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ABSTRACT

Inherently, robotic manipulation tasks are history-dependent: leveraging past con-
text could be beneficial. However, most existing Vision-Language-Action models
(VLAs) have been designed without considering this aspect, i.e., they rely solely
on the current observation, ignoring preceding context. In this paper, we propose
HAMLET, a scalable framework to adapt VLAs to attend to the historical context
during action prediction. Specifically, we introduce moment tokens that compactly
encode perceptual information at each timestep. Their representations are initial-
ized with time-contrastive learning, allowing them to better capture temporally
distinctive aspects. Next, we employ a lightweight memory module that integrates
the moment tokens across past timesteps into memory features, which are then
leveraged for action prediction. Through empirical evaluation, we show that HAM-
LET successfully transforms a state-of-the-art VLA into a history-aware policy,
especially demonstrating significant improvements on long-horizon tasks that re-
quire historical context. In particular, on top of GR00T N1.5, HAMLET achieves
an average success rate of 76.4% on history-dependent real-world tasks, surpassing
the baseline performance by 47.2%. Furthermore, HAMLET pushes prior art
performance from 64.1% to 66.4% on RoboCasa Kitchen (100-demo setup) and
from 95.6% to 97.7% on LIBERO, highlighting its effectiveness even under generic
robot-manipulation benchmarks. Project page: https://iclr-hamlet.github.io/

1 INTRODUCTION

Vision-Language-Action models (VLAs; Zitkovich et al. 2023; Kim et al. 2024; Black et al. 2025;
Pertsch et al. 2025; Li et al. 2024a; Qu et al. 2025; Bjorck et al. 2025b) have shown their promise in
robotic policy learning by leveraging large-scale pre-trained Vision-Language Models (VLMs; Beyer
et al. 2024; Chen et al. 2023; Driess et al. 2023; Karamcheti et al. 2024; Touvron et al. 2023) with
diverse robot-specific datasets (Walke et al., 2023; O’Neill et al., 2024; Khazatsky et al., 2024). They
typically adopt a single-frame assumption, predicting each action solely from the current observation.
However, such reliance on a current snapshot fundamentally limits their capability, since robotic
manipulation tasks are intrinsically history-dependent. For instance, consider a simple scenario of
placing an object on a table. The decision to move the arm depends on prior context—specifically,
whether the object has already been grasped. When restricted to the current frame, the policy may
struggle to determine the proper next action, particularly if the object is occluded.

Despite being a desirable property, incorporating history-awareness during pre-training is viewed
as a costly design choice. A major challenge is that leveraging historical context incurs substantial
computational overhead. For example, we observe that naı̈vely appending only four additional past
observation frames to the VLA input slows down the forward pass by ∼35% and increases peak
memory consumption by ∼3.6× (see Multi-frame in Table 4). In particular, the inflated memory
footprint further restricts scalability by reducing feasible batch sizes compared to the single-frame
setting. Together, these observations raise a key research question: How can we integrate history-
awareness into pre-trained VLAs without resorting to costly pre-training from scratch?

To tackle this problem, we propose HAMLET, a fine-tuning framework for VLAs that introduces
History-Aware Memory with LEarned Tokens. Our framework consists of two components: (a)
moment tokens, which summarize the instantaneous VLM representations at each timestep, and (b) a
memory module, which consolidates moment tokens across different timesteps to produce a temporally
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(a) History-dependent Long-horizon Tasks (b) Success Rates

Wait, where is the cube?The cube is under the blue cup…

GR00T N1.5

+ Multi-frame

+ HAMLET (ours)

37.5%

95.8%79.2%

62.5%

33.3% 70.8%

PartialFull

83.3%

87.5%

58.3% 91.7%

37.5%

95.8%

PartialFull

GR00T N1.5

+ Multi-frame

+ HAMLET (ours)

The blue cube was on the right… Wait, which cube to grasp next?

“Swap the two cubes, starting with the blue one.”

“Cover the cube with the nearest cup, then stack the other cup on top of it.” [ Cover and Stack ]

[ Swap Cubes ]

Figure 1: Examples of history-dependent long-horizon tasks. (a) Real-world tasks that involve
cases such as object occlusion (upper) or multi-step reasoning (lower) are inherently non-Markovian:
proper actions cannot be determined from the current observation alone. (b) Success rates on these
tasks show that HAMLET significantly outperforms both GR00T N1.5 and the naı̈ve multi-frame
baseline, demonstrating its ability to leverage historical context for reliable long-horizon control.

informed condition for action prediction. The moment tokens are appended to the VLM input at each
timestep and initialized with time-contrastive learning (Sermanet et al., 2018), which encourages
distinctiveness across timesteps. This initialization enables the moment tokens to emphasize task-
relevant dynamics while suppressing redundant information such as static backgrounds (see Figure 4
for details). Building on this, we incorporate a lightweight memory module that stores and integrates
moment token representations across timesteps. This design is motivated by the observation that not
all moments are equally informative; treating every timestep with equal importance can introduce
redundancy and obscure critical cues (see Moment Concat. in Table 5c).

To validate the effectiveness and generality of HAMLET, we conduct comprehensive experiments
across both real-world and simulation environments. We first evaluate HAMLET on the long-horizon,
real-world tasks that require reasoning over past trajectories. We show that HAMLET improves
performance by 47.2% over the naı̈vely fine-tuned VLA, which demonstrates the effectiveness
of exploiting historical information for real-world robot policy learning. We further examine the
generality and applicability of HAMLET across different VLA backbones. When fine-tuning GR00T
N1.5 (Bjorck et al., 2025a) on the RoboCasa (Nasiriany et al., 2024) Kitchen dataset, HAMLET
achieves an average success rate of 66.4%, compared to 64.1% for the baseline. Similarly, when
applied to CogACT (Li et al., 2024a) on the SimplerEnv-Bridge (Li et al., 2024b) dataset, HAMLET
attains 63.5%, substantially improving over the baseline performance of 52.1%. These results
highlight that incorporating history-awareness consistently yields benefits across diverse VLA policies,
and that HAMLET provides consistent improvements in a flexible, plug-in manner.

Contributions. Our contributions are as follows:

• Motivated by VLAs’ reliance on the current observation alone, we propose HAMLET, a plug-and-
play framework that integrates history-awareness into pre-trained VLAs.

• We introduce moment tokens, initialized with time-contrastive learning, to capture key temporal
cues at each timestep. Building on this, we design a lightweight memory module that selectively
aggregates these tokens across timesteps to produce history-aware features for action prediction.

• We validate HAMLET across both real-world and simulation benchmarks, achieving substantial
gains over state-of-the-art baselines. By alleviating backbone models’ reliance on the current
observation, HAMLET delivers consistent improvements, especially with the strongest benefits
on long-horizon tasks. Importantly, its backbone-agnostic design allows seamless and efficient
integration into diverse VLAs without requiring any additional large-scale pre-training.
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2 RELATED WORKS

Vision-Language-Action models (VLAs). Since collecting high-quality and large-scale robot
datasets is challenging, traditional robot learning (Shafiullah et al., 2022; Cui et al., 2022; Chi et al.,
2023; Lee et al., 2024) has relied on task-specific data, which cover only a narrow distribution of
environments, objects, and task instructions. To address this limitation, recent studies (Zitkovich et al.,
2023; Driess et al., 2023; Kim et al., 2024; Pertsch et al., 2025; Bjorck et al., 2025a; Li et al., 2024a;
Black et al., 2025) propose building generalist robot policies by utilizing internet-scale VLM priors
to low-level action prediction, thereby transferring semantic understanding to robotic control. Early
VLAs (Zitkovich et al., 2023; Kim et al., 2024; Driess et al., 2023) discretize the continuous action
space and directly predict actions as tokens, demonstrating that pre-trained VLMs can be adapted
to robot control. More recent approaches (Black et al., 2025; Bjorck et al., 2025b; Li et al., 2024a)
leverage VLM representations to condition action experts on diffusion or flow-matching, enabling
more accurate action prediction. For example, Black et al. (2025) conditions a flow-matching head
on VLM features to produce action chunks per step, and Li et al. (2024a) systematically compares
action modules, finding that diffusion action transformers scale favorably when conditioned on
VLM representations. However, these models typically generate actions based only on the current
observation, limiting their capability to accurately recognize the current state and determine precise
actions. In this work, we focus on recent pre-trained VLAs with diffusion-based action heads, and
demonstrate how our framework can enhance their performance by incorporating historical context.

Memory architectures. Traditionally, long-horizon tasks have been framed as non-Markovian
problems, requiring policies to integrate memory to leverage past observations and actions. In
reinforcement learning, recurrent policies (Hausknecht & Stone, 2015) and later Transformer-based
variants (Parisotto et al., 2020) introduced memory mechanisms that improved performance on
partially observable and long-horizon benchmarks. In natural language processing, explicit memory
architectures have been widely explored, ranging from end-to-end memory networks (Sukhbaatar
et al., 2015) to retrieval-based approaches (Khandelwal et al., 2019; Lewis et al., 2020), all designed
to enhance long-context reasoning and knowledge integration. These advances highlight the impor-
tance of dedicated memory modules for tasks requiring extended temporal or contextual awareness.
For VLAs, however, memory augmentation remains under-explored. As a concurrent effort, Shi
et al. (2025) proposes architectures inspired by human memory systems, trained from scratch, and
demonstrates promising improvements on temporally dependent tasks. Distinct from this line of work,
our approach augments pre-trained VLAs with a few learnable tokens and a lightweight memory
module, thereby directly allowing them to attend the history-awareness without retraining.

3 METHOD

In this section, we introduce HAMLET, a plug-in framework that adapts pre-trained Vision-Language-
Action models (VLAs) to attend the historical context. Formally, let ot = [I1t , . . . , I

n
t ] be the sequence

of visual observations at timestep t, and c be a task instruction. The VLA Fθ processes these inputs
through its Vision-Language Model (VLM) backbone to obtain a hidden representation ht:

ht = Fθ(ot, c). (1)

Then, the representation ht is used as a condition for the action expert Aψ to predict a sequence of k
future actions, namely action chunking (Zhao et al., 2023; Chi et al., 2023):

[at,at+1, . . . ,at+k−1] = Aψ(ht, st), (2)

where st denotes the robot’s proprioceptive state at timestep t. After executing the predicted action
sequence, the environment returns a new observation ot+k, which serves as the next input to the
VLA. Here, our goal is to augment ht with informative representations from previous timesteps
(i.e., ot−k,ot−2k, . . .), to enable the action expert to effectively utilize long-horizon context. To
achieve this goal, we propose two complementary components: (i) moment tokens, which compress
the information at each timestep into a compact representation (see Section 3.1), and (ii) a memory
module, which aggregates moment tokens across timesteps to yield a temporally-enriched condition
for action prediction (see Section 3.2). The overall framework is illustrated in Figure 2.
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Figure 2: An overview of HAMLET. Building on a pre-trained VLA, HAMLET adds two key
components: moment tokens, appended to the VLM input and initialized with time-contrastive
learning to capture task-relevant representations at each timestep, and a lightweight memory module
that aggregates these tokens across timesteps for history-aware action prediction.

3.1 CONTEXT COMPRESSION VIA MOMENT TOKENS

To leverage historical context, we first consider how to effectively store information from each
timestep. Retaining the raw visual observation ot at every timestep is suboptimal: it incurs high
latency and memory costs (see Table 4 in Section 4.3) and often contains redundant or static elements
that might provide irrelevant signal (Xu et al., 2025; Yang et al., 2025). To address this, we propose
to compress the observation at each timestep into a concise representation that preserves task-relevant
information while filtering out redundancy. This motivates the our design of moment tokens.

Use of moment tokens. At each timestep t, we append a set of learnable moment tokens mt ∈ Rnm×d

to the input sequence of the VLM, where nm is the number of tokens and d is the embedding
dimension. Given a visual observation ot and task instruction c, we append moment token mt to
them and feed the combined input to the VLM encoder Fθ to produce a hidden representation:

[ht;m
′
t] = Fθ([ot, c;mt]), (3)

where [ · ; · ] denotes concatenation of token sequences. Along with the hidden states ht, we extract
the representation m′

t of moment tokens, which act as compact, context-aware summaries of the
scene at timestep t. Due to the causal attention operator in the VLM, moment tokens attend to the
current visual observation ot and the task instruction c. As a result, m′

t serves as a compressed
representation of each timestep, which subsequently be stored and aggregated by the memory module.

Time-contrastive learning. To encourage moment tokens to encode temporally discriminative cues
at each timestep, we draw inspiration from time-contrastive network (Sermanet et al., 2018; Nair
et al., 2022; Ma et al., 2023), while adapting the design of positive pairs to image-augmented samples
with photometric, blur, noise, and occlusion perturbations. For a trajectory [o0, . . . ,oT−1] and task
instruction c, we extract moment token representations m′

t at each timestep using Eq. (3).

To construct the contrastive objective, for each timestep t we form an anchor from the current
observation ot. We then generate a positive z+t from an augmented view of the same observation
and a hard negative z−t from a different timestep t′ ̸= t within the same trajectory. Formally, let
zt = g(m′

t) denote the projected moment-token representation produced by a projection head g(·).
We then optimize the following time-contrastive learning objective:

LTCL(zt, z
+
t ) = −

B∑
t=1

log
exp

(
sim(zt, z

+
t )/τ

)
exp

(
sim(zt, z

+
t )/τ

)
+ exp

(
sim(zt, z

−
t )/τ

) , (4)

where sim(a,b) denotes cosine similarity and τ is a temperature hyperparameter. The summation
indexes the B anchors in the minibatch. This initialization encourages the moment tokens to align with
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representations from the same timestep while remaining discriminative across timesteps, enabling
mt to capture unique, timestep-specific cues while suppressing static components. During this stage,
we freeze the VLM Fθ to ensure that the loss does not distort its pre-trained representation.

3.2 MEMORY CONSOLIDATION VIA MEMORY MODULE

We now present a memory module to integrate the moment token representations m′
t across timesteps

for action prediction. We observe that simply concatenating these representations does not directly
improve performance (see Moment Concat. in Table 5c). Hence, we employ a lightweight Transformer
Mϕ that selectively attends to informative past timesteps while ignoring less relevant ones.

Design of memory module. To incorporate historical context beyond current timestep, we introduce
a memory module Mϕ that aggregates moment token representations across timesteps. Specifically,
we employ a shallow Transformer (Vaswani et al., 2017) that attends over past moment tokens via
causal self-attention. We form a history matrix by stacking the most recent T moment tokens:

M′ = [m′
t−k(T−1); . . . ; m

′
t−k; m

′
t] ∈ RL×d, (5)

where k is the action-chunk length from Eq. (2), T is the history length, and L = T · nm is the total
number of tokens. From M′, the memory module applies standard self-attention:

Q = M′Wq , K = M′Wk, V = M′Wv , H = softmax
(

QK⊤
√
d

+C
)
V, (6)

where C is a causal mask ensuring the proper encoding for sequential trajectory. H is mapped
through the Transformer’s output projection, producing M̃′ ∈ RL×d. Then, we take the last nm rows
of M̃′, denoted m̃′

t, as the history-augmented moment token representation for timestep t.

Integration into action prediction. The history-augmented feature m̃′ is concatenated with the
original VLM representation ht and fed into the action expert Aψ to predict the next k actions.

[at,at+1, . . . ,at+k−1] = Aψ([ht; m̃
′], st). (7)

The overall training procedure follows that of standard VLA models, where the pipeline is trained
end-to-end with the action prediction loss (Bjorck et al., 2025b; Li et al., 2024a; Black et al., 2025).

4 EXPERIMENTS

We design our experiments to investigate the following questions:

• Does applying HAMLET to existing VLAs enhance performance on long-horizon, real-world tasks
that require reasoning over past trajectories? (Table 1 in Section 4.2)

• Is HAMLET also beneficial on generic robot-manipulation benchmarks? (Table 2, 3 in Section 4.2)
• Can HAMLET be seamlessly applied across different pre-trained VLAs? (Table 3 in Section 4.2)
• How does HAMLET perform in terms of computational overhead, effective design choices, and

transferability to unseen datasets? (Table 4, 5, 6 in Section 4.3, respectively)

4.1 EXPERIMENTAL SETUPS

Datasets. We evaluate HAMLET on real-world tasks that require reasoning over past trajectories, as
well as on diverse simulation benchmarks (Figure 5). In the real-world environment, we design three
handcrafted tabletop tasks: (i) Pick-and-Place Twice, where the robot moves a cube between two
sides twice; (ii) Cover-and-Stack, where the robot covers a cube with one cup and then stacks it with
another; and (iii) Swap Cubes, where the robot swaps the positions of two cubes using an auxiliary
site. For the simulation environment, we conduct experiments on three widely-used benchmarks:
RoboCasa (Nasiriany et al., 2024) Kitchen, LIBERO (Liu et al., 2023) and SimplerEnv-Bridge (Li
et al., 2024b), which consist of multi-step household manipulation tasks spanning diverse objects and
configurations. Further details including real-world robot setups are provided in Appendix A.2.

Baselines. We design baseline comparisons according to the target benchmark. We primarily evaluate
on GR00T N1.5 (Bjorck et al., 2025b) and further assess generalization on CogACT (Li et al., 2024a).
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(a) Pick-and-Place Twice

(b) Cover-and-Stack

Should release, but carries away!

Approaches the same cup again!

Properly reaches the opposite.

Properly released.

Figure 3: Example rollouts of real-world tasks. We present example rollouts executed by our
HAMLET and GR00T N1.5, respectively. While HAMLET predicts proper next actions, in (a)
GR00T N1.5 is confused about whether it should lift or release the cube, and in (b) it fails to identify
which cup has a cube underneath, due to the absence of historical context.

Table 1: Real-world evaluation results. We report the success rate (%, over 24 trials per task) on
three real-world tasks: partial success rates for columns (PnP Once, Cover Cube, Stage Cube), and
‘Success’ for full completion. Bold and underline indicate the best and runner-up results, respectively.

Pick-and-Place Twice Cover-and-Stack Swap Cubes

Method History? PnP Once Success Cover Cube Success Stage Cube Success Avg.

π0 ✗ 54.2 25.0 87.5 58.3 83.3 12.5 31.9
π0-FAST ✗ 37.5 20.8 54.2 12.5 66.7 4.2 12.5
GR00T N1 ✗ 54.2 25.0 79.2 33.3 75.0 33.3 30.6

GR00T N1.5 ✗ 54.2 12.5 62.5 37.5 87.5 37.5 29.2
+ Multi-frame ✓ 79.2 45.8 70.8 33.3 91.7 58.3 45.8
+ HAMLET (Ours) ✓ 91.7 66.7 95.8 79.2 95.8 83.3 76.4

For real-world tasks and simulation benchmarks (RoboCasa Kitchen and LIBERO), we compare
HAMLET on GR00T N1.5 with representative baselines: π0 (Black et al., 2025), π0-FAST (Pertsch
et al., 2025), and GR00T N1 (Bjorck et al., 2025b). On SimplerEnv-Bridge, we evaluate HAMLET
on CogACT against the reported performances of OpenVLA (Kim et al., 2024), Octo (Team et al.,
2024), RoboVLM (Liu et al., 2025) and SpatialVLA (Qu et al., 2025). For comparison with methods
that utilize historical context, we implement the multi-frame baseline, which stores past observation
frames and concatenates them into the VLA input (see Appendix A.3 for details).

Implementation details. We apply HAMLET to each VLA following the original fine-tuning setup
of that model, without heuristic hyperparameter tuning. Instead, we adopt the training configurations
specified for each backbone (e.g., learning rate, optimizer, and freezing of the VLM backbone). By
default, we use moment tokens of length 4, a 2-layer Transformer as the memory module, and a
history length of 4. Full hyperparameters and implementation details are provided in Appendix A.3.

4.2 MAIN RESULTS

Real-world evaluation. For real-world environment, we train each model for each task independently
and evaluate their performance by averaging the success rates over 24 trials per task. For each task,

6
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Table 2: Simulation benchmark results on GR00T N1.5. We compare HAMLET with baseline
methods on RoboCasa Kitchen and LIBERO. For RoboCasa Kitchen, we report the average success
rate (%) across 24 tasks with models trained using 30, 100, or 300 demonstrations per task. For
LIBERO, each metric is the average success rate (%) across 10 tasks per suite, with training performed
jointly on all suites. All the results are reproduced by us, except for those of GR00T N1 on RoboCasa
Kitchen. Bold and underline indicate best and runner-up results, respectively.

RoboCasa Kitchen (# of demos) LIBERO (task suite)

Method 30 100 300 Spatial Object Goal Long Avg.

π0 47.8 58.7 62.5 97.2 97.2 93.6 89.2 94.3
π0-FAST 29.8 60.2 63.6 96.0 96.4 91.6 85.0 92.3
GR00T N1 17.4 32.1 49.6 95.6 97.6 94.2 89.6 94.3

GR00T N1.5 47.8 62.6 64.1 98.2 99.4 97.2 87.8 95.6
+ Multi-frame 44.0 59.3 60.8 81.4 97.2 89.4 79.4 86.8
+ HAMLET (Ours) 52.5 65.4 66.4 99.0 100.0 99.2 92.2 97.7

Table 3: Simulation benchmark results on CogACT. We compare HAMLET with baseline methods
on the SimplerEnv-Bridge benchmark. Each metric reports the success rate (%) on four WidowX
tasks in SimplerEnv, with separate reporting for grasp success and full success. ‘Avg.’ denotes the
average full success rate (%) across the four tasks, and all CogACT results are faithfully reproduced
by us. Bold and underline indicate best and runner-up results, respectively.

Spoon on Towel Carrot on Plate Stack Block Eggplant in Basket

Method Grasp Success Grasp Success Grasp Success Grasp Success Avg.

OpenVLA 4.1 0.0 33.3 0.0 12.5 0.0 8.3 4.1 1.0
Octo-Base 34.7 12.5 52.8 8.3 31.9 0.0 66.7 43.1 16.0
Octo-Small 77.8 47.2 27.8 9.7 40.3 4.2 87.5 56.9 30.0
RoboVLM 54.2 29.2 25.0 25.0 45.8 12.5 58.3 58.3 31.3
SpatialVLA 20.8 16.7 29.2 25.0 62.5 29.2 100.0 100.0 42.7

CogACT 87.5 58.3 41.7 37.5 70.8 20.8 91.7 91.7 52.1
+ Multi-frame 83.3 50.0 79.2 50.0 70.8 20.8 70.8 70.8 47.9
+ HAMLET (Ours) 91.7 75.0 83.3 62.5 75.0 16.7 100.0 100.0 63.5

partial success rates are also reported, where the criteria are: (i) Pick-and-Place Once: pick and place
the cube at the correct site once; (ii) Cover Cube: cover the first cube with the nearest cup; and (iii)
Stage Cube, stage the a cube to the auxiliary site. As shown in Table 1 and Figure 3, the base model
(GR00T N1.5) struggles with these tasks, achieving only 12.5% success on Pick-and-Place Twice and
often becoming confused about which direction to move (see more rollouts in Appendix B.2). Notably,
applying HAMLET to GR00T N1.5 yields substantial improvements across all tasks, achieving an
average improvement of 47.2% and underscoring its effectiveness in leveraging historical context.

Simulation benchmarks. To validate generalizability of HAMLET across generic benchmarks,
we evaluate it on the standard simulation benchmarks, RoboCasa (Nasiriany et al., 2024) and
LIBERO (Liu et al., 2023). As shown in Table 2, naı̈vely extending GR00T N1.5 with multi-frame
inputs degrades the baseline performance by 3.3% in RoboCasa (100 demos) and 8.8% in LIBERO.
This highlights an inherent weakness of this approach: by conditioning only on consecutive frames
during training, the model struggles to generalize to test environments with dynamically varying
observations. On the other hands, HAMLET, when applied on top of GR00T N1.5, successfully
improves performance across benchmarks: in LIBERO, it pushes the prior best score 95.6%, near-
saturated success rate—up to 97.7%. This supports the advantage of our design: since HAMLET still
receives single-frame inputs via external memory module, it effectively exploits historical context
while preserving single-frame VLA’s generalizability.

Generalization to other VLAs. We further validate the scalability of our framework in transforming
existing VLAs into history-aware policy beyond GR00T N1.5. Specifically, we consider CogACT
(Li et al., 2024a) as base model, which is another pre-trained VLA based on diffusion policy, on the
Simpler-WidowX simulation benchmark (Walke et al., 2023). Table 3 reports both partial and full
success rates across four tasks. Similar other simulation results (e.g., Table 2), the multi-frame baseline
fails to consistently improve success rate across tasks, possibly due to the its pool generalizability. In
other hands, HAMLET still demonstrates clear improvements: it not only improve partial success
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(a) Moment token attention over images (b) Memory attention across timesteps (at timestep t)

Attention
weights

Figure 4: What does the memory network memorize? (a) Visualization of self-attention map of
moment tokens over input images inside the VLM, showing that they concentrate strongly on task-
relevant regions. (b) Normalized self-attention weights of the memory module across the moment
token sequence, indicating which timesteps contribute most to the memory features.

Table 4: Efficiency analysis. Average latency and peak memory usage measured on RoboCasa
datasets. Both metrics are computed at each timestep within an episode and then averaged. For fair
comparison, memory for original VLA parameters is excluded, except for the memory module in
HAMLET. All measurements were on an NVIDIA A100 GPU. ↓ indicates lower values are better.

Method History Length Latency (ms, ↓) Peak memory (MB, ↓)

GR00T N1.5 1 80.5 (1.00×) 289 (1.00×)

+ Multi-frame 4 108.5 (1.35×) 1051 (3.64×)
+ HAMLET (Ours) 4 82.4 (1.02×) 566 (1.96×)

+ Multi-frame 8 193.0 (2.40×) 2023 (7.00×)
+ HAMLET (Ours) 8 85.8 (1.07×) 578 (2.00×)

rates across all tasks but, more importantly, significantly improves final task completion, achieving
an average full success rate of 63.5%, compared to the original 52.1%. These highlights HAMLET’s
flexibility as plug-and-play fine-tuning framework, without the need for costly re-training.

4.3 MORE ANLAYSIS

We further analyze the individual components in HAMLET and its efficiency over baselines. Through-
out this section, unless otherwise specified, we consider the GR00T N1.5 on RoboCasa (100 demos).

What does the memory module memorize? We qualitatively analyze (a) how the proposed
moment tokens encode information at each timestep and (b) how the memory module processes past
information. First, we confirm that the moment token attends more to task-relevant parts that change
over timesteps and less to static parts. Indeed, as shown in Figure 4(a), higher attention values of
the moment token concentrate on the gripper and objects that are associated with task success, while
lower attention values are assigned to background regions. This is possibly due to the initialization
via time-contrastive loss (see Section 3.1), which encourages the tokens to extract distinguishable
features over time. Next, we observe that the memory module selectively attends to past information
depending on the context within the episode. As shown in Figure 4(b), in the Cover-and-Stack task,
at the moment when it is necessary to decide which cup to approach after the cube is covered with
a cup, the memory module assigns higher attention to the past timestep when the blue cube was
previously visible. Additional qualitative results are provided in Appendix B.2.

Efficiency analysis. We analyze the efficiency of HAMLET by comparing with the multi-frame
baseline which naı̈vely appends past observation frames, under varying history lengths. Specifically,
we measure average latency (ms) and average peak GPU memory usage (MB) per environment
timestep in the RoboCasa simulation. As shown in Table 4, the multi-frame baseline incurs substantial
overhead in both metrics. For example, at a history length of 8, it requires roughly 2.4× greater
latency and 7× higher memory than vanilla inference. In contrast, HAMLET shows only minimal
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Table 5: Ablation study. Average success rate (%) on RoboCasa (100 demos) when selectively en-
abling different components of HAMLET. Moment Concat. concatenates all moment tokens without
a memory module, whereas the Transformer-based memory yields the best overall performance.

Moment Memory
Token TCL Module Avg.

✗ ✗ ✗ 62.6
✓ ✗ ✗ 63.1
✓ ✓ ✗ 63.4
✓ ✗ ✓ 64.8
✓ ✓ ✓ 65.4

(a) Component analysis.

Token Length Avg.

1 64.3
4 65.4
8 66.4

16 65.9
32 62.7
64 62.5

(b) Moment token length.

Method Avg.

No Memory 62.6
Moment Concat. 62.7
RNN 64.5
LSTM 65.0
GRU 64.3
Transformer 65.4

(c) Memory architecture.

overheads across history lengths, e.g., 1.02× at length 4 and 1.07× at length 8. These results
demonstrate the clear advantage of HAMLET over the multi-frame baseline in terms of efficiency.

Ablation study. We perform ablations on HAMLET to study the individual roles of its components,
moment token length, and memory design. First, to assess the contribution of each component, we
conduct an ablation study by removing key components one at a time: (i) the use of moment tokens, (ii)
the initialization of Time-Contrastive Learning (TCL), and (iii) the presence of the memory module.
In Table 5a, we confirm that removing the memory module leads to the largest performance drop,
thereby confirming its critical role. We also observe that removing TCL-initialization consistently
decreases performance, regardless of whether the memory module is used. Next, we examine the
effect of moment token length (default = 4). Table 5b shows the performance improves as the length
increases up to 8, but then gradually decreases beyond this point. Lastly, to understand the effect of
design choices for memory module, we compare several architectures: (i) Moment Concat., which
naı̈vely concatenates past moment tokens without a memory module, (ii) RNN (Graves, 2012), LSTM
(Hochreiter & Schmidhuber, 1997), and GRU (Cho et al., 2014), which are recurrent variants that
utilize a single accumulated hidden state, (iii) Transformer, which we used in our experiments. From
Table 5c, we find that the Transformer achieves the highest average success rate among the memory
architectures. Interestingly, we observe that Moment Concat. yields almost no gains over the baseline,
whereas other memory-based methods have shown performance gains.

Table 6: Generalization of memory module. The
memory module is trained with the dataset left of
the arrow. A LIBERO-pretrained module provides
gains for manipulation on RoboCasa, identifying
that the learned memory representations can gener-
alize across embodiment datasets.

Method Avg.

GR00T N1.5 62.6
+ HAMLET (LIBERO → RoboCasa) 64.5
+ HAMLET (RoboCasa → RoboCasa) 65.4

Generalization capability. We investigate
whether the memory module in our framework
can transfer to unseen tasks, under the hy-
pothesis that it learns generalizable knowledge
for identifying which information from past
timesteps is important, not limited to a specific
dataset. To verify this, we first train the memory
module and then freeze it while evaluating on
different datasets. Specifically, we first train the
memory module on LIBERO and then transfer
it directly to RoboCasa. As shown in Table 6,
even in this setup, HAMLET achieves a success
rate comparable to the in-distribution setting, where both training and evaluation are performed on
RoboCasa. This demonstrates the practical flexibility of HAMLET to generalize across datasets,
while eliminating the additional training cost for memory module adaptation.

5 CONCLUSION

In this work, we address the limitation of existing Vision-Language-Action models (VLAs), which
typically rely on the current observation while ignoring past context. We propose HAMLET, a simple
yet effective framework that enables pre-trained VLAs to leverage historical information without
costly retraining from scratch. By introducing a lightweight memory module that integrates learnable
moment tokens, HAMLET achieves significant improvements on long-horizon real-world tasks and
standard simulation benchmarks, while maintaining computational efficiency. We hope our approach
paves the way toward leveraging history-awareness in off-the-shelf VLA policies to tackle more
complex robotic manipulation tasks reliably and effectively in practice.
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REPRODUCIBILITY STATEMENT

We provide full hyperparameter and implementation details in Section 4 and Appendix A.
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A EXPERIMENTAL DETAILS

A.1 MODEL DETAILS

In our experiments, we evaluate diffusion-based VLAs: GR00T N1 (Bjorck et al., 2025b)1, GR00T
N1.5 (Bjorck et al., 2025a)2, π0 (Black et al., 2025)3, π0-FAST (Pertsch et al., 2025)4, and Co-
gACT (Li et al., 2024a)5. All checkpoints are obtained from their official repositories.

A.2 DATASETS

We evaluate HAMLET across both real and simulation environments, as demonstrated in Figure 5.

RoboCasa LIBERO SimplerEnv

Real-World Simulation

PnP Twice Cover-and-Stack Swap Cubes

Figure 5: Evaluation environments. Left: Real-world evaluation comprises three tabletop tasks,
which especially require awareness on historical context. Right: Simulation benchmarks include
RoboCasa (Nasiriany et al., 2024) Kitchen, LIBERO (Liu et al., 2023), and SimplerEnv-Bridge (Li
et al., 2024b), which consist of diverse indoor manipulation tasks.

Real-world environment. As shown in Figure 6, we use a Franka Research 3 robot arm equipped
with a Robotiq 2F-85 gripper, following the DROID (Khazatsky et al., 2024) setup. Two camera
views are provided: one mounted on the table and another on the wrist. On this real-robot platform,
we design three handcrafted tabletop tasks as illustrated in Figure 7: (i) Pick-and-Place Twice, where
the robot moves a cube between two sides twice; (ii) Cover-and-Stack, where the robot covers a cube
with the nearest cup and then stacks another cup on top; and (iii) Swap Cubes, where the robot swaps
the positions of two cubes using an auxiliary site. For each task, we collect 50 demonstrations for
training, and report frame statistics in Table 7. Since trajectories are on average about 268 frames long,
we evaluate each trial with a maximum limit of 700 timesteps: if the task has not been completed by
then, the episode is counted as a failure.

(a) Front view (b) Side view (c) Camera views

Robotiq 2F-85 Gripper

Zed Mini Wrist Stereo Camera

Franka Research 3
7DoF Robot Arm

Adjustable Zed2 Stero Camera

Exterior Wrist

Figure 6: Real-robot platform. We specify the robot specifications and multi-camera views.

1https://huggingface.co/nvidia/GR00T-N1-2B
2https://huggingface.co/nvidia/GR00T-N1.5-3B
3gs://openpi-assets/checkpoints/pi0_base
4gs://openpi-assets/checkpoints/pi0_fast_base
5https://huggingface.co/CogACT/CogACT-Base
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Pick-and-Place Twice

Start! Pick up cube Release it Place it back!Move it to opposite side Pick it up again

Partial Full

Cover-and-Stack

Start!

Partial Full

Pick up cup Move to other cup Stack it!Cover cube Move it opposite side

Swap Cubes

Start!

Partial Full

Move green cubePick up blue cube Move blue cube!Stage it

Figure 7: Real-world tasks. We design three history-dependent real-world tasks. Each partial criteria
(Pick-and-Place Once, Cover Cube, Stage Cube) is described as the corresponding frame.

Table 7: Dataset statistics for real-world tasks. For each real-world dataset, we present the mean,
maximum, and standard deviation of frame counts per episode. These statistics provide a basis for
determining an appropriate maximum timestep limit during evaluation.

Task Mean #frames Max #frames Std #frames

Pick-and-Place Twice 261 350 25.1
Cover-and-Stack 230 270 24.2
Swap Cubes 312 361 20.8

Simulation benchmarks. We evaluate HAMLET on three standard simulation benchmarks: (i)
RoboCasa (Nasiriany et al., 2024), (ii) LIBERO (Liu et al., 2023) using GR00T N1.5, and (iii)
SimplerEnv-Bridge (Walke et al., 2023) using CogACT. RoboCasa is a suite of kitchen manipulation
tasks, comprising 24 tasks across 120 scenes. Following Bjorck et al. (2025a), we split the dataset
into training and evaluation sets, evaluating each task over 50 episodes. LIBERO is designed to
benchmark multi-task and lifelong robot learning, and includes 40 tasks grouped into four suites
(Spatial, Object, Goal, and Long). Both RoboCasa and LIBERO use a Franka robot, and we adopt
their officially released code for training and evaluation. Lastly, for SimplerEnv-Bridge, focused on
real-to-simulation transfer, we use the BridgeV2 dataset (Walke et al., 2023) with a WidowX robot.

A.3 IMPLEMENTATION

Moment token and memory module. Across experiments, we set the sequence length of moment
tokens to 4 and use a 2-layer Transformer as the memory module. For the Transformer implementation,
we adapt the LLaMA codebase from Hugging Face.6 To initialize the moment tokens via Time-
Contrastive Learning (TCL), we employ photometric image augmentations—specifically brightness,
contrast, and color jitter—applied stochastically to generate positive samples.

6https://huggingface.co/docs/transformers/en/model_doc/llama
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Multi-frame baseline. We follow the approach of multi-frame policies (Team et al., 2024; Liu et al.,
2025) in handling historical observations to construct a naı̈ve multi-frame baseline. For GR00T N1.5,
we concatenate past observation frames across the three original views, i.e., left, right, and wrist. For
CogACT, since the original VLM is designed to process only a single view per timestep, we instead
use a its cognition token and concatenate it to condition the action expert.

A.4 TRAINING DETAILS

Based on the official training recipes (Bjorck et al., 2025a; Li et al., 2024a), we fine-tune GR00T
N1.5 and CogACT.

• GR00T N1.5: Fine-tuned with the memory module for 60k steps using a batch size of 32 and a
learning rate of 1e-5. Initialization of moment tokens with TCL is performed for up to 30k steps
with a batch size of 64 and the same learning rate. During fine-tuning, both the VLM and moment
tokens are kept frozen.

• CogACT: Fine-tuned with the memory module for 20k steps using a batch size of 32 and a learning
rate of 2e-5. Initialization of moment tokens with TCL is performed for up to 30k steps with a
batch size of 64 and the same learning rate, but training is terminated at 10k steps once the loss
converges. During fine-tuning, both the VLM and moment tokens remain trainable.

In both cases, we use a default history length of 4. For all other baselines, including π0, π0-FAST,
and GR00T N1, we also follow their official training codes.

A.5 COMPUTATIONAL RESOURCES

• GR00T N1.5: Experiments is conducted on NVIDIA A100 80GB GPUs. Fine-tuning with the
memory module on 4 GPUs requires ∼16 hours, comparable to the standard training time of ∼14
hours. Initialization of moment tokens with TCL adds ∼5 hours on 2 GPUs.

• CogACT: Experiments is conducted on NVIDIA H200 141GB GPUs. Fine-tuning with the memory
module on 4 GPUs take ∼9 hours, compared to ∼4 hours for the standard setup. TCL-initialization
requires ∼9 hours on 2 H100 GPUs.

B MORE EXPERIMENTAL RESULTS

B.1 QUANTITATIVE RESULTS

We present the complete RoboCasa metrics in Table 8, including the per-task success rates summarized
in Table 2 for HAMLET and GR00T N1.5.

B.2 QUALITATIVE RESULTS

We provide additional qualitative results to better understand the main components of HAMLET.

Time-Contrastive Learning (TCL). To analyze the effect of Time-Contrastive Learning (TCL) on
the moment token, we visualize the self-attention maps on RoboCasa, comparing randomly initialized
tokens with TCL-initialized ones. As shown in Figure 8, randomly initialized moment tokens attend
to sparsely distributed regions, including background areas that remain static across timesteps. In
contrast, TCL-initialized moment tokens focus on more task-relevant regions related to successful
execution. For example, we observe that the object to be grasped by the gripper tends to receive
higher attention values than other regions.

Memory module. As explored in Figure 4, we further provide examples of how our memory module
attends to historical context. Specifically, we visualize the attention maps of the memory module
during rollouts in the Swap Cubes task, where the robot swaps the blue cube with the green cube.
In the left side of Figure 9, we confirm that the memory network attends to the key past timestep,
which is crucial for determining the next action: for example, when deciding which cube to pick next,
the memory module highly attends to the past timestep when the blue cube was previously placed
down. Interestingly, the attention across past timesteps remains low when historical information is
less critical, e.g., during the initial move of the blue cube, as shown on the right side of Figure 9.
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Table 8: Full results on RoboCasa Kitchen with different dataset size.

GR00T N1.5 GR00T N1.5 + HAMLET

Task (PnP = Pick-and-Place) 30 demos 100 demos 300 demos 30 demos 100 demos 300 demos

Close Double Door 46.0 80.0 90.0 58.0 82.0 82.0
Close Drawer 94.0 97.0 96.0 100.0 96.0 100.0
Close Single Door 88.0 94.0 98.0 96.0 94.0 96.0
Coffee Press Button 88.0 83.0 76.0 66.0 84.0 90.0
Coffee Serve Mug 62.0 63.0 58.0 70.0 68.0 76.0
Coffee Setup Mug 24.0 29.0 28.0 30.0 28.0 26.0
Open Double Door 70.0 76.0 84.0 68.0 86.0 96.0
Open Drawer 40.0 71.0 68.0 48.0 74.0 68.0
Open Single Door 54.0 69.0 78.0 58.0 82.0 84.0
PnP from Cab to Counter 22.0 51.0 50.0 26.0 46.0 54.0
PnP from Counter to Cab 36.0 49.0 50.0 46.0 48.0 56.0
PnP from Counter to Microwave 26.0 20.0 26.0 20.0 30.0 16.0
PnP from Counter to Sink 38.0 60.0 52.0 50.0 56.0 42.0
PnP from Counter to Stove 44.0 52.0 68.0 24.0 54.0 64.0
PnP from Microwave to Counter 22.0 40.0 44.0 24.0 24.0 24.0
PnP from Sink to Counter 60.0 60.0 74.0 54.0 56.0 56.0
PnP from Stove to Counter 38.0 70.0 66.0 56.0 74.0 76.0
Turn Off Microwave 62.0 96.0 96.0 88.0 98.0 100.0
Turn Off Sink Faucet 68.0 84.0 84.0 76.0 88.0 90.0
Turn Off Stove 12.0 18.0 30.0 12.0 20.0 28.0
Turn On Microwave 42.0 44.0 48.0 50.0 60.0 72.0
Turn On Sink Faucet 46.0 83.0 70.0 66.0 76.0 86.0
Turn On Stove 30.0 57.0 42.0 26.0 68.0 40.0
Turn Sink Spout 34.0 56.0 62.0 48.0 78.0 72.0

Pick-and-Place 35.8 50.3 53.8 37.5 48.5 48.5
Open-or-Close 65.3 81.2 85.7 71.3 85.7 87.7
Others 46.8 61.3 59.4 53.2 66.8 68.0

Average 47.8 62.6 64.1 52.5 65.4 66.4
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Figure 8: Qualitative results of the moment tokens. We analyze the self-attention of moment tokens
on RoboCasa input frames, comparing random initialization (w/o TCL) with TCL-initialization (w/
TCL). After TCL-initialization, the moment tokens tend to concentrate more on task-relevant regions,
such as the object to be grasped.

Further example rollouts of real-world tasks. We further illustrate rollouts by HAMLET and
GR00T N1.5 for each real-world task in Figure 10, 11, 12. It can be clearly observed that GR00T
N1.5 without history-awareness struggles with multi-step dependencies and often fails to recover
from occlusions or ambiguous intermediate states, while HAMLET leverages its memory to better
recognize the current state and complete tasks. In Figure 13, we further provide typical failure cases
of naı̈ve multi-frame baseline on GR00T N1.5, which often proceeds to the next actions while failing
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Figure 9: Qualitative results of the memory module. We analyze the self-attention of the memory
module on the Swap Cubes task, where the robot swaps the blue cube with the green cube. We report
two distinctive cases: (left) one where recalling a specific past timestep is necessary for the next
action–such as when the blue cube has already been placed down before moving the green cube–and
(right) another where recalling is less critical–such as during the initial move of the blue cube. We
observe that our memory module clearly attends to the relevant past timestep when required.

to recover from its failure state. This indicates that simply appending multi-frame inputs to VLAs
might degrade their generalizability.

C DISCUSSION

Limitations. While HAMLET maintains the efficiency of single-frame VLAs through its efficiency-
oriented design, it still incurs additional training cost due to initialization with time-contrastive
learning. Furthermore, although we demonstrate its applicability to recent diffusion-based VLAs, it
may not directly extend to auto-regressive VLAs (Pertsch et al., 2025; Kim et al., 2024).

Future directions. One promising direction is to scale up HAMLET using larger-scale robotic
manipulation datasets. As discussed in Table 6, each components of HAMLET, such as the memory
module, can transfer effectively to unseen datasets. This suggests that initializing these components on
large-scale datasets and then rapidly adapting them further enhance the practicality of our framework.
In addition, while we adopted a relatively shallow Transformer for memory module to ensure
scalability, a more exhaustive search over architectural parameters or the use of recent hybrid models
(Lenz et al., 2025; Nano, 2025) is a straightforward approach for obtaining additional gains.

D THE USE OF LARGE LANGUAGE MODELS

We acknowledge that large language models (LLMs) were used in the preparation of this manuscript
to assist with writing quality. We mainly utilize them to find grammatical errors, suggest alternative
vocabulary. All ideas, analyses, and conclusions presented in this paper are solely those of the authors.
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Pick-and-Place Twice (left) Stuck, confused where to go...

Should release, but carries away…

Properly released!

Pick-and-Place Twice (right)

Properly released!

Figure 10: Example rollouts of Pick-and-Place Twice task.
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Cover-and-Stack (left) Grasps the same cup again…

Approaches the same cup again…

Properly reaches the opposite!

Properly reaches the opposite!

Cover-and-Stack (right)

Figure 11: Example rollouts of Cover-and-Stack task.
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Figure 12: Example rollouts of Swap Cubes task.
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▾ Swap Cubes

Failed to grasp!

Failed to grasp!

▾ Cover-and-Stack Failed to grasp!

→ But simply proceeds without recovery…

Figure 13: Example rollouts by naı̈ve multi-frame baseline. We observe that the nav̈e multi-frame
baseline often proceeds without recovery, merely copying action trajectories observed during training.
This is possibly due to its poor generalizability, using only consecutive frames throughout training.
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