
Published as a conference paper at ICLR 2025

APPENDIX A: DIFFERENTIAL PRIVACY AND PROOF FOR THEOREM 1

Differential privacy is a privacy mechanism that introduces randomness to prevent information leak-
age of individuals in datasets (Dwork et al., 2006).

Definition 3 (Differential Privacy) Formally, a randomized mechanism M : X → Y satisfies
ϵ−DP if for all neighboring inputs X ∼ X

′
and for all sets of outputs Y ⊆ Y , the following

inequality holds:

P [M(X) ∈ Y] ≤ eϵP [M(X
′
) ∈ Y]. (12)

In the above definition, ϵ > 0 is the privacy parameter quantifying the privacy guarantees. Specif-
ically, the smaller ϵ is, the tighter the bound is, indicating less change is allowed in the output
distribution when modifying X to X ′. Furthermore, if the modification from X to X ′ is too large,
leading to a large change in P , then ϵ may also be large to make M ϵ-DP. In this case, the privacy is
less protected.

From a high-level point of view, we regard each user profile in our recommendation problem as a
database in the definition of DP. Consequently, each interacted item within a profile can be regarded
as a record in a database. According to the definition of DP, if a mechanism satisfies DP, an observer
analyzing its output cannot tell whether a particular data record was used in the computation. As
such, applying DP to user profile generation, the recommender functions as the observer. By en-
suring DP, the recommender cannot tell whether a particular item from the user’s history was used
to compute the item scores. Therefore, when we formulate the above process into our user profile
generation, it is straightforward that: with limited perturbations, the generated user profile will not
cause a significant change in the resulting scores if the entire generation satisfies DP. Finally, the
above process can also be prescribed by the mathematical definition of DP: the output distribution
of a DP mechanism will exhibit a limited change, if the input is perturbed with a limited budget.

In this appendix, we provide proof for Theorem 1, which is adapted from Wang et al. (2021).

Theorem 1 (Preference-Preservation with Guarantees) Suppose a recommendation mechanism
M satisfies ϵ-DP. For any user sequence x, if M successfully recommends the ground-truth item y,
which is the j-th item within the item scope I: y := xj , and the predictive score for the ground-truth
item is greater than the second-largest runner-up score of another item with a small multiplicative
factor e2ϵ:

E(M(x)j) > e2ϵ max
k:k ̸=j

E(M(x)k),

then for its augmented view x′, its predicted top-1 item remains the same if there is only limited
modification from x to x

′
:

E(M(x
′
)j) > max

k:k ̸=j
E(M(x

′
)k).

.

Proof 1

E(M(x)j) =

∫ 1

0

P(M(x)j) > t)dt

≤
∫ 1

0

P(eϵM(x′)j) > t)dt

= eϵ
∫ 1

0

P(M(x′)j) > t)dt

= eϵE(M(x
′
)j).

(13)

Therefore, we have

E(M(x)j) ≤ eϵE(M(x
′
)j)

E(M(x
′
)k) ≤ eϵE(M(x)k), k ̸= j

(14)

15

Published as a conference paper at ICLR 2025

Finally, we have

E(M(x
′
)j) ≥

E(M(x)j)

eϵ

≥ e2ϵ maxk:k ̸=j E(M(x)k)

eϵ

= eϵ max
k:k ̸=j

E(M(x)k)

≥ max
k:k ̸=j

E(M(x
′
)k).

(15)

Finally, our approach is closely related to the findings in the cited (Wang et al., 2021; Lecuyer et al.,
2019). In (Wang et al., 2021; Lecuyer et al., 2019), DP is used to provide certified robustness of
classifiers against adversarial examples. That is, in these studies, the goal is to ensure that a clas-
sifier’s predictions remain consistent even if the input is deliberately perturbed. Inspired by [1,2],
our method leverages DP to generate augmented user profiles that preserve user preferences. In
the context of recommendation, this means that the model should produce consistent recommenda-
tions for the original user profile and the augmented one if they represent the same user preference.
Additionally, recent studies (Subramanian, 2023; Hemkumar & Prashanth, 2024) have explored the
trade-off between the analysis accuracy and perturbations under DP. Such studies do not necessarily
only focus on the privacy benefits of DP, but also aim to maintain high accuracy under noises or per-
turbations. In summary, inspired by (Wang et al., 2021; Lecuyer et al., 2019; Subramanian, 2023;
Hemkumar & Prashanth, 2024), we propose to use DP to augment user profiles for recommendation
systems. Our goal is to preserve user preferences during the augmentation process: a perturbed user
profile should yield the same recommendations as its original counterpart. This consistency indi-
cates that user preferences are well-preserved in the augmented data, ensuring high-quality positive
training samples to compute the NCL losses.

16

Published as a conference paper at ICLR 2025

APPENDIX B: EFFICIENT DESIGN

Guarantee with Empirical Expectation. In Theorem 1, the expectation E(M(x)j) is usually
estimated via Monte Carlo sampling. That is, one must repeat the inference of the exponential
mechanism to draw candidate profiles with different augmentations and compute Ê(M(x)j) =
1
m

∑m
m=1 f(x

′

m). In this appendix, we adapt the proof from Lecuyer et al. (2019) to show that the
user preference could still be preserved with approximated empirical expectation. We first obtain
an upper bound and a lower bound for E(M(x)j). Specifically, with Hoeffding’s inequality with
probability η, we have

Êlb(M(x)) = Ê(M(x))−

√
1

2m
ln(

2|I|
1− η

)

Êub(M(x)) = Ê(M(x)) +

√
1

2m
ln(

2|I|
1− η

)

(16)

Theorem 2 (Guarantee with Empirical Expectation) Suppose a recommendation mechanism M
satisfies ϵ-DP. For any user sequence x, if M successfully recommends the ground-truth item y,
which is the j-th item within the item scope I: y := xj , and the predictive score for the ground-truth
item is great than the second-largest runner-up score of another item with a small multiplicative
factor e2ϵ:

Êlb(M(x)j) > e2ϵ max
k:k ̸=j

Êub(M(x)k), (17)

then for its augmented view x′, with probability higher than η, we have

Ê(M(x
′
)j) > max

k:k ̸=j
Ê(M(x

′
)k). (18)

.

Proof 2

Ê(M(x
′
)j) ≥

Ê(M(x)j)

eϵ

≥ Êlb(M(x)j)

eϵ
.

(19)

Similarly, we have

Ê(M(x
′
)k) ≤ eϵ max

k:k ̸=j
Êub(M(x)k) (20)

Finally, we have

Ê(M(x
′
)j) ≥

Ê(M(x)j)

eϵ

≥ Êlb(M(x)j)

eϵ

≥ e2ϵ maxk:k ̸=j Êub(M(x)k)

eϵ

= eϵ max
k:k ̸=j

Êub(M(x)k)

≥ max
k:k ̸=j

E(M(x
′
)k).

(21)

Exponential Mechanism at Item Level. Recall a critical caveat of designing the exponential
mechanism at the user-level is that the search space grows exponentially w.r.t. the length of user
histories if the DP augmentation is defined at user-level: O(kl). This is because each item xi ∈
x = [x1, x2, ..., xl] has k replacements. As such, there are (kl) possible candidate user profiles for
exponential mechanism to sample from, i.e., |X ′| = kl.

17

Published as a conference paper at ICLR 2025

Given the sparsity of recommendation data, designing DP augmentations for user sequences in-
troduces prohibitive computation complexity and noises. Therefore, we propose to define the DP
augmentation at item level to generate DP augmented user profiles. In this case, the search space
grows linearly w.r.t. the length of user histories. To see this, we note that when applying the expo-
nential mechanism to each item xi ∈ x = [x1, x2, ..., xl], the exponential mechanism just to need
to sample from k candidates, and repeat for all items within the history l times, leading to O(k · l).
Specifically, we compute a DP item for each to-be-replaced item from the original user history using
the exponential mechanism. Then, the augmented user profile is generated by replacing the selected
items within original user history with the calculated DP items.

To achieve linear complexity, we propose to define the exponential mechanism at item level to
generate augmented user profiles, we compute a DP item for each to-be-replaced item from the
original user history using the exponential mechanism. Then, the augmented user profile is generated
by replacing the selected items within original user history with the calculated DP items. For an item
xi, its scoring function w.r.t. a synonym item xj is defined as:

u(xi, xj) = eCosSim(f(xi),f(xj)). (22)

Correspondingly, the embedding of the DP item for xi is computed with

ẑxi
=

∑
xj∈Nk(xi)

e
ϵu(xi,xj)

2∆u∑
xk∈Nk(xi)

e
ϵu(xi,xk)

2∆u

· f(xj). (23)

We then replace xi with the DP item to generated the augmented user profile, which is visualized in
Figure 1.

Note this efficient design is feasible and remain DP, because of the two key properties of DP. First,
DP has the post-processing property: any computation applied to the output of a DP algorithm re-
mains DP. As such, if the augmentation operation is DP, then recommendation process based on
the augmented user profile is also DP. Second, the expected output stability property of DP re-
duces the computational costs of DP augmentation. This property allows us to generate an expected
augmented profile for each user to preserve user preferences in the augmented profiles, instead of
generating massive augmented samples for Monte-Carlo sampling.

18

Published as a conference paper at ICLR 2025

APPENDIX C: DATASETS STATISTICS

In this section, we provide further details about our datasets. We adopt 6 public benchmark rec-
ommendation datasets to evaluate NCL-SR: Beauty, Games, Sports, Toys, Office and Auto He &
McAuley (2016); McAuley et al. (2015). These datasets cover different application domains, and
are characterized with different sparsity and sequence lengths. Following Yue et al. (2022), we use
the 5-core processing to filter out infrequent items and users. The user-item interactions are sorted
chronologically to construct training sequences.

To simulate the data sparsity and cold-start users, the split ratio of the training, validation, and test
sets is 2:2:6 in our paper. Such a split ratio is selected because we aim to explore the model’s
performance under a limited quantity of training data and the model’s generalization on cold-start
users, following the recent studies Wu et al. (2024); Qian et al. (2020); Wang et al. (2022a); Lin et al.
(2025). For instance, in Lin et al. (2025), there was only 10% training data used to train the model
for the recommendation task. However, in our experiments, it is observed that many baselines could
not converge under extreme data sparsity. Therefore, we increase the number of training samples
for the baselines to converge (20%). This enables a fairer comparison between our method against
the baselines. The details datasets statistics are summarized in Table 4.

Datasets users Items Interaction Length Density
Beauty 22332 12086 198K 8.88 7e-4
Games 15264 7676 147K 9.69 1e-3
Sports 35265 18173 293K 8.32 5e-4
Toys 19124 11758 165K 8.64 7e-4
Office 4895 2414 53K 10.86 4e-3
Auto 1281 844 8K 6.70 8e-3

Table 4: Overall dataset statistics.

19

Published as a conference paper at ICLR 2025

APPENDIX D: ADDITIONAL EXPERIMENTAL RESULTS

In this section, we further investigate the relationship between CL, NCL and data augmentation.

In particular, we first replace the contrastive loss with NCL losses for CL-based baselines. The
results are reported in Table 5. In Table 5, each column represent a training scheme being a CL-
based baseline or its NCL version. The last column includes the performance of NCL-SR as ref-
erence. The comparison is made two-column-wise, with better performance highlighted in bold.
In addition, we also make a comparison per row, with the second-best performance highlighted
with underlines. From Table 5, we observe that NCL indeed has the potential to improve the rec-
ommendation performance while eliminating the need of negative samples for CL-baselines. For
instance, the performance of CLS4Rec is generally improved with non-contrastive training over all
6 datasets. For remaining CL-based methods, performance improvement could be observed over
half of the datasets. There exists inconsistent performance improvement for certain baselines across
different datasets. Such inconsistency is expected, because the data augmentation operations of the
CL-baselines are usually ad-hoc and may fail to preserve user preferences. Therefore, the preference
inconsistency of the augmented data may degrade the effectiveness of NCL training. Finally, it is
observed the performance of NCL-SR is still better than NCL with ad-hoc augmentations. This sug-
gests that our proposed preference-preserving augmentation can indeed better exploit the capacity
of NCL training.

Dataset Metric CLS4Rec CLS4Rec CoSeRec CoSeRec DUORec DUORec EC4Rec EC4Rec Ours+ NCL + NCL + NCL + NCL

Beauty

R@10 ↑ 0.0690 0.0693 0.0698 0.0683 0.0706 0.0717 0.0628 0.0665 0.0791
N@10 ↑ 0.0367 0.0373 0.0375 0.0373 0.0383 0.0394 0.0344 0.0358 0.0440
R@20 ↑ 0.1008 0.1007 0.1007 0.1023 0.1052 0.1046 0.0971 0.0996 0.1135
N@20 ↑ 0.0447 0.0451 0.0453 0.0458 0.0470 0.0477 0.0430 0.0441 0.0526

Games

R@10 ↑ 0.0992 0.1028 0.1057 0.1031 0.1041 0.1002 0.0998 0.1029 0.1140
N@10 ↑ 0.0521 0.0534 0.0553 0.0539 0.0543 0.0520 0.0524 0.0552 0.0611
R@20 ↑ 0.1458 0.1550 0.1560 0.1548 0.1545 0.1519 0.1516 0.1520 0.1683
N@20 ↑ 0.0638 0.0665 0.0680 0.0669 0.0669 0.0650 0.0654 0.0675 0.0748

Sports

R@10 ↑ 0.0325 0.0353 0.0327 0.0352 0.0332 0.0364 0.0337 0.0258 0.0441
N@10 ↑ 0.0173 0.0189 0.0169 0.0183 0.0174 0.0189 0.0180 0.0133 0.0237
R@20 ↑ 0.0529 0.0552 0.0501 0.0543 0.0504 0.0543 0.0511 0.0421 0.0660
N@20 ↑ 0.0223 0.0239 0.0213 0.0231 0.0217 0.0234 0.0223 0.0174 0.0292

Toys

R@10 ↑ 0.0898 0.0911 0.0868 0.0888 0.0882 0.0876 0.0871 0.0874 0.0941
N@10 ↑ 0.0511 0.0517 0.0490 0.0502 0.0501 0.0481 0.0497 0.0494 0.0537
R@20 ↑ 0.1221 0.1264 0.1199 0.1235 0.1232 0.1206 0.1201 0.1194 0.1286
N@20 ↑ 0.0592 0.0606 0.0573 0.0589 0.0589 0.0564 0.0580 0.0575 0.0623

Office

R@10 ↑ 0.0974 0.0970 0.0967 0.1005 0.0974 0.1053 0.0913 0.1012 0.1047
N@10 ↑ 0.0498 0.0512 0.0487 0.0509 0.0518 0.0530 0.0465 0.0503 0.0534
R@20 ↑ 0.1471 0.1484 0.1561 0.1503 0.1497 0.1554 0.1459 0.1452 0.1625
N@20 ↑ 0.0623 0.0642 0.0635 0.0634 0.0647 0.0656 0.0603 0.0614 0.0681

Auto

R@10 ↑ 0.1159 0.1256 0.1171 0.1220 0.1098 0.1329 0.1073 0.1305 0.1354
N@10 ↑ 0.0575 0.0630 0.0576 0.0645 0.0572 0.0705 0.0535 0.0629 0.0714
R@20 ↑ 0.1829 0.1878 0.1902 0.1841 0.1927 0.2049 0.1793 0.2012 0.2085
N@20 ↑ 0.0742 0.0786 0.0761 0.0802 0.0781 0.0886 0.0713 0.0808 0.0899

Table 5: Replacing the contrastive loss of CL-based baselines with NCL losses.

Next, we replace the ad-hoc augmentations with our proposed preference-preserving augmentation.
In this context, CLS4Rec, CoSeRec and EC4Rec converge to the same CL framework. In compar-
ison, the modified DUORec is also a new baseline, because DUORec has the additional dropout
mask. The results are reported in Table 6. In Table 6, each column represent a training scheme be-
ing a CL-based baseline or its DP version. The last column includes the performance of NCL-SR as
reference. The first comparison is made with first four columns and the second comparison is made
with the next two columns, with better performance highlighted in bold. In addition, we also make a
comparison per row, with the second-best performance highlighted with underlines. From Table 6,
we observe that despite our preference-preserving augmentation, CL-based methods still suffer from
generalization issue because of the reliance on negative samples. Due to the limited GPU memory,
the training batch size is 4. Under such a small batch size, it is challenging for the CL-based meth-
ods to promote uniformity in the learned user/item representations. As a consequence, the trained
recommenders may still suffer from generalization issue. Such an observation shows that the per-

20

Published as a conference paper at ICLR 2025

formance of CL-based methods is sensitive to negative samples. This is a systematic loophole of
CL, which necessiates the developmennt of our NCL framework.

CLS4Rec CoSeRec EC4Rec + DP DUORec + DP Ours

Beauty

R@10 ↑ 0.0690 0.0698 0.0628 0.0727 0.0706 0.0674 0.0791
N@10 ↑ 0.0367 0.0375 0.0344 0.0394 0.0383 0.0363 0.0440
R@20 ↑ 0.1008 0.1007 0.0971 0.1077 0.1052 0.0984 0.1135
N@20 ↑ 0.0447 0.0453 0.0430 0.0481 0.0470 0.0440 0.0526

Games

R@10 ↑ 0.0992 0.1057 0.0998 0.0989 0.1041 0.1014 0.1140
N@10 ↑ 0.0521 0.0553 0.0524 0.0514 0.0543 0.0529 0.0611
R@20 ↑ 0.1458 0.1560 0.1516 0.1513 0.1545 0.1529 0.1683
N@20 ↑ 0.0638 0.0680 0.0654 0.0645 0.0669 0.0659 0.0748

Sports

R@10 ↑ 0.0325 0.0327 0.0337 0.0369 0.0332 0.0358 0.0441
N@10 ↑ 0.0173 0.0169 0.0180 0.0198 0.0174 0.0191 0.0237
R@20 ↑ 0.0529 0.0501 0.0511 0.0553 0.0504 0.0541 0.0660
N@20 ↑ 0.0223 0.0213 0.0223 0.0245 0.0217 0.0237 0.0292

Toys

R@10 ↑ 0.0898 0.0868 0.0871 0.0834 0.0882 0.0796 0.0941
N@10 ↑ 0.0511 0.0490 0.0497 0.0456 0.0501 0.0440 0.0537
R@20 ↑ 0.1221 0.1199 0.1201 0.1160 0.1232 0.1141 0.1286
N@20 ↑ 0.0592 0.0573 0.0580 0.0538 0.0589 0.0527 0.0623

Office

R@10 ↑ 0.0974 0.0967 0.0913 0.0958 0.0974 0.0980 0.1047
N@10 ↑ 0.0498 0.0487 0.0465 0.0495 0.0518 0.0527 0.0534
R@20 ↑ 0.1471 0.1561 0.1459 0.1398 0.1497 0.1465 0.1625
N@20 ↑ 0.0623 0.0635 0.0603 0.0606 0.0647 0.0647 0.0681

Auto

R@10 ↑ 0.1159 0.1171 0.1073 0.1317 0.1098 0.1268 0.1354
N@10 ↑ 0.0575 0.0576 0.0535 0.0644 0.0572 0.0678 0.0714
R@20 ↑ 0.1829 0.1902 0.1793 0.2000 0.1927 0.2073 0.2085
N@20 ↑ 0.0742 0.0761 0.0713 0.0814 0.0781 0.0879 0.0899

Table 6: Applying DP augmentation for CL-based methods. The best results are highlighted in bold
and the second best results are highlighted with underline.

21

Published as a conference paper at ICLR 2025

APPENDIX E: ADDITIONAL SENSITIVITY ANALYSIS

Sensitivity Analysis w.r.t. Alignment. In the alignment loss (Equation 10), there exists an ad-
ditional hyperparameter γ that affects the computation of Lalign. Firstly, we acknowledge that
different values of γ could indeed affect the model performance. This is revealed in our sensitivity
analysis w.r.t. λ2 as in Figure 2b. To see this, note that λ2 is equivalent to a rescaled γ in our
implementation. As shown in [1], Luniform + Lalign could be expanded as follows:

Luniform(Z,Z
′
) + Lalign(Z,Z

′
)

= MCE
(1
d
Id, C(Z,Z

′
)
)
− tr

(
C(Z,Z

′
)
)
+ γ ·MCE

(
C(Z,Z), C(Z

′
, Z

′
)
)

= −tr
(
(
1

d
Id)log(C(Z,Z

′
))
)
− γ · tr

(
C(Z,Z)log(C(Z

′
, Z

′
))
)
+ γ · tr

(
C(Z

′
, Z

′
)
)
+ const.

(24)

In the last expansion in the third row, it is observed that both the second term and the third term are
derived from Lalign. More importantly, both these two terms are re-scaled by γ. Since the second
term and third term correspond to Lalign, we can instead use another scaling factor that directly
adjusts the trade-off between Luniform and Lalign. Specifically, we used λ1 to re-scale Luniform

and λ2 to re-scale Lalign with γ being absorbed into λ2. Finally, such an implementation (i.e.,
absorbing γ into λ2) reduces the number of hyperparameters required for tuning.

Additional Sensitivity Analysis w.r.t. Number of Perturbations. We conduct a sensitivity anal-
ysis w.r.t. the number of perturbations in the user profile generation. Recall, the preference-
preserving user profiles are generated by injecting item-level perturbations into the original user
profile. In this set of experiments, we increase the number of perturbations from 1 to 8. We stopped
at 8, because the averaged length of user profiles in most datasets is around 8. We report the results
of sensitivity analysis in Table 7. According to Table 7, it is observed that in general, the model
performance is stable when varying the number of perturbations from 1 to 4. Moreover, the per-
formance of the model starts degrading after the number of perturbations is larger than 5. This is
expected, because, with too many perturbations, the initial model may generate some wrong user
preferences at the beginning. During training, such wrong user preferences are preserved, so the
model is then trained to learn wrong user preferences, which degrades the performance.

Dataset Num. of 1 2 3 4 5 6 7 8Perturbations

Beauty

R@10 ↑ 0.0772 0.0779 0.0791 0.0742 0.0783 0.0749 0.0726 0.0747
N@10 ↑ 0.0415 0.0427 0.0440 0.0396 0.0430 0.0408 0.0400 0.0404
R@20 ↑ 0.1130 0.1139 0.1135 0.1098 0.1165 0.1141 0.1089 0.1113
N@20 ↑ 0.0505 0.0517 0.0526 0.0486 0.0526 0.0507 0.0492 0.0496

Games

R@10 ↑ 0.1089 0.1123 0.1140 0.1101 0.1076 0.1107 0.1104 0.1085
N@10 ↑ 0.0574 0.0600 0.0611 0.0572 0.0561 0.0582 0.0573 0.0583
R@20 ↑ 0.1656 0.1664 0.1683 0.1650 0.1626 0.1647 0.1629 0.1607
N@20 ↑ 0.0716 0.0736 0.0748 0.0710 0.0700 0.0717 0.0705 0.0714

Sports

R@10 ↑ 0.0397 0.0387 0.0441 0.0406 0.0382 0.0351 0.0358 0.0394
N@10 ↑ 0.0210 0.0206 0.0237 0.0209 0.0201 0.0191 0.0192 0.0212
R@20 ↑ 0.0593 0.0592 0.0660 0.0617 0.0596 0.0565 0.0549 0.0611
N@20 ↑ 0.0259 0.0258 0.0292 0.0262 0.0255 0.0244 0.0240 0.0266

Toys

R@10 ↑ 0.0930 0.0958 0.0941 0.0942 0.0926 0.0908 0.0922 0.0928
N@10 ↑ 0.0511 0.0540 0.0537 0.0540 0.0525 0.0515 0.0521 0.0522
R@20 ↑ 0.1248 0.1309 0.1286 0.1314 0.1281 0.1238 0.1261 0.1302
N@20 ↑ 0.0592 0.0628 0.0623 0.0634 0.0615 0.0598 0.0607 0.0615

Office

R@10 ↑ 0.0983 0.0989 0.1047 0.1028 0.0983 0.0875 0.0989 0.0980
N@10 ↑ 0.0521 0.0524 0.0534 0.0529 0.0506 0.0431 0.0498 0.0509
R@20 ↑ 0.1561 0.1535 0.1625 0.1570 0.1554 0.1459 0.1519 0.1551
N@20 ↑ 0.0662 0.0662 0.0681 0.0665 0.0649 0.0579 0.0631 0.0653

Auto

R@10 ↑ 0.1390 0.1280 0.1354 0.1268 0.1220 0.1268 0.1256 0.1220
N@10 ↑ 0.0690 0.0660 0.0714 0.0667 0.0630 0.0677 0.0672 0.0626
R@20 ↑ 0.2207 0.2098 0.2085 0.2037 0.2049 0.1976 0.2024 0.1902
N@20 ↑ 0.0894 0.0867 0.0899 0.0860 0.0839 0.0856 0.0863 0.0800

Table 7: Changing number of perturbations for preference-preserving profile generation.

22

Published as a conference paper at ICLR 2025

APPENDIX F: IMPLEMENTING ID-BASED SR MODELS WITH E5

We further implement SR models with E5, where E5 is used as the embedding model to embed
the item texts. We compare our method against the E5-based SR models in the table below. It
is observed that our method can outperform the E5-based SR models. We also note that it is non-
trivial to apply E5 to these models, because such ID-based models originally take item IDs as inputs,
whereas E5 is a text-based model.

Dataset Metric E5-Based
BERT4Rec SASRec NARM LRURec NCL-SR (Ours)

Beauty

R@10 ↑ 0.0420 0.0504 0.0348 0.0446 0.0791
N@10 ↑ 0.0226 0.0249 0.0189 0.0210 0.0440
R@20 ↑ 0.0672 0.0784 0.0486 0.0614 0.1135
N@20 ↑ 0.0290 0.0319 0.0224 0.0292 0.0526

Games

R@10 ↑ 0.0739 0.1061 0.0422 0.0641 0.1140
N@10 ↑ 0.0385 0.0556 0.0236 0.0351 0.0611
R@20 ↑ 0.1150 0.1568 0.0563 0.0946 0.1683
N@20 ↑ 0.0488 0.0682 0.0272 0.0429 0.0748

Sports

R@10 ↑ 0.0287 0.0253 0.0105 0.0164 0.0441
N@10 ↑ 0.0159 0.0126 0.0064 0.0095 0.0237
R@20 ↑ 0.0431 0.0372 0.0144 0.0228 0.0660
N@20 ↑ 0.0195 0.0156 0.0074 0.0111 0.0292

Toys

R@10 ↑ 0.0379 0.0533 0.0127 0.0198 0.0941
N@10 ↑ 0.0197 0.0268 0.0088 0.0133 0.0537
R@20 ↑ 0.0576 0.0739 0.0158 0.0256 0.1286
N@20 ↑ 0.0247 0.0320 0.0096 0.0147 0.0623

Office

R@10 ↑ 0.0342 0.0307 0.0425 0.0466 0.1047
N@10 ↑ 0.0170 0.0156 0.0210 0.0210 0.0534
R@20 ↑ 0.0549 0.0434 0.0836 0.0782 0.1625
N@20 ↑ 0.0222 0.0187 0.0313 0.0289 0.0681

Auto

R@10 ↑ 0.0378 0.0439 0.0402 0.0512 0.1354
N@10 ↑ 0.0206 0.0279 0.0207 0.0275 0.0714
R@20 ↑ 0.0646 0.0537 0.0683 0.0817 0.2085
N@20 ↑ 0.0282 0.0303 0.0227 0.0352 0.0899

Table 8: Implementing SR models with E5.

APPENDIX G: COMPUTATIONAL COSTS AND MEMORY CONSUMPTION
BETWEEN CL AND NCL

From a theoretical point of view, the time complexity of CL is O(n2), if the training batch size is
n and the loss is computed with in-batch negative samples. In comparison, the time complexity of
NCL is O(n), because there are no negative samples at all. Therefore, NCL is more computationally
efficient than CL (Zhuo et al., 2023; Zbontar et al., 2021; Grill et al., 2020; Cho et al., 2022).

Furthermore, we highglight that in our method, the computation of the logarithm in Equation 8 is
approximated with Taylor expansion as in (Zhang et al., 2023). In general, the time complexity
of this operation is the time complexity is O(md2) (under our implementation), with m being the
order of the expansion and d being the dimensionality of the matrix V . In our implementation, we
set m = 4 for computational efficiency and d = 768 as given by the dimensionality of E5 outputs:

logV =

m∑
i=1

(−1)(m+1) (V − I)m

m
.

Finally, we conducted additional experiments to evaluate the computational cost and memory con-
sumption of computing CL and NCL losses. In this set of experiments, we ensure that all methods
use exactly the same training configuration (i.e., batch size, model, CUDA version). The hard-
ware used to evaluate memory consumption is NVIDIA A40. We report the results in the table

23

Published as a conference paper at ICLR 2025

below. In the Table below, we report the relative memory consumption between NCL and CL:
ηmemory = memory consumption of NCL

memory consumption of CL :

Batch Size 1 2 3 4 5

ηmemory 0.72 0.57 0.51 0.51 CL out of memory

Table 9: Memory consumption for computing CL and NCL losses with different batch sizes.

24

