
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

HAMLET: SWITCH YOUR VISION-LANGUAGE-
ACTION MODEL INTO A HISTORY-AWARE POLICY

Anonymous authors
Paper under double-blind review

ABSTRACT

Inherently, robotic manipulation tasks are history-dependent: leveraging past con-
text could be beneficial. However, most existing Vision-Language-Action models
(VLAs) have been designed without considering this aspect, i.e., they rely solely
on the current observation, ignoring preceding context. In this paper, we propose
HAMLET, a scalable framework to adapt VLAs to attend to the historical context
during action prediction. Specifically, we introduce moment tokens that compactly
encode perceptual information at each timestep. Their representations are initial-
ized with time-contrastive learning, allowing them to better capture temporally
distinctive aspects. Next, we employ a lightweight memory module that integrates
the moment tokens across past timesteps into memory features, which are then
leveraged for action prediction. Through empirical evaluation, we show that HAM-
LET successfully transforms a state-of-the-art VLA into a history-aware policy,
especially demonstrating significant improvements on long-horizon tasks that re-
quire historical context. In particular, on top of GR00T N1.5, HAMLET achieves
an average success rate of 76.4% on history-dependent real-world tasks, surpassing
the baseline performance by 47.2%. Furthermore, HAMLET pushes prior art
performance from 64.1% to 66.4% on RoboCasa Kitchen (100-demo setup) and
from 95.6% to 97.7% on LIBERO, highlighting its effectiveness even under generic
robot-manipulation benchmarks. Project page: https://iclr-hamlet.github.io/

1 INTRODUCTION

Vision-Language-Action models (VLAs; Zitkovich et al. 2023; Kim et al. 2024; Black et al. 2025;
Pertsch et al. 2025; Li et al. 2024a; Qu et al. 2025; Bjorck et al. 2025b) have shown their promise in
robotic policy learning by leveraging large-scale pre-trained Vision-Language Models (VLMs; Beyer
et al. 2024; Chen et al. 2023; Driess et al. 2023; Karamcheti et al. 2024; Touvron et al. 2023) with
diverse robot-specific datasets (Walke et al., 2023; O’Neill et al., 2024; Khazatsky et al., 2024). They
typically adopt a single-frame assumption, predicting each action solely from the current observation.
However, such reliance on a current snapshot fundamentally limits their capability, since robotic
manipulation tasks are intrinsically history-dependent. For instance, consider a simple scenario of
placing an object on a table. The decision to move the arm depends on prior context—specifically,
whether the object has already been grasped. When restricted to the current frame, the policy may
struggle to determine the proper next action, particularly if the object is occluded.

Despite being a desirable property, incorporating history-awareness during pre-training is viewed
as a costly design choice. A major challenge is that leveraging historical context incurs substantial
computational overhead. For example, we observe that naı̈vely appending only four additional past
observation frames to the VLA input slows down the forward pass by ∼35% and increases peak
memory consumption by ∼3.6× (see Multi-frame in Table 4). In particular, the inflated memory
footprint further restricts scalability by reducing feasible batch sizes compared to the single-frame
setting. Together, these observations raise a key research question: How can we integrate history-
awareness into pre-trained VLAs without resorting to costly pre-training from scratch?

To tackle this problem, we propose HAMLET, a fine-tuning framework for VLAs that introduces
History-Aware Memory with LEarned Tokens. Our framework consists of two components: (a)
moment tokens, which summarize the instantaneous VLM representations at each timestep, and (b) a
memory module, which consolidates moment tokens across different timesteps to produce a temporally

1

https://iclr-hamlet.github.io/

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

(a) History-dependent Long-horizon Tasks (b) Success Rates

Wait, where is the cube?The cube is under the blue cup…

GR00T N1.5

+ Multi-frame

+ HAMLET (ours)

37.5%

95.8%79.2%

62.5%

33.3% 70.8%

PartialFull

83.3%

87.5%

58.3% 91.7%

37.5%

95.8%

PartialFull

GR00T N1.5

+ Multi-frame

+ HAMLET (ours)

The blue cube was on the right… Wait, which cube to grasp next?

“Swap the two cubes, starting with the blue one.”

“Cover the cube with the nearest cup, then stack the other cup on top of it.” [Cover and Stack]

[Swap Cubes]

Figure 1: Examples of history-dependent long-horizon tasks. (a) Real-world tasks that involve
cases such as object occlusion (upper) or multi-step reasoning (lower) are inherently non-Markovian:
proper actions cannot be determined from the current observation alone. (b) Success rates on these
tasks show that HAMLET significantly outperforms both GR00T N1.5 and the naı̈ve multi-frame
baseline, demonstrating its ability to leverage historical context for reliable long-horizon control.

informed condition for action prediction. The moment tokens are appended to the VLM input at each
timestep and initialized with time-contrastive learning (Sermanet et al., 2018), which encourages
distinctiveness across timesteps. This initialization enables the moment tokens to emphasize task-
relevant dynamics while suppressing redundant information such as static backgrounds (see Figure 4
for details). Building on this, we incorporate a lightweight memory module that stores and integrates
moment token representations across timesteps. This design is motivated by the observation that not
all moments are equally informative; treating every timestep with equal importance can introduce
redundancy and obscure critical cues (see Moment Concat. in Table 5c).

To validate the effectiveness and generality of HAMLET, we conduct comprehensive experiments
across both real-world and simulation environments. We first evaluate HAMLET on the long-horizon,
real-world tasks that require reasoning over past trajectories. We show that HAMLET improves
performance by 47.2% over the naı̈vely fine-tuned VLA, which demonstrates the effectiveness
of exploiting historical information for real-world robot policy learning. We further examine the
generality and applicability of HAMLET across different VLA backbones. When fine-tuning GR00T
N1.5 (Bjorck et al., 2025a) on the RoboCasa (Nasiriany et al., 2024) Kitchen dataset, HAMLET
achieves an average success rate of 66.4%, compared to 64.1% for the baseline. Similarly, when
applied to CogACT (Li et al., 2024a) on the SimplerEnv-Bridge (Li et al., 2024b) dataset, HAMLET
attains 63.5%, substantially improving over the baseline performance of 52.1%. These results
highlight that incorporating history-awareness consistently yields benefits across diverse VLA policies,
and that HAMLET provides consistent improvements in a flexible, plug-in manner.

Contributions. Our contributions are as follows:

• Motivated by VLAs’ reliance on the current observation alone, we propose HAMLET, a plug-and-
play framework that integrates history-awareness into pre-trained VLAs.

• We introduce moment tokens, initialized with time-contrastive learning, to capture key temporal
cues at each timestep. Building on this, we design a lightweight memory module that selectively
aggregates these tokens across timesteps to produce history-aware features for action prediction.

• We validate HAMLET across both real-world and simulation benchmarks, achieving substantial
gains over state-of-the-art baselines. By alleviating backbone models’ reliance on the current
observation, HAMLET delivers consistent improvements, especially with the strongest benefits
on long-horizon tasks. Importantly, its backbone-agnostic design allows seamless and efficient
integration into diverse VLAs without requiring any additional large-scale pre-training.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

2 RELATED WORKS

Vision-Language-Action models (VLAs). Since collecting high-quality and large-scale robot
datasets is challenging, traditional robot learning (Shafiullah et al., 2022; Cui et al., 2022; Chi et al.,
2023; Lee et al., 2024) has relied on task-specific data, which cover only a narrow distribution of
environments, objects, and task instructions. To address this limitation, recent studies (Zitkovich et al.,
2023; Driess et al., 2023; Kim et al., 2024; Pertsch et al., 2025; Bjorck et al., 2025a; Li et al., 2024a;
Black et al., 2025) propose building generalist robot policies by utilizing internet-scale VLM priors
to low-level action prediction, thereby transferring semantic understanding to robotic control. Early
VLAs (Zitkovich et al., 2023; Kim et al., 2024; Driess et al., 2023) discretize the continuous action
space and directly predict actions as tokens, demonstrating that pre-trained VLMs can be adapted
to robot control. More recent approaches (Black et al., 2025; Bjorck et al., 2025b; Li et al., 2024a)
leverage VLM representations to condition action experts on diffusion or flow-matching, enabling
more accurate action prediction. For example, Black et al. (2025) conditions a flow-matching head
on VLM features to produce action chunks per step, and Li et al. (2024a) systematically compares
action modules, finding that diffusion action transformers scale favorably when conditioned on
VLM representations. However, these models typically generate actions based only on the current
observation, limiting their capability to accurately recognize the current state and determine precise
actions. In this work, we focus on recent pre-trained VLAs with diffusion-based action heads, and
demonstrate how our framework can enhance their performance by incorporating historical context.

Memory architectures. Traditionally, long-horizon tasks have been framed as non-Markovian
problems, requiring policies to integrate memory to leverage past observations and actions. In
reinforcement learning, recurrent policies (Hausknecht & Stone, 2015) and later Transformer-based
variants (Parisotto et al., 2020) introduced memory mechanisms that improved performance on
partially observable and long-horizon benchmarks. In natural language processing, explicit memory
architectures have been widely explored, ranging from end-to-end memory networks (Sukhbaatar
et al., 2015) to retrieval-based approaches (Khandelwal et al., 2019; Lewis et al., 2020), all designed
to enhance long-context reasoning and knowledge integration. These advances highlight the impor-
tance of dedicated memory modules for tasks requiring extended temporal or contextual awareness.
For VLAs, however, memory augmentation remains under-explored. As a concurrent effort, Shi
et al. (2025) proposes architectures inspired by human memory systems, trained from scratch, and
demonstrates promising improvements on temporally dependent tasks. Distinct from this line of work,
our approach augments pre-trained VLAs with a few learnable tokens and a lightweight memory
module, thereby directly allowing them to attend the history-awareness without retraining.

3 METHOD

In this section, we introduce HAMLET, a plug-in framework that adapts pre-trained Vision-Language-
Action models (VLAs) to attend the historical context. Formally, let ot = [I1t , . . . , I

n
t] be the sequence

of visual observations at timestep t, and c be a task instruction. The VLA Fθ processes these inputs
through its Vision-Language Model (VLM) backbone to obtain a hidden representation ht:

ht = Fθ(ot, c). (1)

Then, the representation ht is used as a condition for the action expert Aψ to predict a sequence of k
future actions, namely action chunking (Zhao et al., 2023; Chi et al., 2023):

[at,at+1, . . . ,at+k−1] = Aψ(ht, st), (2)

where st denotes the robot’s proprioceptive state at timestep t. After executing the predicted action
sequence, the environment returns a new observation ot+k, which serves as the next input to the
VLA. Here, our goal is to augment ht with informative representations from previous timesteps
(i.e., ot−k,ot−2k, . . .), to enable the action expert to effectively utilize long-horizon context. To
achieve this goal, we propose two complementary components: (i) moment tokens, which compress
the information at each timestep into a compact representation (see Section 3.1), and (ii) a memory
module, which aggregates moment tokens across timesteps to yield a temporally-enriched condition
for action prediction (see Section 3.2). The overall framework is illustrated in Figure 2.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

VLM

Memory
Module

“You are a
helpful

assistant.”

Vision
Encoder

”Cover the cube
with the

nearest cup."

Moment
Tokens

Text
Tokenizer

Text
Tokenizer

Vision
Encoder

Action Expert (DiT)
S
elf-A

ttention

C
ross-A

ttention

S
elf-A

ttention

C
ross-A

ttention

State

Noised
Action Action

Concat.

⋯
Cached Past Tokens

Memory Module

Current Tokens

Memory Feature

: Original path

: Appended path for
 history-awareness

Figure 2: An overview of HAMLET. Building on a pre-trained VLA, HAMLET adds two key
components: moment tokens, appended to the VLM input and initialized with time-contrastive
learning to capture task-relevant representations at each timestep, and a lightweight memory module
that aggregates these tokens across timesteps for history-aware action prediction.

3.1 CONTEXT COMPRESSION VIA MOMENT TOKENS

To leverage historical context, we first consider how to effectively store information from each
timestep. Retaining the raw visual observation ot at every timestep is suboptimal: it incurs high
latency and memory costs (see Table 4 in Section 4.3) and often contains redundant or static elements
that might provide irrelevant signal (Xu et al., 2025; Yang et al., 2025). To address this, we propose
to compress the observation at each timestep into a concise representation that preserves task-relevant
information while filtering out redundancy. This motivates the our design of moment tokens.

Use of moment tokens. At each timestep t, we append a set of learnable moment tokens mt ∈ Rnm×d

to the input sequence of the VLM, where nm is the number of tokens and d is the embedding
dimension. Given a visual observation ot and task instruction c, we append moment token mt to
them and feed the combined input to the VLM encoder Fθ to produce a hidden representation:

[ht;m
′
t] = Fθ([ot, c;mt]), (3)

where [· ; ·] denotes concatenation of token sequences. Along with the hidden states ht, we extract
the representation m′

t of moment tokens, which act as compact, context-aware summaries of the
scene at timestep t. Due to the causal attention operator in the VLM, moment tokens attend to the
current visual observation ot and the task instruction c. As a result, m′

t serves as a compressed
representation of each timestep, which subsequently be stored and aggregated by the memory module.

Time-contrastive learning. To encourage moment tokens to encode temporally discriminative cues
at each timestep, we draw inspiration from time-contrastive network (Sermanet et al., 2018; Nair
et al., 2022; Ma et al., 2023), while adapting the design of positive pairs to image-augmented samples
with photometric, blur, noise, and occlusion perturbations. For a trajectory [o0, . . . ,oT−1] and task
instruction c, we extract moment token representations m′

t at each timestep using Eq. (3).

To construct the contrastive objective, for each timestep t we form an anchor from the current
observation ot. We then generate a positive z+t from an augmented view of the same observation
and a hard negative z−t from a different timestep t′ ̸= t within the same trajectory. Formally, let
zt = g(m′

t) denote the projected moment-token representation produced by a projection head g(·).
We then optimize the following time-contrastive learning objective:

LTCL(zt, z
+
t) = −

B∑
t=1

log
exp

(
sim(zt, z

+
t)/τ

)
exp

(
sim(zt, z

+
t)/τ

)
+ exp

(
sim(zt, z

−
t)/τ

) , (4)

where sim(a,b) denotes cosine similarity and τ is a temperature hyperparameter. The summation
indexes the B anchors in the minibatch. This initialization encourages the moment tokens to align with

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

representations from the same timestep while remaining discriminative across timesteps, enabling
mt to capture unique, timestep-specific cues while suppressing static components. During this stage,
we freeze the VLM Fθ to ensure that the loss does not distort its pre-trained representation.

3.2 MEMORY CONSOLIDATION VIA MEMORY MODULE

We now present a memory module to integrate the moment token representations m′
t across timesteps

for action prediction. We observe that simply concatenating these representations does not directly
improve performance (see Moment Concat. in Table 5c). Hence, we employ a lightweight Transformer
Mϕ that selectively attends to informative past timesteps while ignoring less relevant ones.

Design of memory module. To incorporate historical context beyond current timestep, we introduce
a memory module Mϕ that aggregates moment token representations across timesteps. Specifically,
we employ a shallow Transformer (Vaswani et al., 2017) that attends over past moment tokens via
causal self-attention. We form a history matrix by stacking the most recent T moment tokens:

M′ = [m′
t−k(T−1); . . . ; m

′
t−k; m

′
t] ∈ RL×d, (5)

where k is the action-chunk length from Eq. (2), T is the history length, and L = T · nm is the total
number of tokens. From M′, the memory module applies standard self-attention:

Q = M′Wq , K = M′Wk, V = M′Wv , H = softmax
(

QK⊤
√
d

+C
)
V, (6)

where C is a causal mask ensuring the proper encoding for sequential trajectory. H is mapped
through the Transformer’s output projection, producing M̃′ ∈ RL×d. Then, we take the last nm rows
of M̃′, denoted m̃′

t, as the history-augmented moment token representation for timestep t.

Integration into action prediction. The history-augmented feature m̃′ is concatenated with the
original VLM representation ht and fed into the action expert Aψ to predict the next k actions.

[at,at+1, . . . ,at+k−1] = Aψ([ht; m̃
′], st). (7)

The overall training procedure follows that of standard VLA models, where the pipeline is trained
end-to-end with the action prediction loss (Bjorck et al., 2025b; Li et al., 2024a; Black et al., 2025).

4 EXPERIMENTS

We design our experiments to investigate the following questions:

• Does applying HAMLET to existing VLAs enhance performance on long-horizon, real-world tasks
that require reasoning over past trajectories? (Table 1 in Section 4.2)

• Is HAMLET also beneficial on generic robot-manipulation benchmarks? (Table 2, 3 in Section 4.2)
• Can HAMLET be seamlessly applied across different pre-trained VLAs? (Table 3 in Section 4.2)
• How does HAMLET perform in terms of computational overhead, effective design choices, and

transferability to unseen datasets? (Table 4, 5, 6 in Section 4.3, respectively)

4.1 EXPERIMENTAL SETUPS

Datasets. We evaluate HAMLET on real-world tasks that require reasoning over past trajectories, as
well as on diverse simulation benchmarks (Figure 5). In the real-world environment, we design three
handcrafted tabletop tasks: (i) Pick-and-Place Twice, where the robot moves a cube between two
sides twice; (ii) Cover-and-Stack, where the robot covers a cube with one cup and then stacks it with
another; and (iii) Swap Cubes, where the robot swaps the positions of two cubes using an auxiliary
site. For the simulation environment, we conduct experiments on three widely-used benchmarks:
RoboCasa (Nasiriany et al., 2024) Kitchen, LIBERO (Liu et al., 2023) and SimplerEnv-Bridge (Li
et al., 2024b), which consist of multi-step household manipulation tasks spanning diverse objects and
configurations. Further details including real-world robot setups are provided in Appendix A.2.

Baselines. We design baseline comparisons according to the target benchmark. We primarily evaluate
on GR00T N1.5 (Bjorck et al., 2025b) and further assess generalization on CogACT (Li et al., 2024a).

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

+
 H

A
M

LE
T

G
R

00
T

N
1.

5
G

R
00

T
N

1.
5

+
 H

A
M

LE
T

(a) Pick-and-Place Twice

(b) Cover-and-Stack

Should release, but carries away!

Approaches the same cup again!

Properly reaches the opposite.

Properly released.

Figure 3: Example rollouts of real-world tasks. We present example rollouts executed by our
HAMLET and GR00T N1.5, respectively. While HAMLET predicts proper next actions, in (a)
GR00T N1.5 is confused about whether it should lift or release the cube, and in (b) it fails to identify
which cup has a cube underneath, due to the absence of historical context.

Table 1: Real-world evaluation results. We report the success rate (%, over 24 trials per task) on
three real-world tasks: partial success rates for columns (PnP Once, Cover Cube, Stage Cube), and
‘Success’ for full completion. Bold and underline indicate the best and runner-up results, respectively.

Pick-and-Place Twice Cover-and-Stack Swap Cubes

Method History? PnP Once Success Cover Cube Success Stage Cube Success Avg.

π0 ✗ 54.2 25.0 87.5 58.3 83.3 12.5 31.9
π0-FAST ✗ 37.5 20.8 54.2 12.5 66.7 4.2 12.5
GR00T N1 ✗ 54.2 25.0 79.2 33.3 75.0 33.3 30.6

GR00T N1.5 ✗ 54.2 12.5 62.5 37.5 87.5 37.5 29.2
+ Multi-frame ✓ 79.2 45.8 70.8 33.3 91.7 58.3 45.8
+ HAMLET (Ours) ✓ 91.7 66.7 95.8 79.2 95.8 83.3 76.4

For real-world tasks and simulation benchmarks (RoboCasa Kitchen and LIBERO), we compare
HAMLET on GR00T N1.5 with representative baselines: π0 (Black et al., 2025), π0-FAST (Pertsch
et al., 2025), and GR00T N1 (Bjorck et al., 2025b). On SimplerEnv-Bridge, we evaluate HAMLET
on CogACT against the reported performances of OpenVLA (Kim et al., 2024), Octo (Team et al.,
2024), RoboVLM (Liu et al., 2025) and SpatialVLA (Qu et al., 2025). For comparison with methods
that utilize historical context, we implement the multi-frame baseline, which stores past observation
frames and concatenates them into the VLA input (see Appendix A.3 for details).

Implementation details. We apply HAMLET to each VLA following the original fine-tuning setup
of that model, without heuristic hyperparameter tuning. Instead, we adopt the training configurations
specified for each backbone (e.g., learning rate, optimizer, and freezing of the VLM backbone). By
default, we use moment tokens of length 4, a 2-layer Transformer as the memory module, and a
history length of 4. Full hyperparameters and implementation details are provided in Appendix A.3.

4.2 MAIN RESULTS

Real-world evaluation. For real-world environment, we train each model for each task independently
and evaluate their performance by averaging the success rates over 24 trials per task. For each task,

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 2: Simulation benchmark results on GR00T N1.5. We compare HAMLET with baseline
methods on RoboCasa Kitchen and LIBERO. For RoboCasa Kitchen, we report the average success
rate (%) across 24 tasks with models trained using 30, 100, or 300 demonstrations per task. For
LIBERO, each metric is the average success rate (%) across 10 tasks per suite, with training performed
jointly on all suites. All the results are reproduced by us, except for those of GR00T N1 on RoboCasa
Kitchen. Bold and underline indicate best and runner-up results, respectively.

RoboCasa Kitchen (# of demos) LIBERO (task suite)

Method 30 100 300 Spatial Object Goal Long Avg.

π0 47.8 58.7 62.5 97.2 97.2 93.6 89.2 94.3
π0-FAST 29.8 60.2 63.6 96.0 96.4 91.6 85.0 92.3
GR00T N1 17.4 32.1 49.6 95.6 97.6 94.2 89.6 94.3

GR00T N1.5 47.8 62.6 64.1 98.2 99.4 97.2 87.8 95.6
+ Multi-frame 44.0 59.3 60.8 81.4 97.2 89.4 79.4 86.8
+ HAMLET (Ours) 52.5 65.4 66.4 99.0 100.0 99.2 92.2 97.7

Table 3: Simulation benchmark results on CogACT. We compare HAMLET with baseline methods
on the SimplerEnv-Bridge benchmark. Each metric reports the success rate (%) on four WidowX
tasks in SimplerEnv, with separate reporting for grasp success and full success. ‘Avg.’ denotes the
average full success rate (%) across the four tasks, and all CogACT results are faithfully reproduced
by us. Bold and underline indicate best and runner-up results, respectively.

Spoon on Towel Carrot on Plate Stack Block Eggplant in Basket

Method Grasp Success Grasp Success Grasp Success Grasp Success Avg.

OpenVLA 4.1 0.0 33.3 0.0 12.5 0.0 8.3 4.1 1.0
Octo-Base 34.7 12.5 52.8 8.3 31.9 0.0 66.7 43.1 16.0
Octo-Small 77.8 47.2 27.8 9.7 40.3 4.2 87.5 56.9 30.0
RoboVLM 54.2 29.2 25.0 25.0 45.8 12.5 58.3 58.3 31.3
SpatialVLA 20.8 16.7 29.2 25.0 62.5 29.2 100.0 100.0 42.7

CogACT 87.5 58.3 41.7 37.5 70.8 20.8 91.7 91.7 52.1
+ Multi-frame 83.3 50.0 79.2 50.0 70.8 20.8 70.8 70.8 47.9
+ HAMLET (Ours) 91.7 75.0 83.3 62.5 75.0 16.7 100.0 100.0 63.5

partial success rates are also reported, where the criteria are: (i) Pick-and-Place Once: pick and place
the cube at the correct site once; (ii) Cover Cube: cover the first cube with the nearest cup; and (iii)
Stage Cube, stage the a cube to the auxiliary site. As shown in Table 1 and Figure 3, the base model
(GR00T N1.5) struggles with these tasks, achieving only 12.5% success on Pick-and-Place Twice and
often becoming confused about which direction to move (see more rollouts in Appendix B.2). Notably,
applying HAMLET to GR00T N1.5 yields substantial improvements across all tasks, achieving an
average improvement of 47.2% and underscoring its effectiveness in leveraging historical context.

Simulation benchmarks. To validate generalizability of HAMLET across generic benchmarks,
we evaluate it on the standard simulation benchmarks, RoboCasa (Nasiriany et al., 2024) and
LIBERO (Liu et al., 2023). As shown in Table 2, naı̈vely extending GR00T N1.5 with multi-frame
inputs degrades the baseline performance by 3.3% in RoboCasa (100 demos) and 8.8% in LIBERO.
This highlights an inherent weakness of this approach: by conditioning only on consecutive frames
during training, the model struggles to generalize to test environments with dynamically varying
observations. On the other hands, HAMLET, when applied on top of GR00T N1.5, successfully
improves performance across benchmarks: in LIBERO, it pushes the prior best score 95.6%, near-
saturated success rate—up to 97.7%. This supports the advantage of our design: since HAMLET still
receives single-frame inputs via external memory module, it effectively exploits historical context
while preserving single-frame VLA’s generalizability.

Generalization to other VLAs. We further validate the scalability of our framework in transforming
existing VLAs into history-aware policy beyond GR00T N1.5. Specifically, we consider CogACT
(Li et al., 2024a) as base model, which is another pre-trained VLA based on diffusion policy, on the
Simpler-WidowX simulation benchmark (Walke et al., 2023). Table 3 reports both partial and full
success rates across four tasks. Similar other simulation results (e.g., Table 2), the multi-frame baseline
fails to consistently improve success rate across tasks, possibly due to the its pool generalizability. In
other hands, HAMLET still demonstrates clear improvements: it not only improve partial success

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

(a) Moment token attention over images (b) Memory attention across timesteps (at timestep t)

Attention
weights

Figure 4: What does the memory network memorize? (a) Visualization of self-attention map of
moment tokens over input images inside the VLM, showing that they concentrate strongly on task-
relevant regions. (b) Normalized self-attention weights of the memory module across the moment
token sequence, indicating which timesteps contribute most to the memory features.

Table 4: Efficiency analysis. Average latency and peak memory usage measured on RoboCasa
datasets. Both metrics are computed at each timestep within an episode and then averaged. For fair
comparison, memory for original VLA parameters is excluded, except for the memory module in
HAMLET. All measurements were on an NVIDIA A100 GPU. ↓ indicates lower values are better.

Method History Length Latency (ms, ↓) Peak memory (MB, ↓)

GR00T N1.5 1 80.5 (1.00×) 289 (1.00×)

+ Multi-frame 4 108.5 (1.35×) 1051 (3.64×)
+ HAMLET (Ours) 4 82.4 (1.02×) 566 (1.96×)

+ Multi-frame 8 193.0 (2.40×) 2023 (7.00×)
+ HAMLET (Ours) 8 85.8 (1.07×) 578 (2.00×)

rates across all tasks but, more importantly, significantly improves final task completion, achieving
an average full success rate of 63.5%, compared to the original 52.1%. These highlights HAMLET’s
flexibility as plug-and-play fine-tuning framework, without the need for costly re-training.

4.3 MORE ANLAYSIS

We further analyze the individual components in HAMLET and its efficiency over baselines. Through-
out this section, unless otherwise specified, we consider the GR00T N1.5 on RoboCasa (100 demos).

What does the memory module memorize? We qualitatively analyze (a) how the proposed
moment tokens encode information at each timestep and (b) how the memory module processes past
information. First, we confirm that the moment token attends more to task-relevant parts that change
over timesteps and less to static parts. Indeed, as shown in Figure 4(a), higher attention values of
the moment token concentrate on the gripper and objects that are associated with task success, while
lower attention values are assigned to background regions. This is possibly due to the initialization
via time-contrastive loss (see Section 3.1), which encourages the tokens to extract distinguishable
features over time. Next, we observe that the memory module selectively attends to past information
depending on the context within the episode. As shown in Figure 4(b), in the Cover-and-Stack task,
at the moment when it is necessary to decide which cup to approach after the cube is covered with
a cup, the memory module assigns higher attention to the past timestep when the blue cube was
previously visible. Additional qualitative results are provided in Appendix B.2.

Efficiency analysis. We analyze the efficiency of HAMLET by comparing with the multi-frame
baseline which naı̈vely appends past observation frames, under varying history lengths. Specifically,
we measure average latency (ms) and average peak GPU memory usage (MB) per environment
timestep in the RoboCasa simulation. As shown in Table 4, the multi-frame baseline incurs substantial
overhead in both metrics. For example, at a history length of 8, it requires roughly 2.4× greater
latency and 7× higher memory than vanilla inference. In contrast, HAMLET shows only minimal

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Table 5: Ablation study. Average success rate (%) on RoboCasa (100 demos) when selectively en-
abling different components of HAMLET. Moment Concat. concatenates all moment tokens without
a memory module, whereas the Transformer-based memory yields the best overall performance.

Moment Memory
Token TCL Module Avg.

✗ ✗ ✗ 62.6
✓ ✗ ✗ 63.1
✓ ✓ ✗ 63.4
✓ ✗ ✓ 64.8
✓ ✓ ✓ 65.4

(a) Component analysis.

Token Length Avg.

1 64.3
4 65.4
8 66.4

16 65.9
32 62.7
64 62.5

(b) Moment token length.

Method Avg.

No Memory 62.6
Moment Concat. 62.7
RNN 64.5
LSTM 65.0
GRU 64.3
Transformer 65.4

(c) Memory architecture.

overheads across history lengths, e.g., 1.02× at length 4 and 1.07× at length 8. These results
demonstrate the clear advantage of HAMLET over the multi-frame baseline in terms of efficiency.

Ablation study. We perform ablations on HAMLET to study the individual roles of its components,
moment token length, and memory design. First, to assess the contribution of each component, we
conduct an ablation study by removing key components one at a time: (i) the use of moment tokens, (ii)
the initialization of Time-Contrastive Learning (TCL), and (iii) the presence of the memory module.
In Table 5a, we confirm that removing the memory module leads to the largest performance drop,
thereby confirming its critical role. We also observe that removing TCL-initialization consistently
decreases performance, regardless of whether the memory module is used. Next, we examine the
effect of moment token length (default = 4). Table 5b shows the performance improves as the length
increases up to 8, but then gradually decreases beyond this point. Lastly, to understand the effect of
design choices for memory module, we compare several architectures: (i) Moment Concat., which
naı̈vely concatenates past moment tokens without a memory module, (ii) RNN (Graves, 2012), LSTM
(Hochreiter & Schmidhuber, 1997), and GRU (Cho et al., 2014), which are recurrent variants that
utilize a single accumulated hidden state, (iii) Transformer, which we used in our experiments. From
Table 5c, we find that the Transformer achieves the highest average success rate among the memory
architectures. Interestingly, we observe that Moment Concat. yields almost no gains over the baseline,
whereas other memory-based methods have shown performance gains.

Table 6: Generalization of memory module. The
memory module is trained with the dataset left of
the arrow. A LIBERO-pretrained module provides
gains for manipulation on RoboCasa, identifying
that the learned memory representations can gener-
alize across embodiment datasets.

Method Avg.

GR00T N1.5 62.6
+ HAMLET (LIBERO → RoboCasa) 64.5
+ HAMLET (RoboCasa → RoboCasa) 65.4

Generalization capability. We investigate
whether the memory module in our framework
can transfer to unseen tasks, under the hy-
pothesis that it learns generalizable knowledge
for identifying which information from past
timesteps is important, not limited to a specific
dataset. To verify this, we first train the memory
module and then freeze it while evaluating on
different datasets. Specifically, we first train the
memory module on LIBERO and then transfer
it directly to RoboCasa. As shown in Table 6,
even in this setup, HAMLET achieves a success
rate comparable to the in-distribution setting, where both training and evaluation are performed on
RoboCasa. This demonstrates the practical flexibility of HAMLET to generalize across datasets,
while eliminating the additional training cost for memory module adaptation.

5 CONCLUSION

In this work, we address the limitation of existing Vision-Language-Action models (VLAs), which
typically rely on the current observation while ignoring past context. We propose HAMLET, a simple
yet effective framework that enables pre-trained VLAs to leverage historical information without
costly retraining from scratch. By introducing a lightweight memory module that integrates learnable
moment tokens, HAMLET achieves significant improvements on long-horizon real-world tasks and
standard simulation benchmarks, while maintaining computational efficiency. We hope our approach
paves the way toward leveraging history-awareness in off-the-shelf VLA policies to tackle more
complex robotic manipulation tasks reliably and effectively in practice.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REPRODUCIBILITY STATEMENT

We provide full hyperparameter and implementation details in Section 4 and Appendix A.

REFERENCES

Lucas Beyer, Andreas Steiner, André Susano Pinto, Alexander Kolesnikov, Xiao Wang, Daniel
Salz, Maxim Neumann, Ibrahim Alabdulmohsin, Michael Tschannen, Emanuele Bugliarello, et al.
Paligemma: A versatile 3b vlm for transfer. arXiv preprint arXiv:2407.07726, 2024.

Johan Bjorck, Valts Blukis, Fernando Castañeda, Nikita Cherniadev, Xingye Da, Runyu Ding,
Linxi Fan, Yu Fang, Dieter Fox, Fengyuan Hu, Spencer Huang, et al. Gr00t n1.5: An improved
open foundation model for generalist humanoid robots. https://research.nvidia.com/
labs/gear/gr00t-n1_5/, June 2025a. Accessed: 2025-09-09.

Johan Bjorck, Fernando Castañeda, Nikita Cherniadev, Xingye Da, Runyu Ding, Linxi Fan, Yu Fang,
Dieter Fox, Fengyuan Hu, Spencer Huang, et al. Gr00t n1: An open foundation model for generalist
humanoid robots. arXiv preprint arXiv:2503.14734, 2025b.

Kevin Black, Noah Brown, Danny Driess, Adnan Esmail, Michael Equi, Chelsea Finn, Niccolo Fusai,
Lachy Groom, Karol Hausman, Brian Ichter, et al. π0 : A vision-language-action flow model for
general robot control. RSS, 2025.

Xi Chen, Josip Djolonga, Piotr Padlewski, Basil Mustafa, Soravit Changpinyo, Jialin Wu, Car-
los Riquelme Ruiz, Sebastian Goodman, Xiao Wang, Yi Tay, et al. Pali-x: On scaling up a
multilingual vision and language model. arXiv preprint arXiv:2305.18565, 2023.

Cheng Chi, Zhenjia Xu, Siyuan Feng, Eric Cousineau, Yilun Du, Benjamin Burchfiel, Russ Tedrake,
and Shuran Song. Diffusion policy: Visuomotor policy learning via action diffusion. The
International Journal of Robotics Research, pp. 02783649241273668, 2023.

Kyunghyun Cho, Bart van Merriënboer, Dzmitry Bahdanau, and Yoshua Bengio. On the properties
of neural machine translation: Encoder–decoder approaches. In Dekai Wu, Marine Carpuat,
Xavier Carreras, and Eva Maria Vecchi (eds.), Proceedings of SSST-8, Eighth Workshop on
Syntax, Semantics and Structure in Statistical Translation, pp. 103–111, Doha, Qatar, October
2014. Association for Computational Linguistics. doi: 10.3115/v1/W14-4012. URL https:
//aclanthology.org/W14-4012/.

Zichen Jeff Cui, Yibin Wang, Nur Muhammad Mahi Shafiullah, and Lerrel Pinto. From play to policy:
Conditional behavior generation from uncurated robot data. arXiv preprint arXiv:2210.10047,
2022.

Danny Driess, Fei Xia, Mehdi SM Sajjadi, Corey Lynch, Aakanksha Chowdhery, Ayzaan Wahid,
Jonathan Tompson, Quan Vuong, Tianhe Yu, Wenlong Huang, et al. Palm-e: An embodied
multimodal language model. arXiv preprint arXiv:2303.03378, 2023.

Alex Graves. Supervised sequence labelling. In Supervised sequence labelling with recurrent neural
networks, pp. 5–13. Springer, 2012.

Matthew J Hausknecht and Peter Stone. Deep recurrent q-learning for partially observable mdps. In
AAAI fall symposia, volume 45, pp. 141, 2015.

Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural computation, 9(8):
1735–1780, 1997.

Siddharth Karamcheti, Suraj Nair, Ashwin Balakrishna, Percy Liang, Thomas Kollar, and Dorsa
Sadigh. Prismatic vlms: Investigating the design space of visually-conditioned language models.
In International Conference on Machine Learning, 2024.

Urvashi Khandelwal, Omer Levy, Dan Jurafsky, Luke Zettlemoyer, and Mike Lewis. Generalization
through memorization: Nearest neighbor language models. arXiv preprint arXiv:1911.00172,
2019.

10

https://research.nvidia.com/labs/gear/gr00t-n1_5/
https://research.nvidia.com/labs/gear/gr00t-n1_5/
https://aclanthology.org/W14-4012/
https://aclanthology.org/W14-4012/

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Alexander Khazatsky, Karl Pertsch, Suraj Nair, Ashwin Balakrishna, Sudeep Dasari, Siddharth
Karamcheti, Soroush Nasiriany, Mohan Kumar Srirama, Lawrence Yunliang Chen, Kirsty Ellis,
et al. Droid: A large-scale in-the-wild robot manipulation dataset. arXiv preprint arXiv:2403.12945,
2024.

Moo Jin Kim, Karl Pertsch, Siddharth Karamcheti, Ted Xiao, Ashwin Balakrishna, Suraj Nair,
Rafael Rafailov, Ethan Foster, Grace Lam, Pannag Sanketi, et al. Openvla: An open-source
vision-language-action model. In Conference on Robot Learning, 2024.

Seungjae Lee, Yibin Wang, Haritheja Etukuru, H. Jin Kim, Nur Muhammad Mahi Shafiullah, and
Lerrel Pinto. Behavior generation with latent actions. In International Conference on Machine
Learning, 2024. URL https://openreview.net/forum?id=hoVwecMqV5.

Barak Lenz, Opher Lieber, Alan Arazi, Amir Bergman, Avshalom Manevich, Barak Peleg, Ben
Aviram, Chen Almagor, Clara Fridman, Dan Padnos, et al. Jamba: Hybrid transformer-mamba
language models. In International Conference on Learning Representations, 2025.

Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio Petroni, Vladimir Karpukhin, Naman Goyal,
Heinrich Küttler, Mike Lewis, Wen-tau Yih, Tim Rocktäschel, et al. Retrieval-augmented genera-
tion for knowledge-intensive nlp tasks. Advances in Neural Information Processing Systems, 33:
9459–9474, 2020.

Qixiu Li, Yaobo Liang, Zeyu Wang, Lin Luo, Xi Chen, Mozheng Liao, Fangyun Wei, Yu Deng,
Sicheng Xu, Yizhong Zhang, et al. Cogact: A foundational vision-language-action model for
synergizing cognition and action in robotic manipulation. arXiv preprint arXiv:2411.19650, 2024a.

Xuanlin Li, Kyle Hsu, Jiayuan Gu, Karl Pertsch, Oier Mees, Homer Rich Walke, Chuyuan Fu, Ishikaa
Lunawat, Isabel Sieh, Sean Kirmani, et al. Evaluating real-world robot manipulation policies in
simulation. arXiv preprint arXiv:2405.05941, 2024b.

Bo Liu, Yifeng Zhu, Chongkai Gao, Yihao Feng, Qiang Liu, Yuke Zhu, and Peter Stone. Libero:
Benchmarking knowledge transfer for lifelong robot learning. NeurIPS, 36:44776–44791, 2023.

Huaping Liu, Xinghang Li, Peiyan Li, Minghuan Liu, Dong Wang, Jirong Liu, Bingyi Kang, Xiao
Ma, Tao Kong, and Hanbo Zhang. Towards generalist robot policies: What matters in building
vision-language-action models. arXiv preprint arXiv:2412.14058, 2025.

Yecheng Jason Ma, Shagun Sodhani, Dinesh Jayaraman, Osbert Bastani, Vikash Kumar, and Amy
Zhang. Vip: Towards universal visual reward and representation via value-implicit pre-training.
arXiv preprint arXiv:2210.00030, 2023.

Suraj Nair, Aravind Rajeswaran, Vikash Kumar, Chelsea Finn, and Abhinav Gupta. R3m: A universal
visual representation for robot manipulation. arXiv preprint arXiv:2203.12601, 2022.

NVIDIA Nemotron Nano. Efficient hybrid mamba-transformer reasoning model. arXiv preprint
arXiv:2508.14444, 2025.

Soroush Nasiriany, Abhiram Maddukuri, Lance Zhang, Adeet Parikh, Aaron Lo, Abhishek Joshi,
Ajay Mandlekar, and Yuke Zhu. Robocasa: Large-scale simulation of everyday tasks for generalist
robots. In Robotics: Science and Systems, 2024.

Abby O’Neill, Abdul Rehman, Abhiram Maddukuri, Abhishek Gupta, Abhishek Padalkar, Abraham
Lee, Acorn Pooley, Agrim Gupta, Ajay Mandlekar, Ajinkya Jain, et al. Open x-embodiment:
Robotic learning datasets and rt-x models: Open x-embodiment collaboration 0. In IEEE Interna-
tional Conference on Robotics and Automation, pp. 6892–6903. IEEE, 2024.

Emilio Parisotto, Francis Song, Jack Rae, Razvan Pascanu, Caglar Gulcehre, Siddhant Jayakumar,
Max Jaderberg, Raphael Lopez Kaufman, Aidan Clark, Seb Noury, et al. Stabilizing transformers
for reinforcement learning. In International Conference on Machine Learning, pp. 7487–7498.
PMLR, 2020.

Karl Pertsch, Kyle Stachowicz, Brian Ichter, Danny Driess, Suraj Nair, Quan Vuong, Oier Mees,
Chelsea Finn, and Sergey Levine. Fast: Efficient action tokenization for vision-language-action
models. arXiv preprint arXiv:2501.09747, 2025.

11

https://openreview.net/forum?id=hoVwecMqV5

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Delin Qu, Haoming Song, Qizhi Chen, Yuanqi Yao, Xinyi Ye, Yan Ding, Zhigang Wang, JiaYuan Gu,
Bin Zhao, Dong Wang, et al. Spatialvla: Exploring spatial representations for visual-language-
action model. arXiv preprint arXiv:2501.15830, 2025.

Pierre Sermanet, Corey Lynch, Yevgen Chebotar, Jasmine Hsu, Eric Jang, Stefan Schaal, Sergey
Levine, and Google Brain. Time-contrastive networks: Self-supervised learning from video. In
IEEE International Conference on Robotics and Automation, pp. 1134–1141. IEEE, 2018.

Nur Muhammad Shafiullah, Zichen Cui, Ariuntuya Arty Altanzaya, and Lerrel Pinto. Behavior
transformers: Cloning k modes with one stone. In Advances in Neural Information Processing
Systems, volume 35, pp. 22955–22968, 2022.

Hao Shi, Bin Xie, Yingfei Liu, Lin Sun, Fengrong Liu, Tiancai Wang, Erjin Zhou, Haoqiang Fan,
Xiangyu Zhang, and Gao Huang. Memoryvla: Perceptual-cognitive memory in vision-language-
action models for robotic manipulation. arXiv preprint arXiv:2508.19236, 2025.

Sainbayar Sukhbaatar, Jason Weston, Rob Fergus, et al. End-to-end memory networks. Advances in
Neural Information Processing Systems, 28, 2015.

Octo Model Team, Dibya Ghosh, Homer Walke, Karl Pertsch, Kevin Black, Oier Mees, Sudeep
Dasari, Joey Hejna, Tobias Kreiman, Charles Xu, et al. Octo: An open-source generalist robot
policy. In Conference on Robot Learning, 2024.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open foundation
and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information processing
systems, 30, 2017.

Homer Rich Walke, Kevin Black, Tony Z Zhao, Quan Vuong, Chongyi Zheng, Philippe Hansen-
Estruch, Andre Wang He, Vivek Myers, Moo Jin Kim, Max Du, et al. Bridgedata v2: A dataset for
robot learning at scale. In Conference on Robot Learning, pp. 1723–1736. PMLR, 2023.

Siyu Xu, Yunke Wang, Chenghao Xia, Dihao Zhu, Tao Huang, and Chang Xu. Vla-cache: Towards
efficient vision-language-action model via adaptive token caching in robotic manipulation. arXiv
preprint arXiv:2502.02175, 2025.

Yantai Yang, Yuhao Wang, Zichen Wen, Luo Zhongwei, Chang Zou, Zhipeng Zhang, Chuan Wen,
and Linfeng Zhang. Efficientvla: Training-free acceleration and compression for vision-language-
action models. arXiv preprint arXiv:2506.10100, 2025.

Tony Z Zhao, Vikash Kumar, Sergey Levine, and Chelsea Finn. Learning fine-grained bimanual
manipulation with low-cost hardware. In Robotics: Science and Systems, 2023.

Brianna Zitkovich, Tianhe Yu, Sichun Xu, Peng Xu, Ted Xiao, Fei Xia, Jialin Wu, Paul Wohlhart,
Stefan Welker, Ayzaan Wahid, et al. Rt-2: Vision-language-action models transfer web knowledge
to robotic control. In Conference on Robot Learning, pp. 2165–2183. PMLR, 2023.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

A EXPERIMENTAL DETAILS

A.1 MODEL DETAILS

In our experiments, we evaluate diffusion-based VLAs: GR00T N1 (Bjorck et al., 2025b)1, GR00T
N1.5 (Bjorck et al., 2025a)2, π0 (Black et al., 2025)3, π0-FAST (Pertsch et al., 2025)4, and Co-
gACT (Li et al., 2024a)5. All checkpoints are obtained from their official repositories.

A.2 DATASETS

We evaluate HAMLET across both real and simulation environments, as demonstrated in Figure 5.

RoboCasa LIBERO SimplerEnv

Real-World Simulation

PnP Twice Cover-and-Stack Swap Cubes

Figure 5: Evaluation environments. Left: Real-world evaluation comprises three tabletop tasks,
which especially require awareness on historical context. Right: Simulation benchmarks include
RoboCasa (Nasiriany et al., 2024) Kitchen, LIBERO (Liu et al., 2023), and SimplerEnv-Bridge (Li
et al., 2024b), which consist of diverse indoor manipulation tasks.

Real-world environment. As shown in Figure 6, we use a Franka Research 3 robot arm equipped
with a Robotiq 2F-85 gripper, following the DROID (Khazatsky et al., 2024) setup. Two camera
views are provided: one mounted on the table and another on the wrist. On this real-robot platform,
we design three handcrafted tabletop tasks as illustrated in Figure 7: (i) Pick-and-Place Twice, where
the robot moves a cube between two sides twice; (ii) Cover-and-Stack, where the robot covers a cube
with the nearest cup and then stacks another cup on top; and (iii) Swap Cubes, where the robot swaps
the positions of two cubes using an auxiliary site. For each task, we collect 50 demonstrations for
training, and report frame statistics in Table 7. Since trajectories are on average about 268 frames long,
we evaluate each trial with a maximum limit of 700 timesteps: if the task has not been completed by
then, the episode is counted as a failure.

(a) Front view (b) Side view (c) Camera views

Robotiq 2F-85 Gripper

Zed Mini Wrist Stereo Camera

Franka Research 3
7DoF Robot Arm

Adjustable Zed2 Stero Camera

Exterior Wrist

Figure 6: Real-robot platform. We specify the robot specifications and multi-camera views.

1https://huggingface.co/nvidia/GR00T-N1-2B
2https://huggingface.co/nvidia/GR00T-N1.5-3B
3gs://openpi-assets/checkpoints/pi0_base
4gs://openpi-assets/checkpoints/pi0_fast_base
5https://huggingface.co/CogACT/CogACT-Base

13

https://huggingface.co/nvidia/GR00T-N1-2B
https://huggingface.co/nvidia/GR00T-N1.5-3B
gs://openpi-assets/checkpoints/pi0_base
gs://openpi-assets/checkpoints/pi0_fast_base
https://huggingface.co/CogACT/CogACT-Base

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Pick-and-Place Twice

Start! Pick up cube Release it Place it back!Move it to opposite side Pick it up again

Partial Full

Cover-and-Stack

Start!

Partial Full

Pick up cup Move to other cup Stack it!Cover cube Move it opposite side

Swap Cubes

Start!

Partial Full

Move green cubePick up blue cube Move blue cube!Stage it

Figure 7: Real-world tasks. We design three history-dependent real-world tasks. Each partial criteria
(Pick-and-Place Once, Cover Cube, Stage Cube) is described as the corresponding frame.

Table 7: Dataset statistics for real-world tasks. For each real-world dataset, we present the mean,
maximum, and standard deviation of frame counts per episode. These statistics provide a basis for
determining an appropriate maximum timestep limit during evaluation.

Task Mean #frames Max #frames Std #frames

Pick-and-Place Twice 261 350 25.1
Cover-and-Stack 230 270 24.2
Swap Cubes 312 361 20.8

Simulation benchmarks. We evaluate HAMLET on three standard simulation benchmarks: (i)
RoboCasa (Nasiriany et al., 2024), (ii) LIBERO (Liu et al., 2023) using GR00T N1.5, and (iii)
SimplerEnv-Bridge (Walke et al., 2023) using CogACT. RoboCasa is a suite of kitchen manipulation
tasks, comprising 24 tasks across 120 scenes. Following Bjorck et al. (2025a), we split the dataset
into training and evaluation sets, evaluating each task over 50 episodes. LIBERO is designed to
benchmark multi-task and lifelong robot learning, and includes 40 tasks grouped into four suites
(Spatial, Object, Goal, and Long). Both RoboCasa and LIBERO use a Franka robot, and we adopt
their officially released code for training and evaluation. Lastly, for SimplerEnv-Bridge, focused on
real-to-simulation transfer, we use the BridgeV2 dataset (Walke et al., 2023) with a WidowX robot.

A.3 IMPLEMENTATION

Moment token and memory module. Across experiments, we set the sequence length of moment
tokens to 4 and use a 2-layer Transformer as the memory module. For the Transformer implementation,
we adapt the LLaMA codebase from Hugging Face.6 To initialize the moment tokens via Time-
Contrastive Learning (TCL), we employ photometric image augmentations—specifically brightness,
contrast, and color jitter—applied stochastically to generate positive samples.

6https://huggingface.co/docs/transformers/en/model_doc/llama

14

https://huggingface.co/docs/transformers/en/model_doc/llama

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Multi-frame baseline. We follow the approach of multi-frame policies (Team et al., 2024; Liu et al.,
2025) in handling historical observations to construct a naı̈ve multi-frame baseline. For GR00T N1.5,
we concatenate past observation frames across the three original views, i.e., left, right, and wrist. For
CogACT, since the original VLM is designed to process only a single view per timestep, we instead
use a its cognition token and concatenate it to condition the action expert.

A.4 TRAINING DETAILS

Based on the official training recipes (Bjorck et al., 2025a; Li et al., 2024a), we fine-tune GR00T
N1.5 and CogACT.

• GR00T N1.5: Fine-tuned with the memory module for 60k steps using a batch size of 32 and a
learning rate of 1e-5. Initialization of moment tokens with TCL is performed for up to 30k steps
with a batch size of 64 and the same learning rate. During fine-tuning, both the VLM and moment
tokens are kept frozen.

• CogACT: Fine-tuned with the memory module for 20k steps using a batch size of 32 and a learning
rate of 2e-5. Initialization of moment tokens with TCL is performed for up to 30k steps with a
batch size of 64 and the same learning rate, but training is terminated at 10k steps once the loss
converges. During fine-tuning, both the VLM and moment tokens remain trainable.

In both cases, we use a default history length of 4. For all other baselines, including π0, π0-FAST,
and GR00T N1, we also follow their official training codes.

A.5 COMPUTATIONAL RESOURCES

• GR00T N1.5: Experiments is conducted on NVIDIA A100 80GB GPUs. Fine-tuning with the
memory module on 4 GPUs requires ∼16 hours, comparable to the standard training time of ∼14
hours. Initialization of moment tokens with TCL adds ∼5 hours on 2 GPUs.

• CogACT: Experiments is conducted on NVIDIA H200 141GB GPUs. Fine-tuning with the memory
module on 4 GPUs take ∼9 hours, compared to ∼4 hours for the standard setup. TCL-initialization
requires ∼9 hours on 2 H100 GPUs.

B MORE EXPERIMENTAL RESULTS

B.1 QUANTITATIVE RESULTS

We present the complete RoboCasa metrics in Table 8, including the per-task success rates summarized
in Table 2 for HAMLET and GR00T N1.5.

B.2 QUALITATIVE RESULTS

We provide additional qualitative results to better understand the main components of HAMLET.

Time-Contrastive Learning (TCL). To analyze the effect of Time-Contrastive Learning (TCL) on
the moment token, we visualize the self-attention maps on RoboCasa, comparing randomly initialized
tokens with TCL-initialized ones. As shown in Figure 8, randomly initialized moment tokens attend
to sparsely distributed regions, including background areas that remain static across timesteps. In
contrast, TCL-initialized moment tokens focus on more task-relevant regions related to successful
execution. For example, we observe that the object to be grasped by the gripper tends to receive
higher attention values than other regions.

Memory module. As explored in Figure 4, we further provide examples of how our memory module
attends to historical context. Specifically, we visualize the attention maps of the memory module
during rollouts in the Swap Cubes task, where the robot swaps the blue cube with the green cube.
In the left side of Figure 9, we confirm that the memory network attends to the key past timestep,
which is crucial for determining the next action: for example, when deciding which cube to pick next,
the memory module highly attends to the past timestep when the blue cube was previously placed
down. Interestingly, the attention across past timesteps remains low when historical information is
less critical, e.g., during the initial move of the blue cube, as shown on the right side of Figure 9.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Table 8: Full results on RoboCasa Kitchen with different dataset size.

GR00T N1.5 GR00T N1.5 + HAMLET

Task (PnP = Pick-and-Place) 30 demos 100 demos 300 demos 30 demos 100 demos 300 demos

Close Double Door 46.0 80.0 90.0 58.0 82.0 82.0
Close Drawer 94.0 97.0 96.0 100.0 96.0 100.0
Close Single Door 88.0 94.0 98.0 96.0 94.0 96.0
Coffee Press Button 88.0 83.0 76.0 66.0 84.0 90.0
Coffee Serve Mug 62.0 63.0 58.0 70.0 68.0 76.0
Coffee Setup Mug 24.0 29.0 28.0 30.0 28.0 26.0
Open Double Door 70.0 76.0 84.0 68.0 86.0 96.0
Open Drawer 40.0 71.0 68.0 48.0 74.0 68.0
Open Single Door 54.0 69.0 78.0 58.0 82.0 84.0
PnP from Cab to Counter 22.0 51.0 50.0 26.0 46.0 54.0
PnP from Counter to Cab 36.0 49.0 50.0 46.0 48.0 56.0
PnP from Counter to Microwave 26.0 20.0 26.0 20.0 30.0 16.0
PnP from Counter to Sink 38.0 60.0 52.0 50.0 56.0 42.0
PnP from Counter to Stove 44.0 52.0 68.0 24.0 54.0 64.0
PnP from Microwave to Counter 22.0 40.0 44.0 24.0 24.0 24.0
PnP from Sink to Counter 60.0 60.0 74.0 54.0 56.0 56.0
PnP from Stove to Counter 38.0 70.0 66.0 56.0 74.0 76.0
Turn Off Microwave 62.0 96.0 96.0 88.0 98.0 100.0
Turn Off Sink Faucet 68.0 84.0 84.0 76.0 88.0 90.0
Turn Off Stove 12.0 18.0 30.0 12.0 20.0 28.0
Turn On Microwave 42.0 44.0 48.0 50.0 60.0 72.0
Turn On Sink Faucet 46.0 83.0 70.0 66.0 76.0 86.0
Turn On Stove 30.0 57.0 42.0 26.0 68.0 40.0
Turn Sink Spout 34.0 56.0 62.0 48.0 78.0 72.0

Pick-and-Place 35.8 50.3 53.8 37.5 48.5 48.5
Open-or-Close 65.3 81.2 85.7 71.3 85.7 87.7
Others 46.8 61.3 59.4 53.2 66.8 68.0

Average 47.8 62.6 64.1 52.5 65.4 66.4

w
/ T

C
L

w
/o

 T
C

L
In

pu
t

Figure 8: Qualitative results of the moment tokens. We analyze the self-attention of moment tokens
on RoboCasa input frames, comparing random initialization (w/o TCL) with TCL-initialization (w/
TCL). After TCL-initialization, the moment tokens tend to concentrate more on task-relevant regions,
such as the object to be grasped.

Further example rollouts of real-world tasks. We further illustrate rollouts by HAMLET and
GR00T N1.5 for each real-world task in Figure 10, 11, 12. It can be clearly observed that GR00T
N1.5 without history-awareness struggles with multi-step dependencies and often fails to recover
from occlusions or ambiguous intermediate states, while HAMLET leverages its memory to better
recognize the current state and complete tasks. In Figure 13, we further provide typical failure cases
of naı̈ve multi-frame baseline on GR00T N1.5, which often proceeds to the next actions while failing

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Next action: Place down

Attention
weights

Wait,
which cube to grasp next?

Blue cube
 picked up!

Blue cube
placed down!

W
ri

st

E
xt

er
io

r

E
xt

er
io

r

W
ri

st

Attention
weights

Recall ✨

Figure 9: Qualitative results of the memory module. We analyze the self-attention of the memory
module on the Swap Cubes task, where the robot swaps the blue cube with the green cube. We report
two distinctive cases: (left) one where recalling a specific past timestep is necessary for the next
action–such as when the blue cube has already been placed down before moving the green cube–and
(right) another where recalling is less critical–such as during the initial move of the blue cube. We
observe that our memory module clearly attends to the relevant past timestep when required.

to recover from its failure state. This indicates that simply appending multi-frame inputs to VLAs
might degrade their generalizability.

C DISCUSSION

Limitations. While HAMLET maintains the efficiency of single-frame VLAs through its efficiency-
oriented design, it still incurs additional training cost due to initialization with time-contrastive
learning. Furthermore, although we demonstrate its applicability to recent diffusion-based VLAs, it
may not directly extend to auto-regressive VLAs (Pertsch et al., 2025; Kim et al., 2024).

Future directions. One promising direction is to scale up HAMLET using larger-scale robotic
manipulation datasets. As discussed in Table 6, each components of HAMLET, such as the memory
module, can transfer effectively to unseen datasets. This suggests that initializing these components on
large-scale datasets and then rapidly adapting them further enhance the practicality of our framework.
In addition, while we adopted a relatively shallow Transformer for memory module to ensure
scalability, a more exhaustive search over architectural parameters or the use of recent hybrid models
(Lenz et al., 2025; Nano, 2025) is a straightforward approach for obtaining additional gains.

D THE USE OF LARGE LANGUAGE MODELS

We acknowledge that large language models (LLMs) were used in the preparation of this manuscript
to assist with writing quality. We mainly utilize them to find grammatical errors, suggest alternative
vocabulary. All ideas, analyses, and conclusions presented in this paper are solely those of the authors.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

+
 H

A
M

LE
T

G
R

00
T

N
1.

5
G

R
00

T
N

1.
5

+
 H

A
M

LE
T

Pick-and-Place Twice (left) Stuck, confused where to go...

Should release, but carries away…

Properly released!

Pick-and-Place Twice (right)

Properly released!

Figure 10: Example rollouts of Pick-and-Place Twice task.

+
 H

A
M

LE
T

G
R

00
T

N
1.

5
G

R
00

T
N

1.
5

+
 H

A
M

LE
T

Cover-and-Stack (left) Grasps the same cup again…

Approaches the same cup again…

Properly reaches the opposite!

Properly reaches the opposite!

Cover-and-Stack (right)

Figure 11: Example rollouts of Cover-and-Stack task.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

+
 H

A
M

LE
T

G
R

00
T

N
1.

5
Swap Cubes (blue on the left) Approaches wrong cube…

Swap Cubes (blue on the right)

Placed the correct cube!

+
 H

A
M

LE
T

G
R

00
T

N
1.

5

Should release, but takes it back…

Properly released!

Figure 12: Example rollouts of Swap Cubes task.

▾ Pick-and-Place Twice

G
R

00
T

N
1.

5
+

 M
ul

ti-
fr

am
e

▾ Swap Cubes

Failed to grasp!

Failed to grasp!

▾ Cover-and-Stack Failed to grasp!

→ But simply proceeds without recovery…

Figure 13: Example rollouts by naı̈ve multi-frame baseline. We observe that the nav̈e multi-frame
baseline often proceeds without recovery, merely copying action trajectories observed during training.
This is possibly due to its poor generalizability, using only consecutive frames throughout training.

19

	Introduction
	Related Works
	Method
	Context compression via moment tokens
	Memory consolidation via memory module

	Experiments
	Experimental setups
	Main results
	More anlaysis

	Conclusion
	Experimental Details
	Model details
	Datasets
	Implementation
	Training Details
	Computational Resources

	More experimental results
	Quantitative results
	Qualitative results

	Discussion
	The use of large Language models

