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A Training details

In this section, we first provide details about the adopted three kinds of noisy labels. Then, we
elaborate on the data preprocessing and the hyperparameter settings in our experiments.

A.1 Definition of noise

According to different correlations between noisy labels and clean labels, there are three kinds of
widely used label noise, namely symmetric class-dependent label noise, pairflip class-dependent
label noise, and instance-dependent label noise [9, 3, 10]. In the following, we first introduce one
basic concept: transition matrix [9], and then provide the details for all the three kinds of label noise,
respectively.

Transition matrix: The transition matrix T (x) is used to explicitly model the generation process
of label noise, where Tij(x) = Pr(Ȳ = j|Y = i,X = x) is the flip rate between the true label and
noisy label on given data x. X is the variable of instances, Y is the variable of clean labels, and Ȳ is
the variable of noisy labels. Tij(x) is the ij-th entry of the transition matrix T (x), which denotes the
probability of the instance x with clean label i being observed with a noisy label j.

Symmetric class-dependent label noise: Symmetric class-dependent label noise is generated with
symmetric class-dependent noise transition matrices. We set the flip rate α. Random flipping labels
may change to true labels, so the flip rate may include or exclude true labels. For the flip rate excluding
true labels, the diagonal entries of symmetric transition matrix are 1− α and the off-diagonal entries
are α/(c − 1). For the flip rate including true labels, the diagonal entries of symmetric transition
matrix are 1− (α× (c− 1)/c) and the off-diagonal entries are α/c.

Pairflip class-dependent label noise: Pairflip noise is a simulation of fine-grained classification
with noisy labels, where annotators may make mistakes only within very similar classes[13, 8]. The
label noise is generated with pairflip class-dependent noise transition matrices, which is defined as
follow. Let flip rate is α. The diagonal entries of a pairflip transition matrix are 1− α and the entities
for their adjacent classes, which the examples in a given class may be wrongly classified to, are α.

Instance-dependent label noise: We generate the instance-dependent label noise according to
Algorithm 1. More details about this algorithm can be found in [10].

A.2 Data preprocessing and experimental settings

Data preprocessing: For experiments on CIFAR-10/100 [5] without semi-supervised learning, we
use simple data augmentation techniques including random crop and horizontal flip. For experiments
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Algorithm 1: Instance-dependent Label Noise Generation
Input: Clean samples {(xi, yi)}ni=1; Noise rate τ .
1: Sample instance flip rates q ∈ Rn from the truncated normal distribution τN (τ, 0.12, [0, 1]);
2: Independently sample w1, w2, . . . , wc from the standard normal distribution N (0, 12);
3: For i = 1, 2, . . . , n do
4: p = xi × wyi ; // generate instance-dependent flip rates
5: pyi

= −∞; // control the diagonal entry of the instance-dependent transition matrix
6: p = qi × softmax(p); // make the sum of the off-diagonal entries of the yi-th row to be qi
7: pyi

= 1− qi; // set the diagonal entry to be 1− qi
8: Randomly choose a label from the label space according to possibilities p as noisy label ȳi;
9: End for.
Output: Noisy samples {(xi, ȳi)}ni=1

on CIFAR-10/100 with semi-supervised learning, except random cropping and horizontal flip, MixUp
[14] is also employed, which is a critical component of MixMatch [1]. For Clothing-1M [12], we first
resize images to 256 × 256, and then random crop to 224 × 224, following a random horizontal flip.

Hyper-parameters of PES: We adopt an Adam optimizer for T2 and T3 for accelerating the model
training and reducing the parameter turning, and T2 and T3 are chosen from {2, 5, 7}. Note that the
number of total training epochs includes T1, but excludes T2 and T3. To make PES work in large
datasets, we regard training 100, 000 examples as an epoch in Clothing1M experiments.

Hyper-parameters of semi-supervised learning: We keep all the hyper-parameters fixed for dif-
ferent levels of noise, and only adjust λu for different noisy settings, since the ratio of confident
examples (labeled data) and unconfident examples (unlabeled data) can vary greatly for different
noisy settings. Specifically, we set K = 2, T = 0.5, and λu is chosen from {5, 15, 25, 50, 75, 100}.
α begins with 4, and changes to 0.75 after 150th epoch. More details of hyper-parameters can be
found in Table 1 and Table 2.

Table 1: Training hyper-parameters for CIFAR-10/100 and Clothing-1M
CIFAR-10 CIFAR-100 Clothing-1M

architecture ResNet-18 PreAct ResNet-18 ResNet-34 PreAct ResNet-18 Pretrained Resnet-50
loss function CE MixMatch loss CE MixMatch loss CE

learning rate (lr) 0.1 0.02 0.1 0.02 5× 10−3

lr decay 100th & 150th Cosine Annealing 100th & 150th Cosine Annealing 20th & 30th
weight decay 10−4 5× 10−4 10−4 5× 10−4 10−3

batch size 128 128 128 128 64
training examples 45,000 50,000 45,000 50,000 1,000,000
training epochs 200 300 200 300 50

PES lr 10−4 10−4 10−4 10−4 5× 10−6

T1 25 20 30 35 20
T2 7 5 7 5 7
T3 5 - 5 - -

Table 2: Semi-supervised loss weight λu for CIFAR-10/100
Datasets / Noise Sym-20% Sym-50% Sym-80% Pairflip-45% Inst-20% Inst-40%

CIFAR-10 5 15 25 5 5 15
CIFAR-100 50 75 100 50 50 50

B Additional experiments

In this section, we provide more experimental results on CIFAR-100 and Fashion-MNIST to further
verify the hypothesize that noisy labels may have more severe impacts on the latter layers. We also
provide additional comparisons with baselines, which exploit ensemble networks.

In the first experiment, we adopt a dataset with more classes: CIFAR-100 and a deeper network:
ResNet-34 [4]. In addition, we adopt Fashion-MNIST [11], including 60,000 training images with
28x28 size and LeNet [2], which consists of two convolutional layers and three full-connected layers
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with ReLU activation. The learning procedure for CIFAR-100 and Fashion-MNIST is the same as
that for CIFAR-10 in the paper. Specifically, we first train the whole network on noisy data with
different training epochs. For the final layer, we directly report the overall classification performance.
For other selected layers, we frozen the parameters for the selected layer and previous layers, and
then reinitialize and optimize the rest layers with clean data, and the final classification performance
is adopted to evaluate the impact of noisy labels. We do not use image augmentation techniques for
Fashion-MNIST dataset.

(a) Symmetric 50% (b) Pairflip 45% (c) Instance 40%

Figure 1: We adopt ResNet-34 as the model on CIFAR-100 and evaluate the impact of noisy labels
on the representations from the 17-th layer, the 33-th layer, and the final layer. The curves present the
mean of five runs and the best performances highlight with dotted vertical lines.

(a) Symmetric 50% (b) Pairflip 45% (c) Instance 40%

Figure 2: We adopt LeNet as the model on Fashion-MNIST and evaluate the impact of noisy labels
on the representations from the 1-st layer, the 4-th layer, and the final layer. The curves present the
mean of five runs and the best performances highlight with dotted vertical lines. Note that vertical
lines are merged together for the 1-st layer and 4-th layer on Symmetric 50%, and vertical lines of the
1-st layer and the final layer are merged together on Instance 40%.

Figure 1 and Figure 2 demonstrate the impacts of noisy labels on different layers on CIFAR-100 and
Fashion-MNIST, respectively. From Figure 1, we can see that the drop of the green line (the final
layer) is the largest, the blue line (the 33-th layer) has a gradual decline, and the orange line (the
17-th layer) is relatively stable during the training process. These observations are similar to those
for CIFAR-10. The performance of 17-th layer in ResNet-34 is affected by noisy labels later and
less than that of the 9-th layer in ResNet-18. It is because there are more layers after the 17-th layer
in ResNet-34 than the 9-th layer. Similar trends are observable in Figure 2. The first layer is nearly
unaffected by noisy labels, and the performance of the final layer has a larger decline compared
with the 4-th layer. The learning speeds of different layers are unapparent in LeNet, since there are
only three hidden layers in LeNet, and the gradient of losses transfers much easier compared with
deeper networks. Another reason may be the simplicity of patterns in Fashion-MNIST without image
augmentation techniques, which leads the convolutional layers to learn fast.

In the paper, we compare our results with baselines evaluated with a single network. In this section,
we compare our method with state-of-the-art methods with ensemble two networks taken from the
original papers [6, 7]. We also adopt cross-entropy and MixUp [14] with a single network as baselines.
From Table 3, we can observe our results with a single network are comparable to results of baselines
with ensemble two networks. Specifically, on CIFAR-100, our method outperforms state-of-the-art
methods across all settings.
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Table 3: Comparison with state-of-the-art methods using ensemble two networks and semi-supervised
learning on CIFAR-10 and CIFAR-100 with symmetric label noise from different levels. Baseline
results are taken from [6] and [7]. The highest results are reported for all the methods.

Dataset CIFAR-10 CIFAR-100
Methods / Noise Sym-20% Sym-50% Sym-80% Sym-20% Sym-50% Sym-80%

CE 87.2 80.9 65.8 58.1 47.5 23.6
MixUp 93.5 88.4 73.6 69.7 57.9 34.69

DivideMix* 96.1 94.6 93.2 77.3 74.6 60.2
ELR+ 95.8 94.8 93.3 77.6 73.6 60.8

Ours (Semi) 96.1 95.3 93.3 77.7 74.9 62.3
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