestration of a central server. In this work we focus on
cross-device FL, in which the aim is to learn across a large population of edge devices [27, Table 1].
A distinguishing characteristic of cross-device FL is partial participation of the client population:
Due to systems constraints such as network size, the server typically only communicates with a subset
of the clients at a time1. For example, in the popular FedAvg algorithm [52], at each communication
round the server broadcasts its current model to a subset of available clients (referred to as a cohort),
who use the model to initialize local optimization and send their model updates back to the server.

Intuitively, larger cohort sizes have the potential to improve the convergence of FL algorithms. By
sampling more clients per round, we can observe a more representative sample of the underlying
population—possibly reducing the number of communication rounds needed to achieve a given
accuracy. This intuition is reflected in many convergence analyses of FL methods [29, 31, 32, 62, 69],
which generally show that asymptotic convergence rates improve as the cohort size increases.

Larger cohorts can also provide privacy benefits. For example, when using the distributed differential
privacy model [6, 11, 16, 65] in federated learning, noise is typically added to the updates sent from
the clients to the server [54]. This helps preserve privacy but can also mar the utility of the learned
model. By dividing the noise among more clients, larger cohorts may mitigate detrimental effects
of noise. Moreover, since privacy tends to decrease as a function of the number of communication

1In contrast, cross-silo settings often have a small set of clients, most of which participate in each round [27].
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rounds [1, 17], larger cohorts also have the potential to improve privacy in FL by reducing the number
of rounds needed for convergence.

Motivated by the potential benefits of large-cohort training, we systematically explore the impact of
cohort size in realistic cross-device settings. Our results show that increasing the cohort size may
not lead to significant convergence improvements in practice, despite their theoretical benefit [69].
Moreover, large-cohort training can introduce fundamental optimization and generalization issues.
Our results are reminiscent of work on large-batch training in centralized settings, where larger
batches can stagnate convergence improvements [14, 19, 51, 70, 71], and even lead to generalization
issues with deep neural networks [23, 30, 46–48, 50, 64]. While some of the challenges we identify
with large-cohort training are parallel to issues that arise in large-batch centralized learning, others
are unique to federated learning and have not been previously identified in the literature.

Contributions. In this work, we provide a novel examination of cohort sizes in federated learning.
We give a wide ranging empirical analysis spanning many popular federated algorithms and datasets
(Section 2). Despite the many possible benefits of large-cohort training, we find that challenges exist
in realizing these benefits (Section 3). We show that these issues are caused in part by distinctive
characteristics of federated training dynamics (Section 4). Using these insights, we provide partial
solutions to the challenges we identify (Section 5), focusing on how to adapt techniques from large-
batch training, and the limitations of such approaches. Our solutions are designed to serve as simple
benchmarks for future work. We conclude by discussing limitations and open problems (Section 6).
Throughout, we attempt to uncover interesting theoretical questions, but remain firmly grounded in
the practical realities of federated learning.

1.1 Related Work

Large-batch training. In non-federated settings, mini-batch stochastic gradient descent (SGD) and
its variants are common choices for training machine learning models, particularly deep neural
networks. While larger mini-batch sizes ostensibly allow for improved convergence (in terms of the
number of steps required to reach a desired accuracy), in practice speedups may quickly saturate
when increasing the mini-batch size. This property of diminishing returns has been explored both
empirically [14, 19, 51, 64] and theoretically [48, 70]. Beyond the issue of speedup saturation,
numerous works have also observed a generalization gap when training deep neural networks with
large batches [23, 30, 46, 47, 50, 71]. Our work differs from these areas by specifically exploring
how the cohort size (the number of selected clients) affects federated optimization methods. While
some of the issues with large-batch training appear in large-cohort training, we also identify a number
of new challenges introduced by the federated setting.

Optimization for federated learning. Significant attention has been paid towards developing feder-
ated optimization techniques. Such work has focused on various aspects, including communication-
efficiency [5, 34, 37, 52], data and systems heterogeneity [25, 28, 29, 39–42, 67], and fairness [26, 43].
We provide a description of some relevant methods in Section 2, and defer readers to recent surveys
such as [27] and [41] for additional background. One area pertinent to our work is that of variance
reduction for federated learning, which can mitigate negative effects of data heterogeneity [28, 29, 73].
However, such methods often require clients to maintain state across rounds [29, 73], which may be
infeasible in cross-device settings [27]. Moreover, such methods may not perform well in settings
with limited client participation [62]. Many convergence analyses of federated optimization methods
show that larger cohort sizes can lead to improved convergence rates, even without explicit variance
reduction [31, 32, 69]. These analyses typically focus on asymptotic convergence, and require
assumptions on learning rates and heterogeneity that may not hold in practice [9, 27]. In this work,
we attempt to see whether increasing the cohort size leads to improved convergence in practical,
communication-limited settings.

Client sampling. A number of works have explored how to select cohorts of a fixed size in cross-
device FL [10, 12, 18, 59, 63]. Such methods can yield faster convergence than random sampling by
carefully selecting the clients that participate at each round, based on quantities such as the client loss.
However, such approaches typically require the server to be able to choose which clients participate
in a cohort. In practice, cohort selection in cross-device federated learning is often governed by client
availability, and is not controlled by the server [7, 61]. In this work we instead focus on the impact of
size of the cohort, assuming the cohort is sampled at random.
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2 Preliminaries

Federated optimization methods often aim to minimize a weighted average of client loss functions:

min
x
f(x) :=

K∑
k=1

pkfk(x), (1)

where K is total number of clients, the pk are client weights satisfying pk ≥ 0, and fk is the loss
function of client k. For practical reasons, pk is often set to the number of examples in client k’s
local dataset [42, 52].

To solve (1), each client in a sampled cohort could send∇fk(x) to the server, and the server could then
apply (mini-batch) SGD. This approach is referred to as FedSGD [52]. This requires communication
for every model update, which may not be desirable in communication-limited settings. To address
this, McMahan et al. [52] propose FedAvg, in which clients perform multiple epochs of local training,
potentially reducing the number of communication rounds needed for convergence.

We focus on a more general framework, FedOpt, introduced by Reddi et al. [62] that uses both client
and server optimization. At each round, the server sends its model x to a cohort of clients C of size
M . Each client ck ∈ C performs E epochs of training using mini-batch SGD with client learning rate
ηc, producing a local model xk. Each client k ∈ C then communicates their client update ∆k to the
server, where ∆k := xk − x is the difference between the client’s local model and the server model.
The server computes a weighted average ∆ of the client updates, and updates its own model via

x′ = SERVEROPT(x, ηs,∆) , (2)

where SERVEROPT(x, ηs, g) is some first-order optimizer, ηs is the server learning rate, and g is
a gradient estimate. For example, if SERVEROPT is SGD, then SERVEROPT(x, ηs, g) = x − ηsg.
The ∆ in (2) is referred to as a pseudo-gradient [62]. While ∆ may not be an unbiased estimate of
∇f , it can serve a somewhat comparable role (though as we show in Section 4, there are important
distinctions). Full pseudo-code of FedOpt is given in Algorithm 1.

Algorithm 1 FedOpt framework

Input: M , T E, x1, ηc, ηs, SERVEROPT, {pk}Kk=1
for t = 1, · · · , T do

The server selects a cohort Ct of M clients uniformly at random, without replacement.
The server sends xt to all clients in Ct.
Each client k ∈ Ct performs E epochs of mini-batch SGD on fk with step-size ηc.
After training, each k ∈ Ct has a local model xtk and sends ∆t

k = xt − xtk to the server.
The server computes a pseudo-gradient ∆t and updates its model via

∆t =

∑
k∈Ct

pk∆t
k∑

k∈Ct
pk

, xt+1 = SERVEROPT(xt, ηs,∆
t).

Algorithm 1 generalizes a number of federated learning algorithms, including FedAvg [52],
FedAvgM [25], FedAdagrad [62], and FedAdam [62]. These are the cases where SERVEROPT
is SGD, SGD with momentum, Adagrad [15, 53], and Adam [33], respectively. FedSGD is realized
when SERVEROPT is SGD, ηc = 1, E = 1, and each client performs full-batch gradient descent.

2.1 Experimental Setup

We aim to understand how the cohort size M impacts the performance of Algorithm 1. In order to
study this, we perform a wide-ranging empirical evaluation using various special cases of Algorithm 1
across multiple datasets, models, and tasks. We discuss the key facets of our experiments below.

Datasets, models, and tasks. We use four datasets: CIFAR-100 [35], EMNIST [13], Shakespeare [8],
and Stack Overflow [3]. For CIFAR-100, we use the client partitioning proposed by Reddi et al. [62].
The other three datasets have natural client partitions that we use. For EMNIST, the handwritten
characters are partitioned by their author. For Shakespeare, speaking lines in Shakespeare plays are
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Table 1: Dataset statistics.

DATASET TRAIN CLIENTS TRAIN EXAMPLES TEST CLIENTS TEST EXAMPLES

CIFAR-100 500 50,000 100 10,000
EMNIST 3,400 671,585 3,400 77,483
SHAKESPEARE 715 16,068 715 2,356
STACK OVERFLOW 342,477 135,818,730 204,088 16,586,035

partitioned by their speaker. For Stack Overflow, posts on the forum are partitioned by their author.
The number of clients and examples in the training and test sets are given in Table 1.

For CIFAR-100, we train a ResNet-18, replacing batch normalization layers with group normalization
(as proposed and empirically validated in federated settings by Hsieh et al. [24]). For EMNIST,
we train a convolutional network with two convolutional layers, max-pooling, dropout, and two
dense layers. For Shakespeare, we train an RNN with two LSTM layers to perform next-character-
prediction. For Stack Overflow, we perform next-word-prediction using an RNN with a single LSTM
layer. For full details on the models and datasets, see Appendix A.1.

Algorithms. We implement many special cases of Algorithm 1, including FedSGD, FedAvg,
FedAvgM, FedAdagrad, and FedAdam. We also develop two novel methods: FedLARS and FedLamb,
which are the special cases of Algorithm 1 where SERVEROPT is LARS [71] and Lamb [72],
respectively. See Section 5 for the motivation and full details of these algorithms.

Implementation and tuning. Unless otherwise specified, in Algorithm 1 clients perform E = 1
epochs of training with mini-batch SGD. Their batch size is fixed per-task. We set pk to be the number
of examples in client k’s dataset. We tune learning rates for all algorithms and models using a held-out
validation set: We perform T = 1500 rounds of training with M = 50, E = 1 for each algorithm
and model, varying ηc, ηs over {10i | − 3 ≤ i ≤ 1} and select the values that maximize the average
validation performance over 5 random trials. All other hyperparameters (such as momentum) are
fixed. For more details, see Appendix A. We provide open-source implementations of all simulations
in TensorFlow Federated [4]2. All experiments were conducted using clusters of multi-core CPUs,
though our results are independent of wall-clock time and amount of compute resources.

Presentation of results. We apply the algorithms above to the tasks listed above with varying cohort
sizes. For brevity, we present only a fraction of our results, selecting representative experiments
to illustrate large-cohort training phenomena. The full set of experimental results can be found in
Appendix B. We run 5 random trials for each experiment, varying the model initialization and which
clients are sampled per round. In all subsequent figures, dark lines indicate the mean across the 5
trials, and shaded regions indicate one standard deviation above and below the mean.

3 Large-Cohort Training Challenges

In this section we explore challenges that exist when using large cohorts in federated learning. While
some of these challenges mirror issues in large-batch training, others are unique to federated settings.
While we provide concrete recommendations for mitigating some of these challenges, our discussion
is generally centered around introducing and exploring these challenges in the context of federated
learning.

3.1 Catastrophic Training Failures

We first discuss a practical issue unique to large-cohort training. Due to data heterogeneity, the server
model x may be misaligned with some client’s loss fk, in which case ∇fk(x) can blow up and lead
to optimization problems. This issue is exacerbated by large cohorts, as we are more likely to sample
misaligned clients. To demonstrate this, we applied FedAvg with varying cohort sizes M , using
learning rates tuned for M = 10. For each M , we performed 5 random trials and recorded whether a
catastrophic training failure occurred, in which the training accuracy decreased by a factor of at least
1/2 in a single round.

2https://github.com/google-research/federated/tree/f4e26c1b9b47ac320e520a8b9943ea2c5324b8c2/
large_cohort
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Figure 1: Applying FedAvg to EMNIST with cohort size 200. We plot the train accuracy and norm
of the pseudo-gradient for a trial that ran successfully (left), and one that experienced a catastrophic
training failure (right). The trials differed only in which clients were randomly sampled each round.

On EMNIST, the failure rate increased from 0% for M = 10 to 80% for M = 800. When failures
occurred, we consistently saw a spike in the norm of the pseudo-gradient ∆ (see Figure 1). These
trends occurred on all datasets. In order to prevent this spike, we apply clipping to the client updates.
We use the adaptive clipping method of [2]. While this technique was originally designed for training
with differential privacy, we found that it greatly improved the stability of large-cohort training.
Applying FedAvg to EMNIST with adaptive clipping, no catastrophic training failures occurred
for any cohort size. We use adaptive clipping in all subsequent experiments. For more details, see
Appendix A.3.

3.2 Diminishing Returns

In this section, we show that increasing M in Algorithm 1 can lead to improved convergence, but
that such improvements diminish with M . To demonstrate this, we plot the test accuracy of FedAvg
and FedSGD across multiple tasks, for varying cohort sizes M . Results for CIFAR-100 and Stack
Overflow are given in Figure 2, though we observe similar trends for all tasks (Appendix B.1).
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Figure 2: Test accuracy of FedAvg (top) and FedSGD (bottom), for various cohort sizes M , over the
course of 1500 communication rounds.

We see that convergence benefits do not scale linearly with cohort size. While increasing M from 1 to
10 can significantly improve convergence, there is generally a threshold after which point increasing
M incurs little to no change in convergence. This threshold is typically between M = 10 and
M = 50. Interestingly, this seems to be true for both tasks, even though M = 50 represents 10% of
the training clients for CIFAR-10, but only approximately 0.015% of the training clients for Stack
Overflow. We see comparable results for EMNIST and Shakespeare, as well as for other optimizers,
including FedAdam and FedAdagrad. See Appendix B.1 for the full results. In short, we see that
increasing M alone can lead to diminishing returns, or even no returns in terms of convergence. This
mirrors issues of diminishing returns in large-batch training [14, 19, 51, 64].

3.3 Generalization Failures

Large-batch centralized optimization methods have repeatedly been shown to converge to models
with worse generalization ability than models found by small-batch methods [23, 30, 46, 47, 50, 71].
Given the parallels between batch size in centralized learning and cohort size in FL, this raises
obvious questions about whether similar issues occur in FL. In order to test this, we applied FedAvg,
FedAdam, and FedAdagrad with different cohort sizes to various models. In Figure 3 we plot the
train and test accuracy of our models after T = 1500 communication rounds of FedAvg, FedAdam,
and FedAdagrad.

We find that generalization issues do occur in FL. For example, consider FedAdam on the CIFAR-100
task. While it attains roughly the same training accuracy for M ∈ {50, 100, 200, 400}, we see that
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Figure 3: The train accuracy and test accuracy of FedAvg, FedAdam, and FedAdagrad on CIFAR-100
(left) and Shakespeare (right) after training for 1500 communication rounds, for varying cohort sizes.
The x-axis denotes the percentage of training clients in each cohort.

the larger cohorts uniformly lead to worse generalization. This resembles the findings of Keskar
et al. [30], who show that generalization issues of large-batch training can occur even though the
methods reach similar training losses. However, generalization issues do not occur uniformly. It
is often optimizer-dependent (as in CIFAR-100) and does not occur on the EMNIST and Stack
Overflow datasets (see Appendix B.2). Notably, CIFAR-100 and Shakespeare have many fewer
clients overall. Thus, large-cohort training may reduce generalization, especially when the cohort
size is large compared to the total number of clients.

3.4 Fairness Concerns

One critical issue in FL is fairness across clients, as minimizing (1) may disadvantage some clients [43,
56]. Intuitively, large-cohort training methods may be better suited for ensuring fairness, since a
greater fraction of the population is allowed to contribute to the model at each round. As a coarse
measure of fairness, we compute percentiles of accuracy of our trained models across test clients.
Under many notions of fairness, this would lead to higher accuracy values for smaller percentiles.
The percentiles for FedAdam on each task are given in Figure 4.
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Figure 4: Accuracy of FedAdam after training for 1500 communication rounds using varying cohort
sizes and tasks. The box plots show the 5th, 25th, 50th, 75th, and 95th percentiles of accuracy across
test clients.

We find that the cohort size seems to affect all percentiles in the same manner. For example, on
CIFAR-100, M = 50 performs better for smaller percentiles and larger percentiles than larger M .
This mirrors the CIFAR-100 generalization failures from Section 3.3. By contrast, for Stack Overflow
we see increases in all percentiles as we increase M . While the accuracy gains are only slight, they
are consistent across percentiles. This suggests a connection between the fairness of a federated
training algorithm and the fraction of test clients participating at every round. Notably, increasing M
seems to have little effect on the spread between percentiles (such as the difference between the 75th
and 25th percentiles) beyond a certain point. See Appendix B.4 for more results.

3.5 Decreased Data Efficiency

Despite issues such as diminishing returns and generalization failures, federated optimization methods
can see some benefit from larger cohorts. Large-cohort training, especially with adaptive optimizers,
often leads to faster convergence to given accuracy thresholds. For example, in Figure 5, we see that
the number of rounds FedAdam requires to reach certain accuracy thresholds generally decreases with
the cohort size.

While it is tempting to say that large-cohort methods are “faster”, this ignores the practical costs of
large-cohort training. Completing a single communication round often requires more resources with
larger cohorts. To showcase this, we also plot the accuracy of FedAdam with respect to the number of
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Figure 5: Test accuracy of FedAdam on Shakespeare (left) and Stack Overflow (right) with various
cohort sizes. We plot versus the number of communication rounds and the number of examples
processed in total.

examples seen in Figure 5. This measures the data-efficiency of large-cohort training, and shows that
large cohort-training requires significantly more examples per unit-accuracy.

While data-inefficiency also occurs in large-batch training [51], it is especially important in federated
learning. Large-cohort training faces greater limitations on parallelizability due to data-sharing
constraints. Worse, in realistic cross-device settings client compute times can scale super-linearly
with their amount of data, so clients with more data are more likely to become stragglers [7].
This straggler effect means that data-inefficient algorithms may require longer training times. To
demonstrate this, we show in Appendix B.5 that under the probabilistic straggler runtime model from
[38], large-cohort training can require significantly more compute time to converge.

4 Diagnosing Large-Cohort Challenges

We now examine the challenges in Section 3, and provide partial explanations for their occurrence.
One of the key differences between FedAvg and FedSGD is what the pseudo-gradient ∆ in (1)
represents. In FedSGD, ∆ is a stochastic gradient estimate (i.e., E[∆] = ∇f , where the expectation
is over all randomness in a given communication round). For special cases of Algorithm 1 where
clients perform multiple local training steps, ∆ is not an unbiased estimator of∇f [9, 49, 60]. While
increasing the cohort size should reduce the variance of ∆ as an estimator of E[∆], it is unclear what
this quantity represents.

To better understand ∆, we plot its norm on Stack Overflow in Figures 6a and 6b. For FedSGD, ‖∆‖
decreases slightly with M , but has high variance. By contrast, for FedAvg larger cohorts lead to
smaller norms with little overlap. The decrease in norm obeys an inverse square root rule: Let ∆1,∆2

be pseudo-gradients at some round for cohort sizesM1,M2. For FedAvg, ‖∆1‖/‖∆2‖ ≈
√
M2/M1.

We use this rule to predict pseudo-gradient norms for FedAvg in Figure 6c. After a small number
of rounds, we obtain a remarkably good approximation. To explain this, we plot the average cosine
similarity between client updates ∆t

k at each round in Figure 6d, with M = 50. For FedAvg, the
client updates are on average almost orthogonal. This explains Figure 6b, as ∆ is an average of nearly
orthogonal vectors. As we show in Appendix B.6, similar results hold for other tasks and optimizers.
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Figure 6: The pseudo-gradient norm of FedSGD (a) and FedAvg (b) on Stack Overflow with varying
cohort sizes M . We also plot the predicted norm for FedAvg using an inverse square root scaling rule
relative to M = 50 (c) and the average cosine similarity of client updates for M = 50 (d).

Implications for large-cohort training. This near-orthogonality of client updates is key to under-
standing the challenges in Section 3. The diminishing returns in Section 3.2 occur in part because
increasing M leads to smaller updates. This also sheds light on Section 3.5: In large-cohort training,
we take an average of many nearly-orthogonal vectors, so each client’s examples contribute little.
The decreasing pseudo-gradient norms in Figure 6c also highlights an advantage of methods such as
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FedAdam and FedAdagrad: Adaptive server optimizers employ a form of normalization that makes
them somewhat scale-invariant, compensating for this norm reduction.

5 Designing Better Methods

We now explore an initial set of approaches aimed at improving large-cohort training, drawing
inspiration where possible from large-batch training. Our solutions are designed to provide simple
baselines for improving large-cohort training. In particular, our methods and experiments are intended
to serve as a useful reference for future work in the area, not to fully solve the challenges of large-
cohort training.

5.1 Learning Rate Scaling

One common technique for large-batch training is to scale the learning rate according to the batch
size. Two popular scaling methods are square root scaling [36] and linear scaling [20]. While such
techniques have had clear empirical benefit in centralized training, there are many different ways
that they could be adapted to federated learning. For example, in Algorithm 1, the client and server
optimization both use learning rates that could be scaled.

We consider the following scaling method for large-cohort training: We fix the client learning rate,
and scale the server learning rate with the cohort size. Such scaling may improve convergence by
compensating for the pseudo-gradient norm reduction in Figure 6. We use square root and linear
scaling rules: Given a learning rate ηs tuned for M , for M ′ ≥M we use a learning rate η′s where

η′s =

√
M ′√
M

ηs (square root scaling) OR η′s =
M ′

M
ηs (linear scaling). (3)

We also use a version of the warmup strategy from [20]. For the first W communication rounds, we
linearly increase the server learning rate from ηs to η′s. In our experiments, we set W = 100 and use
a reference server learning rate ηs tuned for M = 50.

Our experiments show that server learning rate scaling rules have mixed efficacy in large-cohort
training. Linear scaling is often too aggressive for federated learning, and caused catastrophic training
failures beyond M = 100 even when using adaptive clipping (see Appendix B.7). By contrast, square
root scaling did not cause catastrophic training failures. Its performance (Figure 7) varied widely
across tasks. For example, it significantly improved train accuracy on Shakespeare, but reduced test
accuracy. While it led to small accuracy improvements on Stack Overflow for some cohort sies, it
degraded accuracy for the largest cohort sizes. In sum, we find that applying learning rate scaling at
the server may not directly improve large-cohort training.

50 100 200 400
Cohort Size

0.61

0.62

0.63

0.64

0.65

Tr
ai

n 
Ac

cu
ra

cy

Shakespeare, FedAvg
No Scaling
Square Root Scaling

50 100 200 400 800
Cohort Size

0.00

0.05

0.10

0.15

0.20

0.25

Tr
ai

n 
Ac

cu
ra

cy

Stack Overflow, FedAvg

No Scaling
Square Root Scaling

50 100 200 400
Cohort Size

0.555

0.560

0.565

0.570

0.575

Te
st

 A
cc

ur
ac

y

Shakespeare, FedAvg

No Scaling
Square Root Scaling

50 100 200 400 800
Cohort Size

0.00

0.05

0.10

0.15

0.20

0.25

Te
st

 A
cc

ur
ac

y

Stack Overflow, FedAvg

No Scaling
Square Root Scaling

Figure 7: The train and test accuracy of FedAvg using square root scaling with warmup, versus no
scaling. Results are given for Shakespeare (left) and Stack Overflow (right).

5.2 Layer-wise Adaptivity

Another popular technique for large-batch training is layer-wise adaptivity. Methods such as
LARS [71] and Lamb [72] use layer-wise adaptive learning rates, which may allow the meth-
ods to train faster than SGD with linear scaling and warmup in large-batch settings [71, 72]. We
propose two new federated versions of these optimizers, FedLARS and FedLamb. These are special
cases of Algorithm 1, where the server uses LARS and Lamb, respectively. Given the difficulties of
learning rate scaling above, FedLARS and FedLamb may perform better in large-cohort settings.

8



0.2 1.0 5.0 20.0 80.0
Participation Rate (%)

0.0

0.1

0.2

0.3

0.4

Te
st

 A
cc

ur
ac

y

CIFAR-100

FedAvg
FedAdam
FedAdagrad
FedLARS
FedLamb

0.02 0.20 1.40 5.80 23.50
Participation Rate (%)

0.750
0.775
0.800
0.825
0.850
0.875

Te
st

 A
cc

ur
ac

y

EMNIST

FedAvg
FedAdam
FedAdagrad
FedLARS
FedLamb

0.1 0.6 3.4 13.9 55.9
Participation Rate (%)

0.50

0.52

0.54

0.56

0.58

Te
st

 A
cc

ur
ac

y

Shakespeare

FedAvg
FedAdam
FedAdagrad
FedLARS
FedLamb

0.002 0.020 0.100 0.500 2.000
Participation Rate (%) 1e 1

0.0

0.1

0.2

Te
st

 A
cc

ur
ac

y

Stack Overflow

FedAvg
FedAdam
FedAdagrad
FedLARS
FedLamb

Figure 8: The test accuracy of various methods, including FedLARS and FedLamb, after training for
1500 rounds, for varying cohort sizes and on varying tasks. The x-axis denotes percentage of training
clients in each cohort.

In Figure 8 we present the test accuracy of various methods, including FedLARS and FedLamb, for
varying cohort sizes. In most cases, we see that FedLamb performs comparably to FedAdam for large
cohort sizes, but with slightly worse performance in intermediate stages. One notable exception is
Stack Overflow, in which FedLamb performs well even for M = 1. As in Section 3.3, FedLamb sees
an eventual drop in test accuracy for M > 100. FedLARS has decidedly mixed performance. While
it performs well on CIFAR-10, it does not do well on EMNIST or Shakespeare. While federated
layer-wise adaptive algorithms can be better than coordinate-wise adaptive algorithms on certain
datasets in some large-cohort settings, our results do not indicate that they are universally better.

5.3 Dynamic Cohort Sizes

As we saw in Section 3.5, large-cohort training can reduce data efficiency. Part of this stems from the
fact that larger cohorts may help very little for smaller accuracy thresholds (see Figure 5). In order to
improve data efficiency, we may be able to use smaller cohorts in earlier optimization stages, and
increase the cohort size over time. This technique is parallel to “dynamic batch size” techniques used
in large-batch training [66]. In order to test the efficacy of such techniques in large-cohort training,
we start with an initial cohort size of M = 50 and double the size every 300 rounds up to M = 800
(or the maximum population size if smaller). This results in doubling the cohort size a maximum of 4
times over the 1500 rounds of training we perform. We plot the results for FedAvg and FedAdam on
CIFAR-100 and Stack Overflow in Figure 9. See Appendix B.8 for results on all tasks.
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Figure 9: Test accuracy of FedAvg and FedAdam on Shakespeare (left) and Stack Overflow (right),
with respect to the total number of examples processed, using fixed and dynamic cohort sizes.

This dynamic strategy attains data efficiency closer to a fixed cohort size of M = 50, while still
obtaining a final accuracy closer to having used a large fixed cohort size. While our initial findings are
promising, we note two important limitations. First, the accuracy of the dynamic strategy is bounded
by the minimum and maximum cohort size used; It never attains a better accuracy than M = 800.
Second, the doubling strategy still faces the generalization issues discussed in Section 3.3.

5.4 Normalized FedAvg

While the methods above show promise in resolving some of the issues of large-cohort training, they
also introduce extra hyperparameters (such as what type of learning rate scaling to use, or how often
to double the cohort size). Hyperparameter tuning can be difficult in federated learning, especially
cross-device federated learning [27]. Even adaptive methods like FedAdam introduce a number of
new hyperparameters that can be challenging to contend with. We are therefore motivated to design a
large-cohort training method that does not introduce any new hyperparameters.

Recall that in Section 4, we showed that for FedAvg, the client updates (∆t
k in Algorithm 1 and

Algorithm 2) are nearly orthogonal in expectation. By averaging nearly orthogonal updates in large-
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cohort training, we get a server pseudo-gradient ∆t that is close to zero. To compensate, we propose a
variant of FedAvg where rather than applying SGD to the server pseudo-gradient (as in Algorithm 1),
we apply SGD to the normalized server pseudo-gradient. That is, the server updates its model via

x′ = x− ηs∆/‖∆‖2.

This method, which we refer to as normalized FedAvg, is a federated analog of normalized SGD
methods used for centralized learning [57]. It introduces no new hyperparameters with respect to
Algorithm 1. To test it, we present its training and test accuracy versus cohort size in Figure 10.
Notably, we re-use the same learning rates tuned for (unnormalized) FedAvg. For full results, see
Appendix B.9.
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Figure 10: The test accuracy of FedAvg and the normalized variant of FedAvg, after training for
1500 communication rounds. Results are given for various cohort sizes and tasks.

We find that for most cohort sizes and on most tasks, normalized FedAvg achieves better training
accuracy for larger cohorts. Thus, this helps mitigate the diminishing returns issue in Section 3.2. We
note two important exceptions: for EMNIST, the normalized FedAvg is slightly worse for all cohort
sizes. For Stack Overflow, it obtains worse training accuracy for the largest cohort size. However, we
see significant improvements on CIFAR-100 and all but the largest cohort sizes for Stack Overflow.
We believe that the method therefore exhibits promising results, and may be improved in future work.

5.5 Hyperparameter tuning and other results.

The methods discussed above, including learning rate scaling and layer-wise adaptivity, can require
significant tuning to perform well [58]. To date, little work has been paid to how to tune hyperpa-
rameters in federated learning. Such work may be vital to obtain optimal performance, especially
given our observations in Section 4 and the client-server structure of federated algorithms, which
gives rise to many more hyperparameters. In Algorithm 1, tuning could involve the client optimizer,
the client batch size, the server optimizer, and the cohort size. In fact, the client batch size is a key
hyperparameter. Recall that clients perform E epochs of mini-batch SGD on their local datasets.
Fixing E, the batch size dictates the number of local training steps they perform. As we show in
Appendix B.10, this number of local steps is critical for achieving maximal performance, and may be
necessary to tune according to the cohort size.

6 Limitations and Future Work

In this work we explore the benefits and limitations of large-cohort training in federated learning. As
discussed in Sections 3.5 and 5, focusing on the number of communication rounds often obscures
the data efficiency of a method. This in turn impacts many metrics important to society, such as
total energy consumption or total carbon emissions. While we show that large-cohort training can
negatively impact such metrics by reducing data-efficiency (see Section 3.5 and Appendix B.5), a
more specialized focus on these issues is warranted. Similarly, we believe that an analysis of fairness
in large-cohort settings going beyond Section 3.3 would be beneficial.

Future work also involves connecting large-cohort training to other important aspects of federated
learning, and continuing to explore connections with growing lines of work in large-batch training.
In particular, we wish to see whether noising strategies, especially differential privacy mechanisms,
can help overcome the generalization issues of large-cohort training. Personalization may also help
mitigate issues of generalization and fairness. Finally, although not a focus of our work, we note that
some of the findings above may extend to cross-silo settings, especially if communication restrictions
require subsampling clients.
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A Full Experimental Details

A.1 Datasets and Models

We use four datasets throughout our work: CIFAR-100 [35], the federated extended MNIST dataset
(EMNIST) [13], the Shakespeare dataset [8], and the Stack Overflow dataset [3]. The first two
datasets are image datasets, the second two are language datasets. All datasets are publicly available.
We specifically use the versions available in TensorFlow Federated [4], which gives a federated
structure to all four datasets. Below we discuss the specifics of the dataset and classification task, as
well as the model used to perform classification.

CIFAR-100 The CIFAR-100 dataset is a computer vision dataset consisting of 32× 32× 3 images
with 100 possible labels. While this dataset does not have a natural partition among clients, a
federated version was created by Reddi et al. [62] using hierarchical latent Dirichlet allocation to
enforce moderate amounts of heterogeneity among clients. This partitioning among clients was based
on Pachinko allocation [44]. Note that under this partitioning, each client typically has only a subset
of the 100 possible labels. The dataset has 500 training clients and 100 test clients, each with 100
examples in their local dataset.

We train a ResNet-18 [21] on this dataset, where we replace all batch normalization layers with group
normalization layers [68]. The use of group norm over batch norm in federated learning was first
advocated by Hsieh et al. [24], who showed that this helped improve classification accuracy in the
presence of heterogeneous clients. We specifically use group normalization layers with two groups.
We perform small amounts of data augmentation and preprocessing for each train and test sample.
We first centrally crop each image (24, 24, 3). We then normalize the pixel values according to their
mean and standard deviation.

EMNIST The EMNIST dataset consists of images hand-written alphanumeric characters. Each
image consists of 28 × 28 gray-scale pixel values. There are 62 total alphanumeric characters
represented in the dataset. The images are partitioned among clients according to their author. The
dataset has 3,400 clients, who have both train and test datasets. The dataset has natural heterogeneity
stemming from the writing style of each person. We train a convolutional network on the dataset (the
same one used by Reddi et al. [62]). The network uses two convolutional layers (each with 3 × 3
kernels and strides of length 1), followed by a max pooling layer using dropout with p = 0.25, a
dense layer with 128 units and dropout with p = 0.5, and a final dense output layer.

Shakespeare The Shakespeare dataset is derived from the benchmark designed by Caldas et al. [8].
The dataset corpus is the collected works of William Shakespeare, and the clients correspond to roles
in Shakespeare’s plays with at least two lines of dialogue. To eliminate confusion, character here
will refer to alphanumeric characters (such as the letter q) and symbols such as punctuation, while we
will use client to denote the various roles in plays (such as Macbeth). There are a total of 715 clients,
whose lines are partitioned between train and test datasets.

We split each client’s lines into sequences of 80 characters, padding if necessary. We use a vocabulary
size of 90, where 86 characters are contained in Shakespeare’s work, and the remaining 4 are
beginning and end of line tokens, padding tokens, and out-of-vocabulary tokens. We perform next-
character prediction on the clients’ dialogue using a recurrent neural network (RNN) [55]. We use the
same model as Reddi et al. [62]. The RNN takes as input a sequence of 80 characters, embeds it into
a learned 8-dimensional space, and passes the embedding through 2 LSTM layers [22], each with
256 units. Finally, we use a softmax output layer with 80 units, where we try to predict a sequence of
80 characters formed by shifting the input sequence over by one. Therefore, our output dimension is
80× 90. We compute loss using cross-entropy loss.

Stack Overflow Stack Overflow is a language dataset consisting of question and answers from the
Stack Overflow site. The questions and answers also have associated metadata, including tags. Each
client corresponds to a user. The specific train/validation/test split from [3] has 342,477 train clients,
38,758 validation clients, and 204,088 test clients. Notably, the train clients only have examples from
before 2018-01-01 UTC, while the test clients only have examples from after 2018-01-01 UTC. The
validation clients have examples with no date restrictions, and all validation examples are held-out
from both the test and train sets.
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We perform next-word prediction on this dataset. We restrict each client to the first 1000 sentences
in their dataset (if they contain this many, otherwise we use the full dataset). We also perform
padding and truncation to ensure that each sentence has 20 words. We then represent the sentence as
a sequence of indices corresponding to the 10,000 most frequently used words, as well as indices
representing padding, out-of-vocabulary words, the beginning of a sentence, and the end of a sentence.
We perform next-word-prediction on these sequences using an a recurrent neural network (RNN) [55]
that embeds each word in a sentence into a learned 96-dimensional space. It then feeds the embedded
words into a single LSTM layer [22] of hidden dimension 670, followed by a densely connected
softmax output layer. Note that this is the same model used by Reddi et al. [62]. The metric used
in the main body is the accuracy over the 10,000-word vocabulary; it does not include padding,
out-of-vocab, or beginning or end of sentence tokens when computing the accuracy.

A.2 Implementation and Hyperparameters

We implement the previously proposed methods of FedAvg, FedSGD, FedAvgM, FedAdam,
FedAdagrad, as well as two novel methods, FedLARS and FedLamb. All implementations are
special cases of Algorithm 1. In all cases, clients use mini-batch SGD with batch size B. For FedSGD,
the batch size B of a client is set to the size of its local dataset (so that the client only takes a single
step). For all other optimizers, we fix B at a per-task level (see Table 2). Note that we use larger batch
sizes for datasets where clients have more examples, like Stack Overflow. Except for the experiments
in Appendix B.10, we set E = 1 throughout.

Table 2: Batch sizes used for each for all algorithms (except for FedSGD) on each dataset.

DATASET BATCH SIZE

CIFAR-100 20
EMNIST 20

SHAKESPEARE 4
STACK OVERFLOW 32

For the actual implementation of the algorithms above, all methods (except for FedSGD) differ only
in the choice of SERVEROPT in Algorithm 1. For FedSGD, in addition to having clients use full-batch
SGD (as mentioned above), the client learning rate is set to be ηc = 1 in order to allow Algorithm 1 to
recover the version of FedSGD proposed by McMahan et al. [52]. For all other algorithms, we present
the choice of SERVEROPT and relevant hyperparameters (except for learning rates, see Section A.4)
in Table 3. Note that here we use the notation from [33], where β1 refers to a first-moment momentum
parameter, β2 refers to a second-moment momentum parameter, and ε is a numerical stability constant
used in adaptive methods. Note that for all adaptive methods, we set their initial accumulators to be 0.

Table 3: Hyperparameters and implementation details for all algorithms, relative to Algorithm 1.
Here, β1 denotes a first-moment momentum parameter, β2 denotes a second-moment momentum
parameter, and ε is a value used for numerical stability purposes in adaptive methods.

ALGORITHM SERVEROPT β1 β2 ε

FedAvg [52] SGD 0 N/A N/A
FedAvgM [24] SGD 0.9 N/A N/A

FedAdagrad [62] Adagrad [15] N/A N/A 0.001
FedAdam [62] Adam [33] 0.9 0.99 0.001
FedLARS LARS [71] 0.9 N/A 0.001
FedLamb Lamb [72] 0.9 0.99 0.001

A.3 Adaptive Clipping

As exemplified in Figure 1, catastrophic training failures can occur when the server pseudo-gradient
∆t is too large, which occurs more frequently for larger cohort sizes. To mitigate this issue, we use
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Algorithm 2 FedOpt framework with adaptive clipping

Input: M , T E, x1, ηc, ηs, ηa, q, ρ1, SERVEROPT, {pk}Kk=1
for t = 1, · · · , T do

The server selects a cohort Ct of M clients uniformly at random, without replacement.
The server sends xt, ρt to all clients in Ct.
Each client k ∈ Ct updates xt for E epochs of mini-batch SGD with step-size ηc on fk.
After training, each client has a local model xtk.
Each client k ∈ Ct computes ∆t

k = xt − xtk and btk = I[‖∆t
k‖ ≤ ρt].

Each client k ∈ Ct computes

h(∆t
k) = ∆t

k min

{
1,

ρt

‖∆t
k‖

}
.

Each client k ∈ Ct sends h(∆t
k) and btk to the server.

The server computes a pseudo-gradient ∆t and updates its model via

∆t =

∑
k∈Ct

pkh(∆t
k)∑

k∈Ct
pk

, xt+1 = SERVEROPT(xt, ηs,∆
t).

The server updates its clipping level via

bt =
1

|Ct|
∑
k∈Ct

btk, ρt+1 = ρt exp(−ηa(bt − q)).

the adaptive clipping method proposed by Andrew et al. [2]. While we encourage the reader to see
this paper for full details and motivation, we give a brief overview of the method below.

Recall that in Algorithm 1, ∆t is an average of client updates ∆t
k. Thus, ∆t can only be large if

some client update is also large. In order to prevent this norm blow-up, we clip the client updates
before averaging them. Rather than send ∆t

k to the server, for a clipping level ρ > 0, the clients send
h(∆t

k, ρ) where

h(v, ρ) =

v, if ‖v‖ ≤ ρ
ρv

‖v‖
, if ‖v‖ > ρ.

Instead of fixing ρ a priori, we use the adaptive method proposed by Andrew et al. [2]. In this method,
the clipping level varies across rounds, and is adaptively updated via a geometric update rule, where
the goal is for ρ to estimate some norm percentile q ∈ [0, 1]. Notably, Andrew et al. [2] show that
the clipping level can be learned in a federated manner that is directly compatible with Algorithm 1.
At each round t, let ρt be the clipping level (intended to estimate the qth percentile of norms across
clients), and let Ct be the cohort of clients selected. Each client k ∈ Ct computes their local model
update ∆t

k in the same manner as in Algorithm 1. Instead of sending ∆t
k to the server, the client

instead sends their clipped update h(∆t
k, ρ

t) to the server, along with btk := I[‖∆t
k‖ ≤ ρt], where

I[A] denotes the indicator function of an event A. The server then computes:

∆t =

∑
k∈Ct

pkh(∆t
k)∑

k∈Ct
pk

, bt =
1

|Ct|
∑
k∈Ct

btk.

That is, ∆t is a weighted average of the clipped client updates, and bt is the fraction of unclipped
client updates that did not exceed the clipping threshold. The server then updates its global model as
in (2), but it also updates its estimate of the qth norm percentile using a learning rate ηa > 0 via

ρt+1 = ρt exp(−ηa(bt − q)). (4)

While Andrew et al. [2] add noise in order to ensure that ρ is learned in a differentially private
manner, we do not use such noise. Full pseudo-code combining Algorithm 1 and the adaptive clipping
mechanisms discussed above is given in Algorithm 2.
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Table 4: Server learning rate ηs used for each algorithm and dataset.

ALGORITHM DATASET

CIFAR-100 EMNIST Shakespeare Stack Overflow
FedAvg 1 1 1 1
FedAvgM 1 1 0.1 1
FedAdagrad 0.01 0.1 0.1 10
FedAdam 0.01 0.001 0.01 1
FedLARS 0.01 0.001 0.01 0.01
FedLamb 0.001 0.01 0.01 0.01
FedSGD 0.1 0.1 1 10

Table 5: Client learning rate ηc used for each algorithm and dataset.

ALGORITHM DATASET

CIFAR-100 EMNIST Shakespeare Stack Overflow
FedAvg 0.1 0.1 1 10
FedAvgM 0.1 0.1 1 10
FedAdagrad 0.1 0.001 10 10
FedAdam 0.1 0.1 10 10
FedLARS 0.1 0.1 10 1
FedLamb 0.01 0.1 10 10

Usage and hyperparameters. We use Algorithm 2 in all experiments (save for those in Figure 1,
which illustrate the potential failures that can occur if clipping is not used). For hyperparameters, we
use a target percentile of q = 0.8, with an initial clipping level of ρ1 = 1. In our geometric update
rule, we use a learning rate of ηa = 0.2.

A.4 Learning Rates and Tuning

For our experiments, we use client and server learning rates ηs, ηc that are tuned a priori on a held-out
validation dataset. We tune both learning rates over {10i | − 3 ≤ i ≤ 1} for each algorithm
and dataset, therefore resulting in 25 possible configurations for each pair. This tuning, like the
experiments following it, is based on the algorithm implementations discussed above. In particular,
the tuning also uses the adaptive clipping framework discussed in Appendix A.3 and Algorithm 2.

While Stack Overflow has an explicit validation set distinct from the test and train datasets [3], the
other three datasets do not. In order to tune on these datasets, we randomly split the training clients
(not the training examples!) into train and validation subsets according to an 80-20 split. We then use
these federated datasets to perform held-out set tuning. We select the learning rates that have the best
average validation performance after 1500 communication rounds with cohort size M = 10 over 5
random trials. A table of the resulting learning rates is given in Tables 4 and 5. Note that there is no
client learning rate for FedSGD, as we must use ηc = 1 in Algorithm 1 in order to recover the version
of FedSGD in [52]. Note that we use the same learning rates for all cohort sizes.
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B Full Experiment Results

B.1 Test Accuracy Versus Communication Round

In this section, we present the test accuracy of various federated learning methods on various tasks,
for various cohort sizes. The results are plotted in Figures 11, 12, 13, 14, 15, 16, and 17, which
give the results for FedSGD, FedAvg, FedAvgM, FedAdagrad, FedAdam, FedLARS, and FedLamb
(respectively).
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Figure 11: Average test accuracy of FedSGD versus the number of communication rounds, for various
tasks and cohort sizes M .
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Figure 12: Average test accuracy of FedAvg versus the number of communication rounds, for various
tasks and cohort sizes M .
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Figure 13: Average test accuracy of FedAvgM versus the number of communication rounds, for
various tasks and cohort sizes M .
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Figure 14: Average test accuracy of FedAdagrad versus the number of communication rounds, for
various tasks and cohort sizes M .
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Figure 15: Average test accuracy of FedAdam versus the number of communication rounds, for
various tasks and cohort sizes M .
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Figure 16: Average test accuracy of FedLARS versus the number of communication rounds, for
various tasks and cohort sizes M .
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Figure 17: Average test accuracy of FedLamb versus the number of communication rounds, for
various tasks and cohort sizes M .
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B.2 Accuracy Versus Cohort Size

In this section, we showcase the train and test accuracy of various methods, as a function of the
cohort size. The results are given in Figures 18 and 19, which correspond to the train and test
accuracy, respectively. Both plots give the accuracy of FedAvg, FedAdam, FedAdagrad, FedLARS,
and FedLamb as a function of the participation rate. That is, the percentage of training clients used
in each cohort.
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Figure 18: Train accuracy of FedAvg, FedAdam, FedAdagrad, FedLARS, and FedLamb after 1500
rounds, using varying cohort sizes and tasks. The x-axis denotes the percentage of training clients in
each cohort.
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Figure 19: Test accuracy of FedAvg, FedAdam, FedAdagrad, FedLARS, and FedLamb after 1500
rounds, using varying cohort sizes and tasks. The x-axis denotes the percentage of training clients in
each cohort.

B.3 Cohort Size Speedups

In this section, we attempt to see how much increasing the cohort size can speed up a federated
algorithm. In particular, we plot the number of rounds needed to obtain a given accuracy threshold
versus the cohort size. The results are given in Figures 20, 21, 22, 23, and 24. We see that in just
about all cases, the speedups incurred by increasing the cohort size do not scale linearly. That being
said, we still see that increasing the cohort size generally always leads to a reduction in the number
of rounds needed to obtain a given test accuracy, and can lead to accuracy thresholds unobtainable by
small-cohort training in communication-limited settings. While theory shows that in the worst-case,
the cohort size leads to linear speedups, we find that this is generally not the case in practice.
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Figure 20: Number of communication rounds for FedAvg to obtain certain test accuracy thresholds.
The x-axis denotes the cohort size.
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Figure 21: Number of communication rounds for FedAdagrad to obtain certain test accuracy
thresholds. The x-axis denotes the cohort size.
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Figure 22: Number of communication rounds for FedAdam to obtain certain test accuracy thresholds.
The x-axis denotes the cohort size.
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Figure 23: Number of communication rounds for FedLARS to obtain certain test accuracy thresholds.
The x-axis denotes the cohort size.
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Figure 24: Number of communication rounds for FedLamb to obtain certain test accuracy thresholds.
The x-axis denotes the cohort size.

B.4 Measures of Accuracy Across Clients

In this section, we expand on the fairness results in Section 3. In Tables 6, 7, 8, and 9, we present
percentiles of accuracy of FedAdam across all test clients (after training for 1500 rounds, with varying
cohort sizes and on varying tasks). For example, the 50th percentile of accuracy is the median
accuracy of the learned model across all test clients.

The results show that in nearly all cases, the cohort size impacts all percentiles of accuracy in the
same manner. For example, in Table 6, we see that a cohort size of M = 50 is better than other cohort
sizes, for all percentiles of test accuracy. Notably, this does not support the notion that larger cohorts
learn more fair models. Instead, it seems that large cohorts can lead to generalization failures across
all percentiles, as it does on CIFAR-100 and Shakespeare (Tables 6 and 8). However, this does not
occur on EMNIST and Stack Overflow (Tables 7 and 9), which have many more train and test clients.
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Table 6: Percentiles of accuracy across test clients for FedAdam on CIFAR-100 after 1500 communi-
cation rounds. We present the mean and standard deviation across 5 random trials, with the largest
accuracy values for each percentile in bold.

Percentile Cohort Size

10 50 100 200 400
5 27.0± 3.3 32.2± 1.1 30.6± 0.9 29.6± 1.1 29.0± 1.2
25 35.3± 1.5 39.0± 0.7 37.5± 0.9 37.2± 1.1 36.4± 1.1
50 41.1± 1.3 44.5± 0.5 43.1± 0.7 42.4± 0.5 41.6± 0.7
75 47.5± 1.1 50.1± 0.7 48.4± 0.5 47.2± 0.4 47.0± 1.0
95 54.2± 1.5 55.6± 1.5 54.6± 1.5 53.8± 1.3 53.6± 1.5

Table 7: Percentiles of accuracy across test clients for FedAdam on EMNIST after 1500 communi-
cation rounds. We present the mean and standard deviation across 5 random trials, with the largest
accuracy values for each percentile in bold.

Percentile Cohort Size

10 50 100 200 400 800
5 61.9± 2.1 62.5± 2.4 64.3± 1.2 63.8± 1.4 64.3± 1.0 65.0± 0.9
25 77.3± 0.7 77.4± 1.4 77.9± 0.4 78.2± 0.4 78.6± 0.5 78.7± 0.3
50 84.5± 0.5 85.4± 0.5 85.9± 0.2 85.9± 0.2 86.1± 0.2 86.2± 0.1
75 91.2± 0.2 92.0± 0.1 92.0± 0.2 92.3± 0.1 92.3± 0.1 92.3± 0.0
95 100.0± 0.0 100.0± 0.0 100.0± 0.0 100.0± 0.0 100.0± 0.0 100.0± 0.0

Table 8: Percentiles of accuracy across test clients for FedAdam on Shakespeare after 1500 communi-
cation rounds. We present the mean and standard deviation across 5 random trials, with the largest
accuracy values for each percentile in bold.

Percentile Cohort Size

10 50 100 200 400
5 39.9± 0.8 39.2± 1.8 39.4± 1.6 37.8± 0.7 38.6± 1.2
25 54.9± 0.1 55.0± 0.2 54.9± 0.2 54.9± 0.1 54.9± 0.2
50 58.3± 0.2 58.5± 0.2 58.5± 0.2 58.3± 0.1 58.4± 0.1
75 61.8± 0.2 62.4± 0.2 62.2± 0.2 62.1± 0.2 62.1± 0.3
95 70.9± 0.6 71.2± 0.6 71.2± 0.4 71.1± 0.2 71.1± 0.2

Table 9: Percentiles of accuracy across test clients for FedAdam on Stack Overflow after 1500
communication rounds. We present the mean and standard deviation across 5 random trials, with the
largest accuracy values for each percentile in bold.

Percentile Cohort Size

10 50 100 200 400 800
5 16.7± 0.2 18.7± 0.2 19.1± 0.2 19.5± 0.1 19.8± 0.1 19.9± 0.1
25 21.0± 0.3 23.2± 0.2 23.6± 0.2 24.1± 0.1 24.4± 0.1 24.5± 0.1
50 23.5± 0.3 25.8± 0.2 26.3± 0.3 26.7± 0.1 27.0± 0.1 27.2± 0.1
75 26.1± 0.3 28.4± 0.2 29.0± 0.3 29.4± 0.1 29.7± 0.1 29.9± 0.1
95 30.8± 0.3 33.2± 0.2 33.7± 0.4 34.2± 0.1 34.6± 0.1 34.8± 0.1

B.5 Simulating Straggler Effects

As shown in Section 3.5, large-cohort training methods seem to face data-efficiency issues, where
training with large cohorts requires processing many more examples to reach accuracy thresholds
than small-cohort training. While this is related to diminishing returns (Section 3.2) and occurs in
large-batch training as well [19], we highlight this issue due to its consequences in federated learning.

Unlike centralized learning, federated learning faces fundamental limits on parallelization. Since
data cannot be shared, we typically cannot scale up to arbitrarily large cohort sizes. Instead, the
parallelization is limited by the available training clients. In order to learn on a client’s local dataset,
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that client must actually perform the training on its examples. Unfortunately, since clients are often
lightweight in cross-device settings [27], clients with many examples may require longer compute
times, becoming stragglers in a given communication round. If an algorithm is data-inefficient, these
straggler clients may have to participate many times throughout training, causing the overall runtime
to be greater. In short, data inefficiency can dramatically slow down large-cohort training algorithms.

To exemplify this, we compute simulated runtimes of federated algorithms under a version of the
probabilistic straggler model from [38]. We model each client’s runtime as a random variable drawn
from a shifted exponential distribution. Such models were found to be good models of runtimes for
file queries in cloud storage systems [45] and mini-batch SGD on distributed compute systems [38].

In our model, we assume that the time a client requires to perform local training is some constant
proportional to the number of examples the client has, plus an exponential random variable. More
formally, let Nk denote the number of examples held by some client k, and let Xk denote the amount
of time required by client k to perform their local training in Algorithm 1. Then we assume that there
are constants α, λ > 0 such that

Xk − αNk ∼ Exp
(

1

λNk

)
.

Here λ is the straggler parameter. Recall that if X ∼ Exp(1/λ), then E[X] = λ. Therefore, we
assume that the expected runtime of client k equal αN plus some random variable whose expected
value is λN . Thus, larger λ means larger expected client runtimes. By convention, we can also
use λ = 0 in which case Xk = αNk. For a given round t of Algorithm 1, let Ct denote the cohort
sampled. Since Algorithm 1 requires all clients to finish before updating its global model, we model
the runtime Yt of round t as

Yt = max
k∈Ct

{Xk} .

Thus, the round runtime is the maximum of M shifted exponential random variables, where M is
the cohort size. Note that this only models the client computation time, not the server computation
time or communication time. Using this model, we plot the simulated runtime of FedAvg on various
tasks, for varying cohort sizes. For simplicity, we assume α = 1 in all experiments, and vary λ over
{0.1, 1, 10, 100}. To showcase how much longer the runtime of large-cohort training may be, we
present the simulated runtime, relative to M = 10. For a ∈ [0, 1], we plot the ratio of how long it
takes to reach a test accuracy of a with a cohort size of M , versus how long it takes to reach a with
M = 10. We give the results for CIFAR-100, EMNIST, Shakespeare, and Stack Overflow in Figures
25, 26, 27, 28, respectively.

When λ is small, we see that larger cohorts can obtain higher test accuracy in a comparable amount
of time to M = 10. However, when λ is large, large-cohort training may require anywhere from
5-10 times more client compute time. This is particularly important in cross-device settings with
lightweight edge devices, as the straggler effect (which essentially increases with λ) may be larger.
Note that we see particularly large increases in relative runtimes for smaller accuracy thresholds,
which suggests that the dynamic cohort strategy from Section 5 may be useful in helping mitigate
such issues.
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Figure 25: The relative amount of time required to reach given test accuracies on CIFAR-100 with
varying cohort sizes. We present the ratio of the runtime needed for M > 10 with respect to the time
needed for M = 10. Runtimes are simulated under a shifted exponential model with α = 1 and
varying λ.
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(d) λ = 100

Figure 26: The relative amount of time required to reach given test accuracies on EMNIST with
varying cohort sizes. We present the ratio of the runtime needed for M > 10 with respect to the time
needed for M = 10. Runtimes are simulated under a shifted exponential model with α = 1 and
varying λ.
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Figure 27: The relative amount of time required to reach given test accuracies on Shakespeare with
varying cohort sizes. We present the ratio of the runtime needed for M > 10 with respect to the time
needed for M = 10. Runtimes are simulated under a shifted exponential model with α = 1 and
varying λ.
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Figure 28: The relative amount of time required to reach given test accuracies on Stack Overflow
with varying cohort sizes. We present the ratio of the runtime needed for M > 10 with respect to the
time needed for M = 10. Runtimes are simulated under a shifted exponential model with α = 1 and
varying λ.

B.6 Pseudo-Gradient Norms

In this section, we present the norm of the server pseudo-gradient ∆ in Algorithm 1 with respect to
the number of communication rounds. We do this for varying cohort sizes and tasks across 1500
communication rounds. All plots give the `2 norm of ∆. The results are given in Figures 29, 30, 31,
32, 33, 34, and 35. These gives the results for FedSGD, FedAvg, FedAvgM, FedAdagrad, FedAdam,
FedLARS, and FedLamb (respectively).

We find that in nearly all cases, the results for FedSGD differ from all other algorithms. While there
is significant overlap in the pseudo-gradient norm for FedSGD across all cohort sizes (Figure 29),
any method that uses multiple local training steps generally does not see such behavior. The only
notable counter-example is FedAdagrad on EMNIST (Figure 32). Otherwise, both non-adaptive
and adaptive federated methods that use local training (such as FedAvg, FedAdam, and FedLamb) see
similar behavior: The pseudo-gradient norm is effectively stratified by the cohort size. Larger cohort
sizes lead to smaller pseudo-gradient norms, with little overlap. Moreover, as discussed in Section 4,
we see that after enough communication rounds occur, the pseudo-gradient norm obeys an inverse
square root scaling rule.
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Figure 29: Average pseudo-gradient norm of FedSGD versus the number of communication rounds,
for various tasks and cohort sizes M .
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Figure 30: Average pseudo-gradient norm of FedAvg versus the number of communication rounds,
for various tasks and cohort sizes M .
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Figure 31: Average pseudo-gradient norm of FedAvgM versus the number of communication rounds,
for various tasks and cohort sizes M .
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Figure 32: Average pseudo-gradient norm of FedAdagrad versus the number of communication
rounds, for various tasks and cohort sizes M .
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Figure 33: Average pseudo-gradient norm of FedAdam versus the number of communication rounds,
for various tasks and cohort sizes M .
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Figure 34: Average pseudo-gradient norm of FedLARS versus the number of communication rounds,
for various tasks and cohort sizes M .
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Figure 35: Average pseudo-gradient norm of FedLamb versus the number of communication rounds,
for various tasks and cohort sizes M .

B.6.1 Cosine Similarity of Client Updates

Recall that in Section 4, we showed that for FedAvg, client updates are nearly orthogonal on the
Stack Overflow task. In this section, we show that this holds across tasks. In Figure 36, we present
the average cosine similarity between distinct clients in each training round, for FedAvg and FedSGD.
Thus, given a cohort size M , at each round t we compute

(|M |
2

)
cosine similarities between client

updates, and take the average over all pairs. Formally, we compute, for each round t,

θt :=

(
|Ct|

2

)−1 ∑
i,j∈Ct
i 6=j

〈
∆t

i,∆
t
j

〉
‖∆t

i‖2‖∆t
j‖2

(5)

where Ct is the cohort of sampled clients in round t, and ∆t
k denotes the client update of client k ∈ Ct

(see Algorithm 1). Note that because we normalize, it does not matter whether we use clipping or not
(Algorithm 2). The results for θt with cohort size M = 50 are given in Figure 36.
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Figure 36: Average cosine similarity θt (as in (5)) between client updates ∆t
k with respect to the

number of communication rounds, for FedAvg on EMNIST with a cohort size of M = 50.

We see that in all cases, after a small number of communication rounds, θt becomes close to zero for
FedAvg. By contrast, θt is not nearly as small for FedSGD, especially in intermediate rounds. We
note that for EMNIST, the cosine similarity for FedSGD approaches that of FedAvg as T → 1500.

B.7 Server Learning Rate Scaling

In this section, we present our full results using the learning rate scaling methods proposed in
Section 5. Recall that our methods increase the server learning rate ηs in accordance with the cohort
size. To do so, we fix a learning rate ηs for some cohort size M . As in (3), for M ′ ≥M , we use a
server learning rate η′s

η′s = r

(
M ′

M

)
ηs

where r : R≥0 → R≥0 determines the scaling rate. In particular, we focus on r(a) =
√
a (square

root scaling) and r(a) = a (linear scaling). These rules both can be viewed as federated analogs of
learning rate scaling techniques used for large-batch training [20, 36]. We use them with a federated
version of the warmup technique proposed by Goyal et al. [20], where we linearly increase the server
learning rate from 0 to η′s over the first W = 100 communication rounds.

Despite the historical precedent for the linear scaling rule [20], we find that it leads to catastrophic
training failures in the federated regime, even with adaptive clipping. To showcase this, we plot the
accuracy of FedAvg on EMNIST with the linear scaling rule in Figure 37. We plot the test accuracy
over time, averaged across 5 random trials, for various cohort sizes M . While M = 50, 100 see
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similar convergence as in Figure 12, for M = 200, we saw one catastrophic training failure across all
5 trials. Using M ≥ 400, we found that all trials resulted in catastrophic training failures. In short,
linear scaling can be too aggressive in federated settings, potentially due to heterogeneity among
clients (which intuitively requires some amount of conservatism in server model updates).
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Figure 37: The test accuracy of FedAvg on EMNIST with the linear scaling rule, across 5 random
trials. The mean accuracy is given in bold, with the standard deviation indicated by the pale region.
We see that for M = 200, there are a number of catastrophic training failures, while for M ≥ 400,
all trials experienced catastrophic training failures.

By contrast, the square root scaling rule did not lead to such training failures. We plot the training
accuracy and test accuracy of FedAvg using the square root scaling rule in Figure 38. We plot this
with respect to the cohort size, with and without the scaling rule. We see that the performance of
the scaling rule is decidedly mixed. While it leads to significant improvements in training accuracy
for CIFAR-100 and Shakespeare, it leads to only minor improvements (or a degradation in training
accuracy) for EMNIST and Stack Overflow. Notably, while the training accuracy improvement also
led to a test accuracy improvement for CIFAR-100, the same is not true for Shakespeare. In fact, the
training benefits of the square root scaling there led to worse generalization across the board.
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Figure 38: The train accuracy (top) and test accuracy (bottom) of FedAvg using square root scaling
with warmup, versus no scaling, after training for 1500 communication rounds. Results are given for
various cohort sizes and tasks

B.8 Dynamic Cohort Sizes

In this section, we plot the full results of using the dynamic cohort size strategy from Section 5.
Recall that there, we use an analog of dynamic batch size methods for centralized learning, where the
cohort size is increased over time. We specifically start with a cohort size of M = 50, and double
every 300 communication rounds. If doubling would ever make the cohort size larger than the number
of training clients, we simply use the full set of training clients in a cohort.
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We plot the test accuracy of FedAdam and FedAvg using the dynamic cohort size, as well as fixed
cohort sizes of M = 50 and M = 400 (for CIFAR-100 and Shakespeare) or M = 800. In Figure 39,
the test accuracy is plotted with respect to the number of examples processed by the clients, in order
to measure the data-efficiency of the various methods. We find that while the dynamic cohort strategy
can help interpolate the data efficiency between small and large cohort sizes, obtaining the same data
efficiency as M = 50 for most accuracy thresholds, then transitioning to the data efficiency of larger
M .
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Figure 39: Test accuracy of FedAvg (top) and FedAdam (bottom) with respect to the total number
of examples. Both algorithms are applied to various tasks, with various fixed cohort sizes, and the
dynamically increasing cohort strategy.

In Figure 40, we plot the test accuracy of the methods discussed above with respect to the number
of communication rounds, in order to better visualize the generalization behavior of the dynamic
cohort strategy. We see that for FedAvg, there is little to no difference between the test accuracy for
M = 50 and M = 400 or M = 800, and that the dynamic cohort strategy generally lays in-between
these two. This is partially a consequence of the diminishing returns discussed in Section 3.2. For
FedAdam, we see that there are more returns to be had for increasing the cohort size. Moreover, we
see that the dynamic cohort strategy typically begins at the accuracy level of M = 50, and later
matches that of the larger cohort. This can be beneficial such as in the case of Stack Overflow, or
it can be detrimental as in the case of CIFAR-100, where we see that the dynamic cohort strategy
faces the generalization issues in Section 3.3. Thus, we see that the dynamic cohort strategy can help
improve the data efficiency of large cohort training, but cannot remedy issues of diminishing returns
or generalization failures.
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Figure 40: Test accuracy of FedAvg (top) and FedAdam (bottom) with respect to the total number of
communication rounds. Both algorithms are applied to various tasks, with various fixed cohort sizes,
and the dynamically increasing cohort strategy.
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B.9 Normalized FedAvg

Throughout Section 3, we saw that FedAvg faces a number of challenges when performing large-
cohort training, including diminishing returns. In Section 4 and Appendix B.6.1, we showed that part
of what makes FedAvg (with respect to FedSGD) are the statistical properties of its training dynamics:
In methods such as FedAvg (and more generally, algorithms that use multiple client update steps), the
client updates (∆t

k in Algorithm 1) are nearly orthogonal. This in turn suggests a partial explanation
for the challenges in Section 3. By averaging nearly orthogonal updates in large-cohort training, we
get a server pseudo-gradient (∆t in Algorithm 1) that is close to zero in norm (Appendix B.6.1). This
in turn means that the server does not make much progress at each communication round.

One straightforward solution would be to simply scale up the server learning rate. As we show in
Appendix B.7, this may not result in better training performance across all tasks. Moreover, some
server learning rate scaling techniques (such as linear scaling) can cause catastrophic training failures.
Such scaling strategies also introduce extra hyperparameters concerning how much scaling should
occur. In order to avoid these pitfalls, we propose a variant of FedAvg (normalized FedAvg) which
scales up the pseudo-gradient directly. That is, the server updates its model via

x′ = x− ηs
∆

‖∆‖2
.

Note that this introduces no new hyperparameters with respect to Algorithm 1. To test this method,
we compare it with unnormalized FedAvg across all tasks and multiple cohort sizes. Notably, we
do not re-tune any learning rates. We simply use the same learning rates tuned for unnormalized
FedAvg. The results are given in Figure 41.

We find that for most cohort sizes and tasks, normalized FedAvg attains better training accuracy
than FedAvg for larger cohorts. There are two notable exceptions. For EMNIST, normalized
FedAvg is slightly worse for all cohort sizes. For Stack Overflow, normalized FedAvg obtained
worse train accuracy for the largest cohort size. We also see that normalized FedAvg sees varying
generalization behavior across tasks. While the training benefits for CIFAR-100 translated to
improved generalization, the same is not true for Shakespeare. For Stack Overflow, we see that
the test accuracy mirrors the training accuracy, so that normalized FedAvg improves test accuracy
for M ≤ 400 but degrades test accuracy for M = 800. While normalized FedAvg did not lead to
improvements uniformly, we found that it achieved similar behavior to square root server learning
rate scaling (Figure 38), without introducing new hyperparameters or requiring re-tuned learning
rates. We believe the method therefore exhibits promise, and may be improved in future work.
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Figure 41: The train accuracy (top) and test accuracy (bottom) of FedAvg and the normalized variant
of FedAvg, after training for 1500 communication rounds. Results are given for various cohort sizes
and tasks.

B.10 Changing the Number of Local Steps

Cohort size is not the only factor determining the number of examples seen per round in Algorithm 1.
The number of client epochs E and the client batch size also affect this. To study this “effective batch
size” in FL, we fix the client batch size, and investigate how the cohort size and number of local steps
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simultaneously impact the performance of FedAvg. We fix a local batch size of 1 and vary the cohort
size over {16, 32, . . . , 1024}. We vary the number of local steps over {1, 2, 4, . . . , 256}. We plot the
number of rounds needed for convergence, and the final test accuracy in Figure 42. By construction,
each square on an anti-diagonal corresponds to the same number of examples per round.

In the left figure, we see that if we fix the cohort size, then increasing the number of local steps can
accelerate convergence, but only up to a point, after which catastrophic training failures occur. By
contrast, if we have convergence for some number of local steps and cohort size, convergence occurs
for all cohort sizes. Similarly, we see in the right hand figure that increasing the number of local
steps can drastically reduce generalization, more so than increasing the cohort size. In essence, we
see that the number of local steps obeys many of the same issues outlined in Section 3. Therefore,
correctly tuning the number of local steps in unison with the cohort size may be critical to ensuring
good performance of large-cohort methods.

Figure 42: The number of rounds for to reach a test accuracy of 70% (left) and the test accuracy after
1500 rounds (right). Results are for FedAvg on EMNIST with varying numbers of local steps (x-axis)
and cohort sizes (y-axis).
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