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ABSTRACT

Statistical inference under market equilibrium effects has attracted increasing at-
tention recently. In this paper we focus on the specific case of linear Fisher mar-
kets. They have been widely use in fair resource allocation of food/blood do-
nations and budget management in large-scale Internet ad auctions. In resource
allocation, it is crucial to quantify the variability of the resource received by the
agents (such as blood banks and food banks) in addition to fairness and efficiency
properties of the systems. For ad auction markets, it is important to establish sta-
tistical properties of the platform’s revenues in addition to their expected values.
To this end, we propose a statistical framework based on the concept of infinite-
dimensional Fisher markets. In our framework, we observe a market formed by
a finite number of items sampled from an underlying distribution (the “observed
market”) and aim to infer several important equilibrium quantities of the under-
lying long-run market. These equilibrium quantities include individual utilities,
social welfare, and pacing multipliers. Through the lens of sample average ap-
proximation (SAA), we derive a collection of statistical results and show that the
observed market provides useful statistical information of the long-run market. In
other words, the equilibrium quantities of the observed market converge to the
true ones of the long-run market with strong statistical guarantees. These include
consistency, finite sample bounds, asymptotics, and confidence. As an extension
we discuss revenue inference in quasilinear Fisher markets.

1 INTRODUCTION

In a Fisher market there is a set of n buyers that are interested in buying goods from a distinct
seller. A market equilibrium (ME) is then a set of prices for the goods, along with a corresponding
allocation, such that demand equals supply.

One important application of market equilibrium (ME) is fair allocation using the competitive equi-
librium from equal incomes (CEEI) mechanism (Varian, 1974). In CEEI, each individual is given
an endowment of faux currency and reports her valuations for items; then, a market equilibrium
is computed, and the items are allocated accordingly. The resulting allocation has many desirable
properties such as Pareto optimality, envy-freeness and proportionality. For example, Fisher market
equilibrium has been used for fair work allocation, impressions allocation in certain recommender
systems, course seat allocation and scarce computing resources allocation; see Appendix A for an
extensive overview.

Despite numerous algorithmic results available for computing Fisher market equilibria, to the best
of our knowledge, no statistical results were available for quantifying the randomness of market
equilibrium. Given that CEEI is a fair and efficient mechanism, such statistical results are useful
for quantifying variability in CEEI-based resource allocation. For example, for systems that assign
blood donation to hospitals and blood banks (McElfresh et al., 2020), or donated food to charities in
different neighborhoods (Aleksandrov et al., 2015; Sinclair et al., 2022), it is crucial to quantify the
variability of the amount of resources (blood or food donation) received by the participants (hospitals
or charities) of these systems as well as the variability of fairness and efficiency metrics of interest
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Figure 1: Our contributions. Left panel: a Fisher market with a finite number of items. Right panel: a Fisher
market with a continuum of items. Middle arrow: this paper provides various forms of statistical guarantees to
characterize the convergence of observed finite Fisher market (left) to the long-run market (right) when the
items are drawn from a distribution corresponding to the supply function in the long-run market.

in the long run. Making statistical statements about these metrics is crucial for both evaluating and
improving these systems.

In addition to fair resource allocation, statistical results for Fisher markets can also be used in rev-
enue inference in Internet ad auction markets. While much of the existing literature uses expected
revenue as performance metrics, statistical inference on revenue is challenging due to the complex
interaction among bidders under coupled supply constraints and common price signals. As shown
by Conitzer et al. (2022a), in budget management through repeated first-price auctions with pacing,
the optimal pacing multipliers correspond to the “prices-per-utility” of buyers in a quasilinear Fisher
market at equilibrium. Given the close connection between various solution concepts in Fisher mar-
ket models and first-price auctions, a statistical framework enables us to quantify the variability in
long-run revenue of an advertising platform. Furthermore, a statistical framework would also help
answer other statistical questions such as the study of counterfactuals and theoretical guarantees for
A/B testing in Internet ad auction markets.

For a detailed survey on related work in the areas of statistical inference, applications of Fisher
market models, and equilibrium computation algorithms, see Appendix A.

Our contributions are as follows.

A statistical Fisher market model. We formulate a statistical estimation problem for Fisher mar-
kets based on the continuous-item model of Gao and Kroer (2022). We show that when a finite
set of goods are sampled from the continuous model, the observed ME is a good approximation
of the long-run market. In particular, we develop consistency results, finite-sample bounds, central
limit theorems, and asymptotically valid confidence interval for various quantities of interests, such
as individual utility, Nash social welfare, pacing multipliers, and revenue (for quasilinear Fisher
markets).

Technical challenges. In developing central limit theorems for pacing multipliers and utilities in
Fisher markets (Theorem 5), we note that the dual objective is potentially not twice differentiable.
This is a required condition, which is common in the sample average approximation or M-estimation
literature. We discover three types of market where such differentiability is guaranteed. Moreover,
the sample function is not differentiable, which requires us to verify a set of stochastic differentia-
bility conditions in the proofs for central limit theorems. Finally, we achieve a fast statistical rate of
the empirical pacing multiplier to the population pacing multiplier measured in the dual objective
by exploiting the local strong convexity of the sample function.

Notation. For a sequence of events An we define the set limit by lim infn→∞ An =∪
n≥1

∩
j≥n Aj = {At eventually} and lim supn→∞ An =

∩
n≥1

∪
j≥n Aj = {At i.o.}. Let

[n] = {1, . . . , n}. We use 1t to denote the vector of ones of length t and ej to denote the vec-
tor with one in the j-th entry and zeros in the others. For a sequence of random variables {Xn}, we
say Xn = Op(1) if for any ϵ > there exists a finite Mϵ and a finite Nϵ such that P(|Xn| > Mϵ) < ϵ
for all n ≥ Nϵ. We say Xn = Op(an) if Xn/an = Op(1). We use subscript for indexing buyers
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and superscript for items. If a function f is twice continuously differentiable at a point x, we say f
is C2 at x.

2 PROBLEM SETUP

2.1 THE ESTIMANDS

Following Gao and Kroer (2022), we consider a Fisher market with n buyers (individuals), each
having a budget bi > 0 and a (possibly continuous) set of items Θ. We let Lp (and Lp

+, resp.) denote
the set of (nonnegative, resp.) Lp functions on Θ w.r.t the integrating measure µ for any p ∈ [1,∞]
(including p = ∞). For example, one could take Θ = [0, 1] and µ = the Lebesgue measure on
[0, 1]. The item supplies are given by a function s ∈ L∞

+ , i.e., item θ ∈ Θ has supply s(θ). The
valuation for buyer i is a function vi ∈ L1

+, i.e., buyer i has valuation vi(θ) for item θ ∈ Θ. For
buyer i, an allocation of items xi ∈ L∞

+ gives a utility of

ui(xi) := ⟨vi, xi⟩ :=
∫
Θ

vi(θ)xi(θ) dµ(θ),

where the angle brackets are based on the notation of applying a bounded linear functional xi to a
vector vi in the Banach space L1 and the integral is the usual Lebesgue integral. We will use x ∈
(L∞

+ )n to denote the aggregate allocation of items to all buyers, i.e., the concatenation of all buyers’
allocations. The prices of items are modeled as p ∈ L1

+. The price of item θ ∈ Θ is p(θ). Without
loss of generality, we assume a unit total supply

∫
Θ
sdµ = 1. We let S(A) :=

∫
A
s(θ) dµ(θ) be the

probability measure induced by the supply s.

Imagine there is a central policymaker that sets the prices p(·) of items Θ. Upon receiving the price
signal, the buyer i maximizes his utility ⟨vi, xi⟩ subject to the budget constraint ⟨p, xi⟩ ≤ bi. He
would demand a bundle of items coming from his demand set

Di(p) := argmax
xi

{⟨vi, xi⟩ : xi ∈ L∞
+ , ⟨p, xi⟩ ≤ bi}.

Of course, due to the supply constraint, if prices are too low, there will be a shortage in supply. On
the other hand, if prices are too high, a surplus occurs. Market equilibrium is the case when items
are sold out exactly.
Definition 1 (The long-run market equilibrium). The market equilibrium (ME) ME (b, v, s) is an
allocation-utility-price tuple (x∗, u∗, p∗) ∈ (L∞

+ )n × Rn
+ × L1

+ such that the following holds. (i)
Supply feasibility and market clearance:

∑
i x

∗
i ≤ s and ⟨p∗, s−

∑
i x

∗
i ⟩ = 0. (ii) Buyer optimality:

x∗
i ∈ Di(p

∗) and u∗ = ⟨vi, xi⟩ for all i.

Linear Fisher market equilibrium can be characterized by convex programs. We state the following
result from Gao and Kroer (2022) which establishes existence and uniqueness of market equilibrium,
and more importantly the convex program formulation of the equilibrium. We define the Eisenberg-
Gale (EG) convex programs which as we will see are dual to each other.

max
x∈L∞

+ (Θ),u≥0

{
NSW(u) :=

n∑
i=1

bi log(ui)
∣∣ ui ≤

⟨
vi, xi

⟩
∀i ∈ [n],

n∑
i=1

xi ≤ s

}
, (P-EG)

min
β>0

{
H(β) :=

∫
Θ

(
max
i∈[n]

βivi(θ)
)
S(dθ)−

n∑
i=1

bi log βi

}
. (P-DEG)

Concretely, the optimal primal variables in Eq. (P-EG) corresponds to the set of equilibrium al-
locations x∗ and the unique equilibrium utilities u∗, and the unique optimal dual variable β∗ of
Eq. (P-DEG) relates to the equilibrium through

u∗
i = bi/β

∗
i , p∗(θ) = max

i
β∗
i vi(θ) , x∗

i (θ) > 0 only if i ∈ argmax
i

β∗
i vi(θ) .

We call β∗ the pacing multiplier. Note equilibrium allocations might not be unique but equilibrium
utilities and prices are unique. Given the above equivalence result, we use (x∗, u∗) to denote both
the equilibrium and the optimal variables. Another feature of linear Fisher market is full budget
extraction:

∫
p∗ dS =

∑n
i=1bi; we discuss quasilinear model in Appendix F.
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We formally state the first-order conditions of infinite-dimensional EG programs and its relation
to first-price auctions in Fact 1 in appendix. Also, we remark that there are two ways to specify
the valuation component in this model: the functional form of vi(·), or the distribution of values
v : Θ → Rn

+ when view as a random vector. More on this in Appendix E.

We are interested in estimating the following quantities of the long-run market equilibrium. (1) In-
dividual utilities at equilibrium, u∗

i . (2) Pacing multipliers β∗
i = bi/u

∗
i . Pacing multiplier has a

two-fold interpretation. Second, through the equation p∗(θ) = maxi β
∗
i vi(θ), β can also be inter-

preted as the pacing policy1 employed by the buyers in first-price auctions. In our context, buyer i
produces a bid for item θ by multiplying the value by βi, then the item price is determined via a first-
price auction. This connection is made precise in Conitzer et al. (2022a) from a game-theoretic point
of view. The pacing multiplier β serves as the bridge between Fisher market equilibrium and first
price pacing equilibria in auction games (Conitzer et al., 2022a) and has important usage in budget
management in online auctions. (3) The (logarithm of) Nash social welfare (NSW) at equilibrium
NSW∗ := NSW(u∗). NSW measures total utility of the buyers and, when used as an optimization
objective, is able to promote fairness better than the social welfare, that is, the sum of buyer utilities
(Caragiannis et al., 2019). Intuitively, NSW incentivizes more balancing of buyer utilities. Revenue
inference for quasilinear model is discussed in Appendix F2.

Mapping model to concrete applications. It is well-known that Fisher market is a useful mecha-
nism for fair and efficient resource allocation. More recently, it is also shown to be intimately related
to first-price auctions (Conitzer et al., 2022a). When modeling ad auction platforms, buyers’ individ-
ual utilities reflect, for example, the values generated to advertisers, measured in terms of click rates,
conversion rates, or other revenue metrics. A confidence interval on this quantity can be provided by
the ad platform to the advertisers to better inform advertisers’ decision-making. Pacing multiplier,
as the ratio between the bid and the value of items, reflects the advertisers’ bidding strategy. A con-
fidence interval on this quantity could help the ad platform predict its clients bidding behavior and
suggest budget management strategy to clients. Finally, Nash social welfare measures the efficiency
and fairness of the whole ad platform. We can also use Fisher market to model resource allocation
systems in internet companies. For example, in a job recommendation platform, we can model it as
a market where we distribute viewer’s attention to job post creators. In this context, social welfare
measures generally the efficiency of the job recommendation system. Individual utilities track how
satisfied the job post creators are with the extent to which their job posts are being recommended.

2.2 THE DATA

Assume we are able to observe a market formed by a finite number of items. We let γ =
{θ1, . . . , θt} ⊂ Θt be a set of items sampled i.i.d. from the supply distribution S. We let
vi(γ) =

(
vi(θ

1), . . . , vi(θ
t)
)

denote the valuation for agent i of items in the set γ. For agent i,
let xi = (x1

i , . . . , x
t
i) ∈ Rt denote the fraction of items given to agent i. With this notation, the total

utility of agent i is ⟨xi, vi(γ)⟩. Similar to the long-run market, we assume the observed market is at
equilibrium, which we now define.

Definition 2 (Observed Market Equilibrium). The market equilibrium ME γ(b, v, s) given the item
set γ and the supply vector s ∈ Rt

+ is an allocation-utitlity-price tuple (xγ , uγ , pγ) ∈ (Rt
+)

n ×
Rn

+ × Rt
+ such that the following holds. (i) Supply feasibility and market clearance:

∑n
i=1x

γ
i ≤ s

and ⟨pγ , 1t −
∑n

i=1x
γ
i ⟩ = 0. (ii) Buyer optimality: xγ

i ∈ Di(p
γ) and uγ

i = ⟨vi(γ), xi⟩ for all i,
where (overloading notations)

Di(p) := argmax
xi

{⟨vi(γ), xi⟩ : xi ≥ 0, ⟨p, xi⟩ ≤ bi}

is the demand set given the prices and the buyer’s budget.

1In the online budget management literature, pacing means buyers produce bids for items via multiplying
his value by a constant.

2 In a linear Fisher market the budgets are extracted fully, i.e.,
∫
p∗ dS =

∑
ibi in the long-run market

and
∑t

τ=1p
γ,τ =

∑
ibi in the observed market (see Appendix E), and therefore there is nothing to infer

about revenue in this case. However, in the quasilinear utility model where buyer’s utility function is ui(x) =
⟨x− p, vi⟩, buyers have the incentive to retain money and therefore one needs to study the statistical properties
of revenues.
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Assume we have access to (xγ , uγ , pγ) along with the budget vector b, where (xγ , uγ , pγ) ∈
ME γ(b, v, 1

t 1t) is the market equilibrium (we explain the scaling of 1/t in Appendix E). Note
the budget vector b and value functions v = {vi(·)}i are the same as those in the long-run ME. We
emphasize two high-lights in this model of observation.

No convex program solving. The quantities observed are natural estimators of their counterparts
in the long-run market, and so we do not need to perform iterative updates or solve optimization
problems. One interpretation of this is that the actual computation is done when equilibrium is
reached via the utility maximizing property of buyers; the work of computation has thus implicitly
been delegated to the buyers.

For finite-dimensional Fisher market, it is well-known that the observed market equilibrium
ME γ(b, v, 1

t 1t) can be captured by the following sample EG programs.

max
x≥0,u≥0

{
NSW(u)

∣∣ ui ≤
⟨
vi(γ), xi

⟩
∀i,

n∑
i=1

xτ
i ≤ 1

t 1t ∀τ
}

, (S-EG)

min
β>0

{
Ht(β) :=

1

t

t∑
τ=1

max
i∈[n]

βivi(θ
τ )−

n∑
i=1

bi log βi

}
. (S-DEG)

We list the KKT conditions in Appendix E. Completely parallel to the long-run market, opti-
mal solutions to Eq. (S-EG) correspond to the equilibrium allocations and utilities, and the opti-
mal variable βγ to Eq. (S-DEG) relates to equilibrium prices and utilities through uγ

i = bi/β
γ
i ,

pγ,τ = maxi β
γ
i vi(θ

τ ) and xγ,τ
i > 0 only if i ∈ argmaxi β

γ
i vi(θ

τ ). By the equivalence between
market equilibrium and EG programs, we use uγ and xγ to denote the equilibrium and the opti-
mal variables. Let NSWγ := NSW(uγ) =

∑n
i=1bi log u

γ
i . All budgets in the observed market is

extracted, i.e.,
∑t

τ=1p
γ,τ =

∑n
i=1bi.

2.3 DUAL PROGRAMS: BRIDGING DATA AND THE ESTIMANDS

Given the convex program characterization, a natural idea is to study the concentration behavior of
observed market equilibria through these convex programs. We focus on the dual programs Eqs. (S-
DEG) and (P-DEG) because they are defined in a fixed dimension, and that the constraint set is also
fixed.

Define the sample function F = f + Ψ, where f(β, θ) = maxi{vi(θ)βi}, and Ψ(β) =
−
∑n

i=1bi log βi; the function f is the source of non-smoothness, while Ψ provides local strong
convexity. Our approach is studying concentration of the convex programs in the sense that as t
grows

min
β>0

Ht(β) =
1

t

t∑
τ=1

F (β, θτ ) “ =⇒ ” min
β>0

H(β) = E[F (β, θ)] .

The local strong convexity of the dual objective motivates us to do the analysis work in the neighbor-
hood of the optimal solution β∗. In particular, the function x 7→ − log x is not strongly convex on
the positive reals, but it is on any compact subset. By working on a compact subset, we can exploit
strong convexity of the dual objective and obtain better theoretical results. It is known (Fact 1) that

¯
βi ≤ β∗

i ≤ β̄ where
¯
βi = bi/

∫
vi dS and β̄ =

∑n
i=1bi/mini

∫
vi dS. Define the compact set

C :=
∏n

i=1

[
¯
βi/2, 2β̄

]
⊂ Rn, which must be a neighborhood of β∗. Moreover, for large-enough t

we further have βγ ∈ C with high probability (c.f. Lemma 1).

Blanket assumptions. Recall the total supply in the long-run market is one:
∫
sdµ = 1. Assume

the total item set produce one unit of utility in total, i.e.,
∫
visdµ = 1. Suppose budges of all buyers

sum to one, i.e.,
∑n

i=1bi = 1. Let
¯
b := mini bi. Note the previous budget normalization implies

¯
b ≤ 1/n. Finally, for easy of exposition, we assume the values are bounded supΘ vi(θ) < v̄, for
all i. By the normalization of values and budgets, we know

¯
βi = bi and β̄ = 1.
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3 CONSISTENCY AND FINITE-SAMPLE BOUNDS

In this section we introduce several natural empirical estimators based on the observed market equi-
librium, and show that they satisfy both consistency and high-probability bounds. Below we state
the consistency results; the formal version can be found in Appendix B.

Theorem 1 (Consistency, informal). The Nash social welfare, pacing multiplier and approximate
equilibria in the observed market are strongly consistent estimators of their counterparts in the
long-run market.

High Probability Bounds Next, we refine the consistency results and provide finite sample guar-
antees. We start by focusing on Nash social welfare and the set of approximate market equilibria.
The convergence of utilities and pacing multiplier will then be derived from the latter result.

Theorem 2. For any failure probability 0 < η < 1, let t ≥ 2v̄2log(4n/η). Then with probablity
greater than 1 − η, it holds |NSWγ − NSW∗| ≤ O(1)v̄

(√
n log((n+ v̄)t) +

√
log(1/η)

)
t−1/2

where O(1) hides only constants. Proof in Appendix I.

Theorem 2 establishes a convergence rate |NSWγ − NSW∗| = Õp(v̄
√
nt−1/2). The proof proceeds

by first establishing a pointwise concentration inequality and then applies a discretization argument.

Theorem 3 (Concentration of Approximate Market Equilibrium). Let ϵ > 0 be a tolerance pa-
rameter and α ∈ (0, 1) be a failure probability. Then for any 0 ≤ δ ≤ ϵ/2, to ensure
P
(
C ∩ Bγ(δ) ⊂ C ∩ B∗(ϵ)

)
≥ 1− 2α it suffices to set

t ≥ O(1)v̄2 min

{
1

¯
bϵ
,
1

ϵ2

}(
n log

(
16(2n+v̄)

ϵ−δ

)
+ log 1

α

)
, (1)

where the set C =
∏n

i=1[
¯
βi/2, 2β̄], and O(1) hides only absolute constants. Proof in Appendix J.

By construction of C we know β∗ ∈ C holds, and so C ∩ B∗(ϵ) is not empty. By Lemma 1 we
know that for t sufficiently large, βγ ∈ C with high probability, in which case the set C ∩ Bγ(δ) is
not empty.

Corollary 1. Let t satisfy Eq. (1). Then with probability ≥ 1− 2α it holds H(βγ) ≤ H(β∗) + ϵ.

By simply taking δ = 0 in Theorem 3 we obtain the above corollary. More importantly, it establishes
the fast statistical rate H(βγ) − H(β∗) = Õp(t

−1) for t sufficiently large, where we use Õp to
ignore logarithmic factors. In words, when measured in the population dual objective where we take
expectation w.r.t. the item supply, βγ converges to β∗ with the fast rate 1/t. This is in contrast to the
usual 1/

√
t rate obtained in Theorem 2, where βγ is measured in the sample dual objective. There

the 1/
√
t rate is the best obtainable.

By the strong-convexity of dual objective, the containment result can be translated to high-
probability convergence of the pacing multipliers and the utility vector.

Corollary 2. Let t satisfy Eq. (1). Then with probability ≥ 1− 2α it holds ∥βγ − β∗∥2 ≤
√

8ϵ

¯
b and

∥uγ − u∗∥2 ≤ 4

¯
b

√
8ϵ/

¯
b.

We compare the above corollary with Theorem 9 from Gao and Kroer (2022) which establishes the
convergence rate of the stochastic approximation estimator based on dual averaging algorithm (Xiao,
2010). In particular, they show that the average of the iterates, denoted βDA, enjoys a convergence
rate of ∥βDA − β∗∥22 = Õp

(
v̄2

¯
b2

1
t

)
, where t is the number of sampled items. The rate achieved

in Corollary 2 is ∥βγ − β∗∥22 = Õp

(
nv̄2

¯
b2

1
t

)
for t sufficiently large. We see that our rate is worse

off by a factor of n. And yet our estimates are produced by the strategic behavior of the agents
without any extra computation at all. Moreover, in the computation of the dual averaging estimator
the knowledge of values vi(θ) is required, while again βγ can be just observed naturally.

6



Published as a conference paper at ICLR 2023

4 ASYMPTOTICS AND INFERENCE

4.1 ASYMPTOTICS AND ANALYTICAL PROPERTIES OF THE DUAL OBJECTIVE

In this section we derive asymptotic normality results for Nash social welfare, utilities and pacing
multipliers. As we will see, a central limit theorem (CLT) for Nash social welfare holds under
basically no additional assumptions. However, the CLTs of pacing multipliers and utilities will
require twice continuous differentiability of the population dual objective H , with a nonsingular
Hessian matrix. We present CLT results under such a premise, and then provide three sufficient
conditions under which H is C2 at the optimum.
Theorem 4 (Asymptotic Normality of Nash Social Welfare). It holds that

√
t(NSWγ − NSW∗)

d→N (0, σ2
NSW) , (2)

where σ2
NSW =

∫
Θ
(p∗)2 dS(θ)−

( ∫
Θ
p∗ dS(θ)

)2
=
∫
Θ
(p∗)2 dS(θ)− 1. Proof in Appendix K.

To present asymptotics for β and u we need a bit more notation. Let Θi(β) := {θ ∈ Θ : vi(θ)βi ≥
vk(θ)βk,∀k ̸= i}, i.e., the potential winning set of buyer i when the pacing multiplier are β. Let
Θ∗

i := Θi(β
∗). We will see later that if the dual objective is sufficiently smooth at β∗, then the

winning sets, Θ∗
i , i ∈ [n], will be disjoint (up to a measure-zero set). Define the variance of winning

values for buyer i as follows

Ω2
i =

∫
Θ∗

i

v2i (θ) dS(θ)−
(∫

Θ∗
i

vi(θ) dS(θ)

)2

.

Theorem 5 (Asymptotic Normality of Individual Behavior). Assume H is C2 at β∗ with non-
singular Hessian matrix H = ∇2H(β∗). Then

√
t(βγ − β∗)

d→N
(
0,Σβ

)
and

√
t(uγ − u∗)

d→
N
(
0,Σu

)
, where Σβ = H −1Diag(Ω2

i )H
−1 and Σu = Diag(−bi/(β

∗
i )

2)H −1Diag(Ω2
i )H

−1

Diag(−bi/(β
∗
i )

2). Proof in Appendix K.

In Theorem 5 we require a strong regularity condition: twice differentiability of H , which seems
hard to interpret at first sight. Next we derive a set of simpler sufficient conditions for the twice dif-
ferentiability of the dual objective. Intuitively, the expectation operator will smooth out the kinks in
the piecewise linear function f(·, θ); even if f is non-smooth, it is reasonable to hope the expectation
counterpart f̄ is smooth, facilitating statistical analysis.

First we introduce notation for characterizing smoothness of f̄ . Define the gap between the highest
and the second-highest bid under pacing multiplier β by

ϵ(β, θ) := max{βivi(θ)} − secondmax{βivi(θ)} , (3)

here secondmax is the second-highest entry; e.g., secondmax([1, 1, 2]) = 1. When there is a
tie for an item θ, we have ϵ(β, θ) = 0. When there is no tie for an item θ, the gap ϵ(β, θ)
is strictly positive. Let G(β, θ) ∈ ∂f(β, θ) be an element in the subgradient set. The gap
function characterizes smoothness of f : f(·, θ) is differentiable at β ⇔ ϵ(β, θ) is strictly posi-
tive, in which case G(β, θ) = ∇βf(β, θ) = ei(β,θ)vi(β,θ) with ei being the i-th unit vector and
i(β, θ) = argmaxi βivi(θ). When f(·, θ) is differentiable at β a.s., the potential winning sets
{Θi(β)}i are disjoint (up to a measure-zero set).
Theorem 6 (First-order differentiability). The dual objective H is differentiable at a point β if and
only if

ϵ(β, θ)−1 < ∞, for S-almost every θ . (NO-TIE)

When Eq. (NO-TIE) holds, ∇f̄(β) = E[G(β, θ)]. Proof and further technical remarks in Appendix L.

Given the neat characterization of differentiability of dual objective via the gap function ϵ(β, θ), it is
then natural to explore higher-order smoothness, which was needed for some asymptotic normality
results. We provide three classes of markets whose dual objective H enjoys twice differentiability.
Theorem 7 (Second-order differentiability, Informal). If any one of the following holds, then H
is C2 at β∗. (i) A stronger form of Eq. (NO-TIE) holds, e.g., E[ϵ(β, ϵ)−1] or ess supθ{ϵ(β, θ)−1}
is finite in a neighborhood of β∗. (ii) The distribution of v = (v1, . . . , vn) : Θ → Rn

+ is smooth
enough. (iii) Θ = [0, 1] and the valuations vi(·)’s are linear functions.
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4.2 INFERENCE

In this section we discuss constructing confidence intervals for Nash social welfare, the pacing
multipliers, and the utilities. We remark that the observed NSW, NSWγ , is a negatively-biased
estimate of the NSW, NSW∗, of the long-run ME, i.e., E[NSWγ ]− NSW∗ ≤ 0.3 Moreover, it can be
shown that, when the items are i.i.d. E[minHt] ≤ E[minHt+1] using Proposition 16 from Shapiro
(2003). Monotonicity tells us that increasing the size of market produces on average less biased
estimates of the long-run NSW.

To construct a confidence interval for Nash social welfare one needs to estimate the asymptotic vari-
ance. We let σ̂2

NSW := 1
t

∑t
τ=1

(
F (βγ , θτ ) − Ht(β

γ)
)2

=
(
1
t

∑t
τ=1(p

γ,τ )2
)
− 1. where pγ,τ is

the price of item θτ in the observed market. We emphasize that in the computation of the variance
estimator σ̂2

NSW one does not need knowledge of values {vi(θτ )}i,τ . All that is needed is the equi-
librium prices pγ = (pγ,1, . . . , pγ,t) of the items. Given the variance estimator, we construct the
confidence interval [NSWγ ± zα/2

σ̂NSW√
t
], where zα is the α-th quantile of a standard normal. The

next theorem establishes validity of the variance estimator.

Theorem 8. It holds that σ̂NSW
p→σ2

NSW. Given 0 < α < 1, it holds that limt→∞ P
(

NSW∗ ∈
[NSWγ ± zα/2σ̂NSW/

√
t ]
)
= 1− α. Proof in Appendix M.

Estimation of the variance matrices for β and u is more complicated. The main difficulty lies
in estimating the inverse Hessian matrix. Due to the non-smoothness of the sample function, we
cannot exchange the twice differential operator and expectation, and thus the plug-in estimator, i.e.,
the sample average Hessian, is a biased estimator for the Hessian of the population function in
general. In Appendix D we provide a brief discussion of variance estimation under the following
two simplified scenarios. First, in the case where E[ϵ(β, θ)−1] < ∞ holds in a neighborhood of β∗,
which we recall is a stronger form Eq. (NO-TIE), we prove that a plug-in type variance estimator is
valid. Second, if we have knowledge of {vi(θτ )}i,τ , then we give a numerical difference estimator
for the Hessian which is consistent.

5 GUIDE TO PRACTITIONERS

We close our theoretical development with practical instructions on how to construct confidence
interval with results presented so far. Revenue inference is only well-defined in the context of
quasilinear market, which we explore in Appendix F.

Inference on NSW. Recall bi is the budget of agent i and let uγ
i be the observed utility. Let

NSWγ =
∑n

i=1bi log u
γ
i be the NSW in the observed market. This will be a good estiamte of the

limit NSW and as the number of items grows, it converges quickly at a rate of 1/
√
t. To construct

a CI we need to estimate the asymptotic variance. Let σ̂2
NSW = 1

t

∑t
τ=1(p

γ,τ − p̄γ)2 where pγ,τ is
the price of item θτ and p̄γ is the average price. In words, σ̂2

NSW is the variance of prices. Then a
(1 − α) CI for the NSW in the long-run market will be [NSWγ ± zα/2σ̂NSW/

√
t], where zα is the

(1− α)-th quantile of a standard normal.

Inference on β∗ and u∗: simplified inference with a bid-gap condition. Suppose in the ad
auction platform one observes that for each item the winning bid is always higher than the swe-
cond bid by some amount, then we could use the following inference procedure. For a precise
statement of the condition see Theorem 10. When such a condition holds, the variance expression
in Theorem 5 simplifies. Let Ω̂i be the variance of item utility that are allocated to buyer i, i.e.,
Ω̂2

i := 1
t

∑t
τ=1(tu

γ,τ
i − uγ

i )
2, where uγ,τ

i = xγ,τ
i vi(θ

τ ) is the utility buyer i obtains from item
θτ . Define the asymptotic variance estimators Σ̂β = Diag({Ω̂2

i (β
γ
i )

4/b2i }) and Σ̂u = Diag({Ω̂2
i }).

The confidence regions for β∗ and u∗ are ellipsoids that center around βγ and uγ . Concretely,
CRβ = βγ + (χn,α/

√
t)Σ̂

1/2
β B and the confidence region for u∗ is CRu = uγ + (χn,α/

√
t)Σ̂

1/2
u B,

where χk,α is the (1− α)-th quantile of a chi-square with degree k and B is the unit ball in Rn.

Inference on β∗ and u∗: a robust approach. Under fairly general setting, which is justified
in Section 4.1, the following inference procedure is valid. Choose a smoothing level ηt, to be

3Note E[NSWγ ]− NSW∗ = E[minβ Ht(β)]−H(β∗) ≤ minβ E[Ht(β)]−H(β∗) = 0.
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chosen roughly of order ηt = ω(1/
√
t), we construct the following matrix Ĥ whose (i, j)-th entry

is (Ĥ )ij := 1
4η2

t
(Ht(β

γ + ηt(ei + ej)) − Ht(β
γ + ηt(−ei + ej)) − Ht(β

γ + ηt(ei − ej)) +

Ht(β
γ + ηt(−ei − ej))). This will be an estimate of the Hessian matrix of the dual objective.

Here Ht defined in Eq. (S-EG) needs only values of the realized items but not the value functions
vi(·)’s. Let Σ̂β = Ĥ −1Diag({Ω̂2

i }ni=1)Ĥ
−1 and Σ̂u = Diag({bi/(βγ

i )
2})Ĥ −1Diag({Ω̂2

i }ni=1)

Ĥ −1Diag({bi/(βγ
i )

2}) be the estimated covariance matrices. We can then construct confidence
regions CRβ and CRu as above.

Bootstrap. Though not studied in this paper, bootstrap inference is a valuable alternative. In a
bootstrap procedure, one samples the items with replacement and solve the EG programs (S-EG)
or (S-DEG). By repeating this we obtain a sequence of estimates say β1, . . . , βB , where B is the
number of bootstrap batches. Then a confidence interval is constructed by the sample quantiles of
the sequence {βk}k∈[B].

6 EXPERIMENTS

We conduct experiments to validate the theoretical findings, namely, the convergence of NSWγ to
NSW∗ (Theorem 9) and CLT (Eq. (2)). All figures can be found in Appendix O.

Verify convergence of NSW to its infinite-dimensional counterpart in a linear Fisher market.
First, we generate an infinite-dimensional market M1 of n = 50 buyers each having a linear valu-
ation vi(θ) = aiθ + ci on Θ = [0, 1], with randomly generated ai and ci such that vi(θ) ≥ 0 on
[0, 1]. Their budgets bi are also randomly generated. We solve for NSW∗ using the tractable con-
vex conic formulation described in Gao and Kroer (2022, Section 4). Then, following Section 2.2,
for the j-th (j ∈ [k]) sampled market of size t, we randomly sample {θt,τj }τ∈[t] uniformly and
independently from [0, 1] and obtain markets with n buyers and t items, with individual valuations
vi(θ

t,τ
j ) = aiθ

t,τ
j + ci, j ∈ [t]. We take t = 100, 200, . . . , 5000 and k = 10. We compute their

equilibrium Nash social welfare, i.e., NSWγ , and their means and standard errors over k repeats
across all t. As can be seen from Fig. 2, NSWγ values quickly approach NSW∗, which align with
the a.s. convergence of NSWγ in Theorem 9. Moreover, NSWγ values increase as t increase, which
align with the monotonicity observation in the beginning of Section 4.2.

Verify asymptotic normality of NSW in a linear Fisher market. Next, for the same infinite-
dimensional market M1, we set t = 5000, sample k = 50 markets of t items analogously, and
compute their respective NSWγ values. We plot the enpirical distribution of

√
t(NSWγ − NSW∗)

and the probability density of N (0, σ2
NSW), where σ2

NSW is defined in Theorem 4.4 Theorem 4

shows that
√
t(NSWγ − NSW∗)

d→N (0, σ2
NSW). As can be seen in Fig. 5, the empirical distribu-

tion is close to the limiting normal distribution. A simple Kolmogorov-Smirnov test shows that the
empirical distribution appears normal, that is, the alternative hypothesis of it not being a normal
distribution is not statistically significant. This is further corroborated by the Q-Q plot in Fig. 4, as
the plots of the quantiles of

√
t(NSWγ−NSW∗) values against theoretical quantiles of N (0, σ2

NSW)
appear to be a straight line.

Verify NSW convergence in a multidimensional linear Fisher market. Finally, we consider
an infinite-dimensional market M2 with multidimensional linear valuations vi(θ) = a⊤i θ + ci,
ai ∈ R10. We similarly sample markets of sizes t = 100, 200, ..., 5000 from M2, where the items
θtj , j ∈ [k] are sampled uniformly and independently from [0, 1]10. As can be seen from Fig. 2,
NSWγ values increase and converge to a fixed value around −1.995. In this case, the underlying
true value NSW∗ (which should be around −1.995) cannot be captured by a tractable optimization
formulation.

4To compute σ2
NSW, we use the fact that p∗ = maxi β

∗
i vi(θ) is a piecewise linear function, since vi are

linear. Following (Gao and Kroer, 2022, Section 4), we can find the breakpoints of the pure equilibrium alloca-
tion 0 = a0 < a1 < · · · < a50 = 1, and the corresponding interval of each buyer i. Then,

∫ 1

0
(p∗(θ))2dS(θ)

amounts to integrals of quadratic functions on intervals.
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A RELATED WORK

Our paper is related to following lines of research.

Statistical inference for SAA. Asymptotics of sample average function minimizers are well-studied
by the stochastic programming community (see, e.g., Shapiro et al. (2021, Chapter 5), Shapiro
(2003) and Kim et al. (2015)) and the statistics community (see, e.g., Van der Vaart (2000)
and Newey and McFadden (1994)). Despite the powerful tools developed by researchers, the prob-
lem of developing asymptotics for the convex EG program exhibits special challenges. The sample
function consists of two parts: a non-smooth part coming from a piecewise linear function, and
a locally-strongly convex part, which as we will see comes from the function x 7→ − log x. The
non-smoothness of sample function requires us to investigate sufficient conditions for the second-
order differentiability of the expected function and verify several technical regularity conditions,
both of which are key hypotheses for most asymptotic normality of minimizers of non-smooth sam-
ple function. Moreover, the strong convexity of the sample function requires us to develop sharp
finite-sample guarantees that exploit the strong convexity structure.

Applications of Fisher Market Equilibrium Fisher market equilibrium is related to a game-
theoretic solution concept called pacing equilibrium which is a useful model for online ad auction
platforms (Borgs et al., 2007; Conitzer et al., 2022b;a). In addition to ad auction markets, Fisher mar-
ket equilibrium model has other usages in the tech industry, such as the allocation of impressions
to content in certain recommender systems (Murray et al., 2020b), robust and fair work allocation
in content review (Allouah et al., 2022). We refer readers to Kroer and Stier-Moses (2022) for a
comprehensive review. Outside the tech industry, Fisher market equilibria also have applications
to scheduling problems (Im et al., 2017), fair course seat allocation (Othman et al., 2010; Budish
et al., 2016), allocating donations to food banks (Aleksandrov et al., 2015), sharing scarce compute
resources (Ghodsi et al., 2011; Parkes et al., 2015; Kash et al., 2014; Devanur et al., 2018), and
allocating blood donations to blood banks (McElfresh et al., 2020).

The statistical framework developed in this paper provides a guideline to quantify the uncertainty in
equilibrium-based allocations in the above-mentioned applications.

Algorithmic Results for Fisher Market The problem of equilibrium computation has been of in-
terest in economics for a long time (see, e.g., Nisan et al. (2007)). There is a large literature fo-
cusing on computation of equilibrium in Fisher markets through combinatorial algorithms (Vazirani
(2007); Devanur et al. (2008); Jain (2007); Ye (2008); Deng et al. (2003)), convex optimization for-
mulations (Eisenberg and Gale, 1959; Eisenberg, 1961; Shmyrev, 2009; Cole et al., 2017), gradient-
based methods (Wu and Zhang, 2007; Zhang, 2011; Aleksandrov et al., 2015; Birnbaum et al., 2011;
Nesterov and Shikhman, 2018; Gao and Kroer, 2020), tâtonnement process-based methods (Borgs
et al., 2007; Bei et al., 2019a; Cole and Fleischer, 2008; Cheung et al., 2020), and abstraction meth-
ods (Kroer et al., 2021). Extensions to settings such as quasilinear utilities (Chen et al., 2007; Cole
et al., 2017), limited utilities (Bei et al., 2019b), indivisible items (Cole and Gkatzelis, 2018), or
imperfectly specified utility functions (Caragiannis et al., 2016; Murray et al., 2020a; Kroer and
Peysakhovich, 2019; Peysakhovich and Kroer, 2019) are also available. Several works study fair
online allocation of divisible goods (Azar et al., 2016; Sinclair et al., 2022; Banerjee et al., 2022;
Liao et al., 2022) and indivisible goods (Budish, 2011; Othman et al., 2016; Gorokh et al., 2019) by
Fisher market equilibrium-based methods.

Most related to our work is Gao and Kroer (2022), where the authors extend the classical Fisher
market model to a measurable (possibly continuous) item space and shows that infinite-dimensional
EG-type convex programs capture ME under this setting. This paper proposes a statistical model
based on their infinite-dimensional Fisher market and investigate the statistical inference problem.

Statistical Learning and Inference in Equilibrium Models Wager and Xu (2021); Munro et al.
(2021); Sahoo and Wager (2022) take a mean-field game modeling approach and perform policy
learning with a gradient descent method. In particular, Munro et al. (2021) study the causal ef-
fects of binary intervention on the supply-demand market equilibrium. Wager and Xu (2021) study
the effect of supply-side payments on the market equilibrium. Sahoo and Wager (2022) study the
learning of capacity-constrained treatment assignment while accounting for strategic behavior of
agents. Different from the above mean-field modeling papers, in the linear or quaislinear Fisher
market models, equilibrium concept is defined for a finite number of agents, allowing us to avoid a
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mean-field modeling approach. Moreover, the Fisher markets equilibria we study are captured by
convex programs, so we can leverage well-established tools from the stochastic programming and
the empirical processes literature. Finally, in Fisher market equilibria, a concrete parametric model
of demand is imposed as opposed to previous works that take a more or less nonparametric ap-
proach, and therefore we could obtain results that characterize each agent’s behavior, e.g., a central
limit result for as market size grows (c.f. Theorem 5).

By a different group of researchers, the question of statistical learning and inference has been in-
vestigated for other equilibrium models, such as general exchange economy (Guo et al., 2021; Liu
et al., 2022) and matching markets (Cen and Shah, 2022; Dai and Jordan, 2021; Liu et al., 2021; Ja-
gadeesan et al., 2021; Min et al., 2022). Our paper focuses on a specific type of exchange economy
called infinite-dimensional Fisher market, which is a model for the long-run market behavior.

Our work is also related to the rich literature of inference under interference (Hudgens and Halloran,
2008; Aronow and Samii, 2017; Athey et al., 2018; Leung, 2020; Hu et al., 2022; Li and Wager,
2022). In the Fisher market model, the interference among agents is caused by the supply constraint
and the utility-maximizing behavior of agents given the price signal. In other words, in Fisher
markets we put a parametric model on the interference structure which allows us to derive a rich
collection of results.

B CONSISTENCY

We define approximate market equilibria. For any utility vector u achieved by a feasible allocation,
we define βu = [ b1u1

, . . . , bn
un

]. We say that a utility vector u is an ϵ-approximate equilibrium utility
vector if Ht(βu) ≤ infβ Ht(β) + ϵ. It can be shown that for any feasible utilities u, we have
Ht(βu) ≥ Ht(β

γ), and u is the equilibrium utility vector if and only if Ht(βu) = Ht(β
γ). To that

end, let

Bγ(ϵ) := {β > 0 : Ht(β) ≤ inf
β

Ht(β) + ϵ}, B∗(ϵ) := {β > 0 : H(β) ≤ inf
β

H(β) + ϵ} . (4)

be the sets of ϵ-approximate solutions to Eqs. (S-DEG) and (P-DEG), respectively.

Thanks to the convexity of the dual objectives H and Ht, we can provide a set of consistency results
based on the theory of epi-convergence (Rockafellar and Wets, 2009).
Theorem 9 (Consistency). It holds that

9.1 Empirical NSW and empirical individual utilities converge almost surely to their long-run
market counterparts, i.e.,

∑n
i=1bi log(u

γ
i )

a.s.−→
∑n

i=1bi log(u
∗
i ) and uγ

i
a.s.−→u∗

i .

9.2 The empirical pacing multiplier converges almost surely, i.e., βγ
i

a.s.−→β∗
i .

9.3 Convergence of approximate market equilibrium: lim supt Bγ(ϵ) ⊂ B∗(ϵ) for all ϵ ≥ 0
and lim supt Bγ(ϵt) ⊂ B∗(0) = {β∗} for all ϵt ↓ 0. Recall the approximate solutions
set, Bγ and B∗, are defined in Eq. (4).

Proof in Appendix H.

We briefly comment on Part 9.3. The set limit result can be interpreted from a set distance point of
view. We define the inclusion distance from a set A to a set B by d⊂(A,B) := infϵ{ϵ ≥ 0 : A ⊂
{y : dist(y,B) ≤ ϵ}} where dist(y,B) := inf{∥y − b∥ : b ∈ B}. Intuitively, d⊂(A,B) measures
how much one should enlarge B such that it covers A. Then for any sequence ϵn ↓ 0, by the second
claim in Part 9.3, we know d⊂(Bγ(ϵt), {β∗}) → 0. This shows that the set of approximate solutions
of Ht with increasing accuracy centers around β∗ as market size grows.

C EXTENDED ANALYTICAL PROPERTIES OF THE DUAL OBJECTIVE

We briefly comment on the three candidate sufficient conditions in Theorem 7; for a rigorous state-
ment we refer readers to Appendix C. Based on the differentiability characterization, it is natural to
search for a stronger form of Eq. (NO-TIE) and hope that such a refinement could lead to second-
order differentiability. Condition (i) gives two such refinements. Condition (ii) is motivated by the
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idea that expectation operator tends to produce smooth functions. The exact smoothness require-
ment is presented in the appendix, which we show is easy to verify for several common distribu-
tions. Finally, Condition (iii) considers the linear-valuations setting of Gao and Kroer (2022), where
the authors provide tractable convex programs for computing the infinite-dimensional equilibrium.
Here we give another interesting properties of this setup by showing that the dual objective is C2.
Piecewise linear value functions are discussed in the appendix.

Let I(β, θ) = argmaxi βivi(θ) be the set of maximizing indices, which could be non-unique. We
say there is no tie for item θ at β if I(β, θ) is single-valued, in which case we use i(β, θ) to denote the
unique maximizing index. Moreover, by Theorem 3.50 from Beck (2017), the subgradient ∂βf(β, θ)
is the convex hull of the set {viei, i ∈ I(β, θ)}. When I(β, θ) is single-valued, the subgradient set
is a singleton, and thus f is differentiable.

Now we have different equivalent ways to describe when f is differentiable: f(·, θ) is differentiable
at β ⇔ I(β, θ) is single-valued ⇔ ϵ(β, θ) is strictly positive ⇔ the sets {Θi(β) = {θ : βivi(θ) ≥
βkvk(θ),∀k ̸= i}} are disjoint. When f(·, θ) is differentiable, we have G(β, θ) = ∇βf(β, θ) =
ei(β,θ)vi(β,θ).

MARKETS WITH STABILITY

A natural idea is to search for a stronger form of Eq. (NO-TIE) and hope that such a refinement could
lead to second-order differentiability. In particular, this section is concerned with statement (i) of
Theorem 7. First we show the condition based on the expectation.
Theorem 10. If the following integrability condition holds in a neighborhood of β∗

E
[

1

ϵ(β, θ)

]
=

∫
Θ

1

ϵ(β, θ)
dS(θ) < ∞ , (INT)

then H is twice continuously differentiable at β∗. Furthermore, it holds ∇2f̄(β∗) = 0.

Proof in Appendix L.

By the above theorem, if Eq. (INT) holds, then the variance matrices in Theorem 5 can be simplified
as

Σβ = Diag({Ω2
i (β

∗
i )

4/(bi)
2}ni=1) , Σu = Diag({Ω2

i }i) . (5)

In this case components of βγ are asymptotically independent.

We compare the integrability condition in the above theorem with Eq. (NO-TIE). Both Eq. (INT)
and Eq. (NO-TIE) can be interpreted as a form of robustness of the market equilibrium. The quantity
ϵ(β, θ) measures the advantage the winner of item θ has over other losing bidders. The larger ϵ(β, θ)
is, the more slack there is in terms of perturbing the pacing multiplier before affecting the allocation
at θ. In contrast to Eq. (NO-TIE) which only imposes an item-wise requirement on the winning
margin, the above assumption requires the margin exists in a stronger sense. Concretely, such a
moment condition on the margin function ϵ represents a balance between how small the margin
could be and the size of item sets for which there is a small winning margin.

Second we consider the condition based on the essential supremum. For any buyer i and his winning
set Θ∗

i , there exists a positive constant ϵi > 0 such that

β∗
i vi(θ) ≥ max

k ̸=i
β∗
kvk(θ) + ϵi ,∀θ ∈ Θ∗

i ⇔ ess sup
θ∈Θ

1/ϵ(β, θ) < K < ∞ (GAP)

It requires that the buyer wins the items without tying bids uniformly over the winning item set.
The existence of a constant K < ∞ such that 1/ϵ(β, θ) < K for almost all items makes a stronger
requirement than Eq. (INT). From a practical perspective, it is also evidently a very strong assump-
tion: for example, it won’t occur with many natural continuous valuation functions. Instead, the
condition requires the valuation functions to be discontinuous at the points in Θ where the alloca-
tion changes. Empirically, since βγ is a good approximation of β∗ for a market of sufficiently large
size, Eq. (GAP) can be approximately verified by replacing β∗ with βγ . As a trade-off, Eq. (INT) is
a weaker condition than Eq. (GAP) but is harder to verify in practical application.

Below we present two examples where Eq. (INT) holds.
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Example 1 (Discrete Values). Suppose the values are supported on a discrete set, i.e., [v1, . . . , vn] ∈
{V1, . . . , VK} ⊂ Rn a.s. Suppose there is no tie for each item at β∗. Then Eq. (GAP) and thus
Eq. (INT) hold. ■
Example 2 (Continuous Values). Here we give a numeric example of market with two buyers where
Eq. (INT) holds. Suppose the values are uniformly distributed over the sets A1 = {v ∈ R2

+ :

v2 ≤ 1, v2 ≥ 2v1} and A2 = {v ∈ R2
+ : v1 ≤ 1, v2 ≤ 1

2v1}. One can verify on B = {β ∈
R2 : 1

2β1 < β2 < 2β1} Eq. (INT) holds. To further verify this, by calculus, we can show the map
f̄(β) = E[max{v1β1, v2β2}] is

f̄(β) =


(

5
12 − 1

3
β1

β2

)
β1 +

2β2

3β1
β2 if β2 ≥ 2β1

1
3 (β1 + β2) if β ∈ B, i.e., 1

2β1 < β2 < 2β1(
5
12 − 1

3
β2

β1

)
β2 +

2β1

3β2
β1 if β2 ≤ 1

2β1

.

We see that ∇2f̄ = 0 on B which agrees with Theorem 10.

However, Eq. (INT) fails to capture the fact that f̄ is C2 in other regions as well. To see this, note
that in the region {β ∈ R2

++ : β2 > 2β1}, the Hessian is

∇2f̄(β) =

[
2 β2

2

3 β1
3 − 2 β2

3 β1
2

− 2 β2

3 β1
2

2
3 β1

]
=

2

3

[
β2√
β3
1

− 1√
β1

]⊤ [ β2√
β3
1

− 1√
β1

]
.

The Hessian on the region {β2 < 1
2β1} has a completely symmetric expression by switching β1 and

β2. From here we can see the function f̄ is C2 except on the lines β2 = 2β1 and β2 = β1/2. Thus,
the condition in Eq. (INT) does not provide the full picture of when twice differentiability holds. ■

MARKETS WITH LINEAR VALUES

Now we consider the condition (iii) of Theorem 7: linear valuations. To study linear valuations, we
adopt the setup in Section 4 from Gao and Kroer (2022). Suppose the item space is Θ = [0, 1] with
supply s(θ) = 1. The valuation of each buyer i is linear and nonnegative: vi(θ) = ciθ + di ≥ 0.
Moreover, assume the valuations are normalized so that

∫
[0,1]

vi dθ = 1 ⇔ ci/2 + di = 1. Assume
the intercepts of vi are ordered such that 2 ≥ d1 > · · · > dn ≥ 0.

We briefly review the structure of equilibrium allocation in this setting. By Lemma 5 from Gao and
Kroer (2022), there is a unique partition 0 = a∗0 < a∗1 < · · · < a∗n = 1 such that buyer i receives
Θi =

[
a∗i−1, a

∗
i

]
. In words, the item set [0, 1] will be partitioned into n segments and assigned to

buyers 1 to n one by one starting from the leftmost segments. Intuitively, buyer 1 values items on the
left of the interval more than those on the right, which explains the allocation structure. Moreover,
the equilibrium prices p∗(·) are convex piecewise linear with exactly n linear pieces, corresponding
to intervals that are the pure equilibrium allocations to the buyers.
Theorem 11. In the market set up as above, the dual objective H is C2 at β∗.

Proof in Appendix L.

The above result also extends to most cases of piecewise linear (PWL) valuations discussed in Sec-
tion 4.3 of Gao and Kroer (2022)). In the PWL setup there is a partition of [0, 1], A0 = 0 ≤ A1 ≤
· · · ≤ AK−1 ≤ AK = 1, such that all vi(θ)’s are linear on [Ak−1, Ak]. At the equilibrium of a mar-
ket with PWL valuations, we call an item θ an allocation breakpoint if there is a tie, i.e., I(β∗, θ) is
multivalued. Now suppose the following two conditions hold: (i) none of the allocation breakpoints
coincide with any of the valuation breakpoints {Ak}, and (ii) at any allocation breakpoint there are
exactly two buyers in a tie. Under these two conditions, one can show that in a small enough neigh-
borhood of the optimal pacing multiplier β∗, the allocation breakpoints are differentiable functions
of the pacing multiplier. This in turn implies twice differentiability of the dual objective by repeating
the argument in the proof of Theorem 11. However, if either condition (i) or (ii) mentioned above
breaks, the dual objective is not twice differentiable.

MARKETS WITH SMOOTHLY DISTRIBUTED VALUES

Now we consider condition (ii) of Theorem 7: smoothing via the expectation operator. Given that
the dual objective H is the expectation of the non-smooth function f (plus a smooth term Ψ), we
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expect that under certain conditions on the expectation operator H will be twice differentiable. In
this section, we make this precise. First we introduce some extra notations. For each i ∈ [n], define
the map σi : Rn

+ → Rn
+,

σi(v) = [v1vi, . . . , vi−1vi, vi, vi+1vi, . . . , vnvi]
⊤

for i ∈ [n], which multiplies all except the i-th entry of v by vi.
Definition 3 (Regularity). Let f : Rn

+ → R+ be the probability density function (w.r.t. the Lebesgue
measure) of a positive-valued random vector with finite first moment. We say the density f is regular
if for all hi(v−i) :=

∫∞
0

f
(
σi(v)

)
vni dvi , i ∈ [n], it holds (i) hi is continuous on Rn−1

++ , and (ii) all
lower dimensional density functions of hi are continuous (treating hi as a scaled probability density
function).
Theorem 12. Let H be differentiable in a neighborhood of β∗. Assume the random vector
[v1, . . . , vn] : Θ → Rn

+ has a distribution absolutely continuous w.r.t. the Lebesgue measure on
Rn with density function fv . If fv is regular, then H is twice continuously differentiable on Rn

++.

Proof in Appendix L.

The above regularity conditions are easy to verify when the values are i.i.d. draws from a distribution.
In that case, many smooth distributions supported on the positive reals fall under the umbrella of
the described regularity. Below we examine three cases: the truncated Gaussian distribution, the
exponential distribution and the uniform distribution.

When values are i.i.d. truncated standard Gaussians, the joint density f(v) = c1
∏n

i=1 exp(−v2i /2)

and hi(v−i) = c1
∫
R+

vni exp(− 1
2v

2
i (1 +

∑
k ̸=i v

2
k)) dvi = c2(

∑
k ̸=i v

2
k)

−n/2, which are regular.
Here ci, i = 1, 2, are appropriate constants. Similarly, for the i.i.d. exponential case with the rate
parameter equal to one, the density f(v) =

∏n
i=1 exp(−vi) and hi(v−i) = (

∑
k ̸=i vk)

−n sat-
isfy the required continuity conditions. Finally, suppose the values are i.i.d. uniforms on [0, 1].
The joint density is f(v) =

∏n
i=1 1{0 < vi < 1} and for example, if i = 1, h1(v−1) =

(min{1, v−1
2 , . . . , v−1

n })n+1/(n+ 1), which also satisfies the required continuity conditions.

D VARIANCE ESTIMATION FOR β AND u

First, we discuss the restrictive case where a stronger form of Eq. (NO-TIE) holds: E[ϵ(β, θ)−1] <
∞ in a neighborhood of β∗, which we recall is a sufficient condition for twice differentiability
(Theorem 7). Note that in the observed market the equilibrium allocation xγ might not be unique,
and for our purpose we let xγ be any equilibrium allocation. We construct the following estimator
for Ωi. Let uγ,τ

i := xτ
i vi(θ

τ ) be the utility of buyer i obtained from item θτ . Then uγ
i =

∑t
τ=1u

γ,τ
i .

Under the assumption that H is differentiable at β∗ (c.f. Theorem 6), the equilibrium allocation is
unique and pure, i.e., x∗

i = 1{Θ∗
i }. By rewriting Ω2

i =
∫ (

vix
∗
i − (

∫
vix

∗
i dS)

)2
dS, it is natural to

consider the estimator Ω̂2
i := 1

t

∑t
τ=1(tu

γ,τ
i − uγ

i )
2.

Theorem 13. If ϵ(β, θ)−1 is finite a.s. in a neighborhood of β∗, then Ω̂2
i

p→Ω2
i . Proof in Appendix M.

Having derived a consistent estimator for Ω2
i , we can construct confidence interval for βγ and uγ .

By Theorem 10 and Eq. (5), the variance matrices are
Σβ = Diag({Ω2

i (β
∗
i )

4/(bi)
2}ni=1) , Σu = Diag({Ω2

i }i) ,

and the plug-in type estimators for Σβ and Σu take the form Σ̂β = Diag({Ω̂2
i (β

γ
i )

4/b2i }) and
Σ̂u = Diag({Ω̂2

i }).
Second, we discuss the case where we have the knowledge of {vi(θτ )}i,τ under the general assump-
tion that H is C2 at β∗. Following the discussion in Section 7.3 of Newey and McFadden (1994),
we estimate the Hessian matrix by computing numerical difference. We choose a smoothing level
ηt and define

(Ĥ )ij :=
1

4η2t

(
Ht(β

γ + ηt(ei + ej))−Ht(β
γ + ηt(−ei + ej))

−Ht(β
γ + ηt(ei − ej)) +Ht(β

γ + ηt(−ei − ej))
)
,
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which serves as an estimator of the (i, j)-th entry of the Hessian H = ∇2H(β∗). By Theorem 7.4
from Newey and McFadden (1994), one can show that if ηt → 0 and

√
tηt → ∞, then the estimator

is consistent, i.e, Ĥ
p→H . Note in order to compute the value of Ht at a perturbed βγ we need

access to the values of the buyers. Since those values may not always be available in practice, this
estimator is not as practical as our other estimators which rely purely on equilibrium quantities.
Moreover, the estimator requires tuning of the smoothing parameter ηt.

E FURTHER PROPERTIES OF EG PROGRAMS

Fact 1. Both optima in Eqs. (P-EG) and (P-DEG) are attained. Let (x∗
EG, u

∗
EG) and β∗ attain the

optima the EG programs Eqs. (P-EG) and (P-DEG), respectively.

• First-order conditions. Given (xEG, uEG) feasible to (P-EG) and β feasible to (P-DEG), they
are both optimal if and only if the following KKT conditions hold: (i) ⟨pEG, s−

∑
i xEG,i⟩ =

0 where pEG = maxi βivi, (ii) ⟨pEG − βivi, xEG,i⟩ = 0, and (iii) ⟨vi, xEG,i⟩ = uEG,i =
bi/βi.

• Uniqueness. The equilibrium utility and prices are unique. The optimal solution β∗ to
Eq. (P-DEG) is unique.

• Strong duality.
∑n

i=1bi log u
∗
EG,i = H(β∗) +

∑n
i=1bi(log bi − 1).

• Equilibrium. Given any optimal solutions (x∗
EG, u

∗
EG, β

∗) to Eqs. (P-EG) and (P-DEG), let
p∗EG(·) = maxi β

∗
i vi(·). Then (x∗

EG, u
∗
EG, p

∗
EG) is a ME. Conversely, for a ME (x∗, u∗, p∗),

it holds that (i) (x∗, u∗) is an optimal solution of (P-EG) and (ii) β∗
ME := bi/⟨vi, x∗

i ⟩ is the
optimal solution of (P-DEG).

• Bounds on β∗. Define
¯
βi := bi/

∫
vi dS and β̄ :=

∑n
i=1bi/mini{

∫
vi dS}. Then

¯
βi ≤

β∗
i ≤ β̄.

Based on the set of KKT conditions we comment on the structure of market equilibrium. Condi-
tion (ii) describes how the pacing multiplier relates to equilibrium allocation; buyer i only receives
items within its ‘winning set’ {θ : p∗(θ) = β∗

i vi(θ)}. This also hints at a connection between
Fisher market and first-price auction: the equilibrium allocation can be thought of as the result of
a first-price auction where each buyer bids β∗

i vi(θ) and then item goes to the highest bidder (with
appropriate tie-break). Condition (iii) shows pacing multipliers β∗ can be interpreted as price-per-
utility. Finally, all budgets are extracted, i.e., ⟨p∗, s⟩ =

∑n
i=1bi. To see this, we apply all three KKT

conditions and obtain ⟨p∗, s⟩ = ⟨p∗,
∑n

i=1x
∗
i ⟩ =

∑n
i=1β

∗
i ⟨vi, x∗

i ⟩ =
∑n

i=1β
∗
i (bi/β

∗
i ) =

∑n
i=1bi.

Intuitively, this is due to the fact that buyers only receives utilities from obtaining goods but not
retaining money. In Appendix F we study an extension called quasilinear market where buyers have
the incentive to retain money.

Parallel to the population EG programs, we state the optimality conditions for the sample EG pro-
grams.

Fact 2. Consider the sample EG programs Eqs. (S-EG) and (S-DEG). It holds

• First-order conditions. Given (xγ
EG, u

γ
EG) feasible to (S-EG) and βγ feasible to (S-DEG),

they are both optimal if and only if the following KKT conditions hold: (i) ⟨pγEG, s −∑
i x

γ
EG,i⟩ = 0 where pγEG = maxi β

γ
i vi, (ii) ⟨pγEG − βγ

i vi, x
γ
EG,i⟩ = 0, (iii) and

⟨vi, xγ
EG,i⟩ = uγ

EG,i = bi/β
γ
i .

• Strong duality.
∑n

i=1bi log u
γ
EG,i = Ht(β

γ) +
∑n

i=1bi(log bi − 1).

• Uniqueness. The equilibrium utility and prices are unique. The optimal solution βγ to
Eq. (S-DEG) is unique.

• Equilibrium. Any optimal solutions (xγ
EG, u

γ
EG, p

γ
EG) to Eqs. (S-EG) and (S-DEG) is a ME.

Conversely, for a ME (xγ , uγ , pγ), it holds that (i) (xγ , uγ) is an optimal solution of (S-EG)
and (ii) βγ

ME := bi/⟨vi, xγ
i ⟩ is the optimal solution of (S-DEG).

• Bounds on βγ and uγ . It holds bi∑n
i=1bi

∑t
τ=1s

τvi(θ
τ ) ≤ uγ

i ≤
∑t

τ=1s
τvi(θ

τ ) and
bi∑t

τ=1s
τvi(θτ )

≤ βγ
i ≤

∑
ibi∑t

τ=1s
τvi(θτ )
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We comment on the scaling 1/t. Recall that in the long-run market the total supply of items is one,
while each buyer i has budget bi. To match budget sizes and markets sizes, we require that in the ob-
served market, the ratio between total supply and buyer i’s budget is also 1 : bi. Note that in a linear
Fisher market, we can scale all budgets by any positive constant and the equilibrium does not change,
except that prices are scaled by the same amount. Formally, if (x, u, p) ∈ ME γ(b, v, s), then
(x, (α1βu1, . . . , αnβun), δp) ∈ ME γ(δb, (α1v1, . . . , αnvn), βs) for positive scalars δ, β, {αi}.
Thus, our particular choice of supply normalization is not crucial. For example, we could equiv-
alently work with the market ME γ(tb, v, 1t), with trivial scaling adjustments in derivation of the
results.

We remark that there are two ways to specify the valuation component of infinite-dimensional Fisher
market. The first one is simply imposing functional form assumptions on vi(·). For example, one
could take Θ = [0, 1] and let vi(·) be a linear function or a piecewise linear function (Gao and Kroer,
2022, Section 4). If we view v = (v1, . . . , vn) : Θ → Rn

+ as a random vector, then an alternative
way is to simply specify the distribution of v. Formally, let v and v′ be identically distributed random
vectors representing the values of buyers. By the form of EG programs Eqs. (P-EG) and (P-DEG),
if (u∗, β∗) are equilibrium utilities and pacing multipliers of the market ME (b, v, s) and (u∗′

, β∗′
)

are those of ME (b, v′, s), then (u∗, β∗) = (u∗′
, β∗′

). Even though the equilibrium allocations and
prices are different in the two markets, the quantities we care about, e.g., individual utilities and
Nash social welfare are the same. Moreover, applying the same reasoning to the case of quasilinear
market (see Appendix F), it will be clear that identical value distributions implies identical revenues
in market equilibrium. When the distribution of v is absolutely continuous w.r.t. the Lebesgue
measure on Rn we use fv to denote the density function.

F EXTENSION: REVENUE INFERENCE IN QUASILINEAR FISHER MARKET

As we mentioned previously, in a linear Fisher market all buyer budgets are extracted, i.e.,
∑t

τ=1p
γ,τ

equals
∑n

i=1bi in the observed market (and similarly for the underlying market), and there is thus
nothing to infer about revenue if we know the budgets of each buyer. A quasilinear (QL) utility is one
such that the cost of purchasing goods is deducted from the utility, i.e., ui(x) = ⟨x−p, vi⟩. This may
give buyers an incentive to leave some budget unspent. In the finite-dimensional case, Chen et al.
(2007) and Cole et al. (2017) show that there is an variant of EG program that captures the market
equilibrium with QL utility. Furthermore, Conitzer et al. (2022a) showed that budget management
in ad auctions with first-price auctions can be computed by Fisher markets with QL utilities. A QL
variant of infinite-dimensional markets and an EG program are given by Gao and Kroer (2022).

Quaislinear market equilibria (QME) are defined analogously to the linear variant via market clear-
ance conditions and buyer optimality; we present the formal finite and infinite-dimensional defini-
tions in Appendix N. The demand sets are argmax{⟨vi − p, xi⟩ : xi ∈ L∞

+ , ⟨p, xi⟩ ≤ bi} in the
long-run QME and argmax{⟨vi(γ) − p, xi⟩ : xi ≥ 0, ⟨p, xi⟩ ≤ bi} in the observed QME. QME
has several distinctions from the linear ME. First, in QME we cannot normalize both valuations and
budgets, since buyers’ budgets have value outside the current market. Second, budgets are not fully
extracted in QME, which motivates the need for statistical analysis. Third, the pacing multipliers
are restricted to β ≤ 1, and may lie on the resulting boundary.

Define the revenues from the observed and the long-run market as follows: REVγ :=
1
t

∑t
τ=1p

γ,τ , REV∗ :=
∫
Θ
p∗ dS(θ). Assume

∑n
i=1bi = 1 and unit supply

∫
sdµ = 1. Let

νi :=
∫
vi dS be the average value of buyer i. Let ν̄ = maxi νi. Assume we observe the mar-

ket QME γ(b, v, 1
t 1t) = (xγ , uγ , pγ). Then we show that consistency and high-probability bounds

hold for the revenue estimator.
Theorem 14 (Revenue Convergence). It holds that REVγ a.s.−→ REV∗ and |REVγ − REV∗| =

Õp

(
v̄
√
n(v̄+2ν̄n+1)

¯
b

1√
t

)
for t sufficiently large. Proofs are in Appendix N.

We leave CLT results for revenue estimates in quasilinear markets as an open problem. The main
challenge compared to the linear case is that the optimal pacing multipliers can lie on the boundary
of the constraint set. More precisely, if the equilibrium pacing multiplier of a buyer is in the interior,
then his budget is fully extracted. On the other hand, if it is on the boundary, the buyer retains
a portion of his budget at equilibrium. When the optimum of the expectation function lies on the
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boundary of the constraint set, the asymptotic variance of the sample average optimum takes on a
complicated expression (Shapiro, 1989, Theorem 3.3), which makes variance estimation difficult.

G TECHNICAL LEMMAS

Lemma 1. Define the event At = {βγ ∈ C} . (i) If t ≥ 2v̄2log(2n/η), then P(At) ≥ P( 12 ≤
1
t

∑t
τ=1vi(θ

τ ) ≤ 2,∀i) ≥ 1− η. (ii) It holds P(At eventually) = 1. Proof in Appendix G.

Proof of Lemma 1. Recall the event At = {βγ ∈ C}. Define v̄ti =
1
t

∑t
τ=1vi(θ

τ ).

First we notice concentration of values implies membership of βγ to C, i.e., {1/2 ≤ v̄ti ≤ 2,∀i} ⊂
{βγ ∈ C} due to Fact 2. Concretely, uγ

i ≤ 1
t

∑t
τ=1vi(θ

τ ) and uγ
i ≥ 1

t
bi∑n
i=1bi

∑t
τ=1vi(θ

τ ), and
through the equation βγ

i = bi/u
γ
i the inclusion follows. Note 0 ≤ vi(θ

τ ) ≤ v̄ is a bounded
random variable with mean E[vi(θτ )] = 1. By Hoeffding’s inequality we have P(|v̄ti − 1| ≥ δ) ≤
2 exp(− 2δ2t

v̄2 ). Next we use a union bound and obtain

P(βγ /∈ C) ≤ P
( n∪

i=1

{
|v̄ti − 1| ≥ δ

})
≤ 2n exp

(
− 2δ2t

v̄2

)
. (6)

By setting 2n exp(− 2δ2t
v̄2 ) = η and δ = 1/2 and solving for t we obtain item (i) in claim.

To show item (ii), we use the Borel-Cantelli lemma. By choosing δ = 1/2 in the Eq. (6) we know
P(Ac

t) ≤ P({1/2 ≤ v̄ti ≤ 2,∀i}c) ≤ 2n exp(−t/(2v̄2)). Then we have
∞∑
t=1

P(Ac
t) < ∞ .

By the Borel-Cantelli lemma it follows that P({Ac
t infinitely often}) = 0, or equivalently

P(At eventually) = 1.

Lemma 2 (Smoothness and Curvature). It holds that both H and Ht are L-Lipschitz and λ-strongly
convex w.r.t the ℓ∞-norm on C with L = 2n+ v̄ and λ =

¯
b/4. Moreover, Ht and H are (v̄+2

√
n)-

Lipschitz w.r.t. ℓ2-norm.

Proof of Lemma 2. Now we verify that Ht and H are (v̄+2n)-Lipschitz on the compact set C w.r.t.
the ℓ∞-norm. For β, β′ ∈ C,

|Ht(β)−Ht(β
′)|

≤ 1

t

t∑
τ=1

∣∣max
i

{vi(θτ )βi} −max
i

{vi(θτ )β′
i}
∣∣+ n∑

i=1

bi
∣∣ log βi − log β′

i

∣∣
≤ v̄∥β − β′∥∞ +

n∑
i=1

bi ·
1

¯
βi/2

|βi − β′
i|

= (v̄ + 2n)∥β − β′∥∞ .

This concludes the (v̄ + 2n)-Lipschitzness of Ht on C. Similar argument goes through for H .
From the above reasoning we can also conclude |Ht(β)−Ht(β

′)| ≤ v̄∥β − β′∥2 + 2∥β − β′∥1 ≤
(v̄ + 2

√
n)∥β − β′∥2. This concludes (v̄ + 2

√
n)-Lipschitzness of Ht w.r.t. ℓ2-norm.

Recall H = f̄ +Ψ where f̄(β) = E[maxi{vi(θ)βi}] and Ψ(β) = −
∑n

i=1bi log βi. The function Ψ
is smooth with the first two derivatives

∇Ψ(β) = −[b1/β1, . . . , bn/βn]
⊤, ∇2Ψ(β) = Diag({bi/(βi)

2}) .

It is clear that for all β ∈ C it holds βi ≤ 2. So ∇2Ψ(β) ≻ mini{bi/4}I = λI . To verify the
storng-convexity w.r.t ∥ · ∥∞ norm, we note for all β′, β ∈ C.

H(β′)−H(β)− ⟨z +∇Ψ(β), β′ − β⟩ ≥ (λ/2)∥β′ − β∥22 ≥ (λ/2)∥β′ − β∥2∞ ,

where z ∈ ∂f̄(β) and z +∇Ψ(β) ∈ ∂H(β). This completes the proof.
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Definition 4 (Definition 7.29 in Shapiro et al. (2021)). A sequence fk : Rn → R̄, k = 1, . . . , of
extended real valued functions epi-converge to a function f : Rn → R̄, if for any point x ∈ Rn the
following conditions hold

(1) For any sequence xk → x, it holds lim infk→∞ fk (xk) ≥ f(x),

(2) There exists a sequence xk → x such that lim supk→∞ fk (xk) ≤ f(x).

Definition 5 (Definition 3.25, Rockafellar and Wets (2009), see also Definition 11.11 and Propo-
sition 14.16 from Bauschke et al. (2011)). A function f : Rn → R̄ is level-coercive if
lim inf∥x∥→∞ f(x)/∥x∥ > 0. It is equivalent to lim∥x∥→+∞ f(x) = +∞.

Lemma 3 (Corollary 11.13, Rockafellar and Wets (2009)). For any proper, lsc function f on Rn,
level coercivity implies level boundedness. When f is convex the two properties are equivalent.

Lemma 4 (Theorem 7.17, Rockafellar and Wets (2009)). Let hn : Rd → R̄, h : Rd → R̄ be closed
convex and proper. Then hn

epi−→h is equivalent to either of the following conditions.

(1) There exists a dense set A ⊂ Rd such that hn(v) → h(v) for all v ∈ A.

(2) For all compact C ⊂ Domh not containing a boundary point of Domh, it holds

lim
n→∞

sup
v∈C

|hn(v)− h(v)| = 0 .

Lemma 5 (Proposition 7.33, Rockafellar and Wets (2009)). Let hn : Rd → R̄, h : Rd → R̄ be

closed and proper. If hn has bounded sublevel sets and hn
epi−→h, then infv hn(v) → infv h(v).

Lemma 6 (Theorem 7.31, Rockafellar and Wets (2009)). Let hn : Rd → R̄, h : Rd → R̄
satisfy hn

epi−→ and −∞ < inf h < ∞. Let Sn(ε) = {θ | hn(θ) ≤ inf hn + ε} and S(ε) =
{θ | h(θ) ≤ inf h+ ε}. Then lim supn Sn(ε) ⊂ S(ε) for all ε ≥ 0, and lim supn Sn(εn) ⊂ S(0)
whenever εn ↓ 0.

Lemma 7 (Theorem 5.7, Shapiro et al. (2021), Asymptotics of SAA Optimal Value). Consider the
problem

min
x∈X

f(x) = E[F (x, ξ)]

where X is a nonempty closed subset of Rn, ξ is a random vector with probability distribution P on
a set Ξ and F : X × Ξ → R. Assume the expectation is well-defined, i.e., f(x) < ∞ for all x ∈ X .
Define the sample average approxiamtion (SAA) problem

min
x∈X

fN (x) =
1

N

N∑
i=1

F (x, ξi)

where ξi are i.i.d. copies of the random vector ξ. Let vN (resp., v∗) be the optimal value of the SAA
problem (resp., the original problem). Assume the following.

7.a The set X is compact.
7.b For some point x ∈ X the expectation E[F (x, ξ)2] is finite.
7.c There is a measurable function C : Ξ → R+ such that E[C(ξ)2] < ∞ and

|F (x, ξ)− F (x′, ξ)| ≤ C(ξ)||x− x′∥ for all x, x′ ∈ X and almost every ξ ∈ Ξ.
7.d The function f has a unique minimizer x∗ on X .

Then
vN = fN (x∗) + op(N

−1/2) ,
√
N(vN − v∗)

d→N
(
0,Var

(
F (x∗, ξ)

))
.

H PROOF OF THEOREM 9

Proof of Theorem 9. We show epi-convergence (see Definition 4) of Ht to H . Epi-convergence is
closely related to the question of whether we have convergence of the set of minimizers. In particu-
lar, epi-convergence is a suitable notion of convergence under which one can guarantee that the set
of minimizers of the sequence of approximate optimization problems converges to the minimizers
of the original problem.
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To work under the framework of epi-convergence, we extend the definition of Ht and H to the entire
Euclidean space as follows. We extend log to the entire real by defining log(x) = −∞ if x < 0. Let

F̃ (β, θ) =

{
F (β, θ) = maxi vi(θ)βi −

∑n
i=1bi log βi if β ∈ Rn

++

+∞ else
,

and

H̃(β) : Rn → R̄, β 7→
{
H(β) if β ∈ Rn

++

+∞ else
, H̃t(β) : Rn → R̄, β 7→

{
Ht(β) if β ∈ Rn

++

+∞ else
.

It is clear that for β ∈ Rn it holds H̃(β) = E[F̃ (β, θ)] and H̃t(β) = 1
t

∑t
τ=1F̃ (β, θτ ). In order

to prove the result, we will invoke Lemmas 4, 5, and 6. To invoke those lemmas, we will need the
following four properties that we each prove immediately after stating them.

1. Check that H̃ is closed, proper and convex, and H̃t is closed, proper and convex almost
surely. Convexity and properness of the functions H̃t and H̃ is obvious. Recall for a proper
convex function, closedness is equivalent to lower semicontinuity (Rockafellar, 1970, Page
52). It is obvious that H̃t is continuous and thus closed almost surely.

It remains to verify lower semicontinuity of H̃ , i.e., for all β ∈ Rn, lim infβ′→β H̃(β′) ≥
H̃(β). For any β ∈ Rn, we have that f̃(β, θ) := maxi vi(θ)βi + δRn

+
(β) ≥ 0, where

δA(β) = ∞ if β /∈ A and 0 if β ∈ A. With this definition of f̃ we have F̃ (β, θ) = f̃(β, θ)−∑n
i=1bi log βi. Applying Fatou’s lemma (for extended real-valued random variables), we

get lim infβ′→β E[f̃(β′, θ)] ≥ E[lim infβ′→β f̃(β
′, θ)] ≥ E[f̃(β, θ)] where in the last step

we used lower semicontinuity of β 7→ f̃(β, θ). And thus

lim inf
β′→β

H̃(β′)

= lim inf
β′→β

E
[
f̃(β′, θ)−

n∑
i=1

bi log β
′
i

]

≥ lim inf
β′→β

E[f̃(β′, θ)]−
n∑

i=1

bi log βi

≥ E
[
f̃(β, θ)−

n∑
i=1

bi log βi

]
= H̃(β)

This shows H̃ is lower semicontinuous.
2. Check H̃t pointwise converges to H̃ on Qn. Let Qn be the set of n-dimensional vectors

with rational entries. For a fixed β ∈ Rn, define the event Eβ := {limt→∞ H̃t(β) =

H̃(β)}. Since vi(θ
τ ) ≤ v̄ almost surely by assumption, the strong law of large numbers

implies that P(Eβ) = 1. Define

E :=
{

lim
t→∞

H̃t(β) = H̃(β), for all β ∈ Qn
}
=
∩

β∈Qn

Eβ .

Then by a union bound we obtain P(Ec) = P(
∪

β∈Qn Ec
β) ≤

∑
β∈Qn P(Ec

β) = 0, imply-
ing E has measure one.

3. Check −∞ < infβ H̃ < ∞. This is obviously true since valuations are bounded.

4. Check that for almost every sample path ω, H̃t has bounded sublevel sets (eventually).
By Lemma 3, this property is equivalent to eventual coerciveness of H̃t, i.e., there is a
(random) N such that for all t ≥ N , it holds lim∥β∥→∞ H̃t(β) = +∞. By Lemma 1, we
know for almost every ω, there is a finite constant Nω such that for all t ≥ Nω it holds
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v̄ti ≥ 1/2. Then it holds for this ω, all t ≥ Nω , and all β ∈ Rn,

H̃t(β) =
1

t

t∑
τ=1

max
i

vi(θ
τ )βi −

n∑
i=1

bi log βi

≥ max
i

(v̄tiβi)−
n∑

i=1

bi log βi

≥ 1

2
∥β∥∞ −

n∑
i=1

bi log βi → +∞ as ∥β∥ → ∞ .

This implies H̃t has bounded sublevel sets.

With the above Item 1 and Item 2 we invoke Lemma 4 and obtain that

P
(
H̃t(β)

epi−→ H̃(β)
)
= 1 , (7)

and that the convergence is uniform on any compact set.

The epi-convergence result Eq. (7) along with Item 4 allows us to invoke Lemma 5 and obtain

inf
β∈Rn

H̃t(β) → inf
β∈Rn

H̃(β) a.s. (8)

which also implies infRn
++

Ht → infRn
++

H a.s.

With the epi-convergence result Eq. (7) along with Item 3 we invoke Lemma 6 and obtain

lim sup
t

Bγ(ϵ) ⊂ B∗(ϵ) for all ϵ ≥ 0 ,

lim sup
t

Bγ(ϵt) ⊂ B∗(0) for all ϵt ↓ 0 .
(9)

Putting together. At this stage all statements in the theorem are direct implications of the above
results.

Proof of Part 9.1

Convergence of Nash social welfare follows from Eq. (8) and strong duality, i.e., NSWγ =
infβ∈Rn

++
Ht(β) +

∑n
i=1(bi log bi − bi) and NSW∗ = infβ∈Rn

++
H(β) +

∑n
i=1(bi log bi − bi).

Proof of Part 9.2

Now we show consistency of the pacing multiplier via Lemma 4 and Lemma 5. Recall the compact
set C =

∏n
i=1[

¯
βi/2, 2β̄] =

∏n
i=1[bi/2, 2] ⊂ Rn. By construction, β∗ ∈ C. First note that for

almost every sample path ω, 1/2 ≤ v̄ti ≤ 2 eventually, and thus βγ
i = bi/u

γ
i ≤ bi/(biv̄

t
i) ≤ 2 and

βγ
i ≥ bi/2 eventually. So βγ ∈ C eventually. Now we can invoke Lemma 4 Item (2) to get

lim
t→∞

sup
β∈C

|Ht(β)−H(β)| → 1 a.s. (10)

Now we can show that the value of H on the sequence βγ converges to the value at β∗:

0 ≤ lim
t→∞

H(βγ)−H(β∗) = lim
t→∞

[H(βγ)−Ht(β
γ)] + lim

t→∞
[Ht(β

γ)−H(β∗)] = 0 .

Here the first term tends to zero due to (10), and the second term by Eq. (8). For any limit point of
the sequence {βγ}t, β∞, by lower semicontinuity of H ,

0 ≤ H(β∞)−H(β∗) ≤ lim inf
t→∞

H(βγ)−H(β∗) = 0 .

So it holds that H(β∞) = H(β∗) for all limit points β∞. By uniqueness of the optimal solution β∗

(see Fact 1), we have βγ → β∗ a.s.

Proof of Part 9.3

Convergence of approximate equilibrium follows from Eq. (9).
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I PROOF OF THEOREM 2

Proof of Theorem 2. Recall the set C =
∏n

i=1[
¯
βi/2, 2β̄] =

∏n
i=1[bi/2, 2] ⊂ Rn and the event

At = {βγ ∈ C}. By Lemma 1 we know that if t ≥ 2v̄2log(4n/η) then event At happens with
probability ≥ 1− η/2. Now the proof proceeds in two steps.

Step 1. A covering number argument. Let Bo be an ϵ-covering of the compact set C, i.e, for
all β ∈ C there is a βo(β) ∈ Bo such that ∥β − βo(β)∥∞ ≤ ϵ. It is easy to see that such a set can
be chosen with cardinality bounded by |Bo| ≤ (2/ϵ)n.

Recall Ht and H are L-Lipschitz w.r.t. ℓ∞-norm on C. Using this fact we get the following uniform
concentration bound over the compact set C.

sup
β∈C

|Ht(β)−H(β)|

≤ sup
β∈C

{
|Ht(β)−Ht(β

o(β))|+ |H(β)−H(βo(β))|+ |Ht(β
o(β))−H(βo(β))|

}
≤ 2(v̄ + 2n)ϵ+ sup

βo∈Bo

|Ht(β
o)−H(βo)| .

Next we bound the second term in the last expression. For some fixed β ∈ C, let Xτ :=
maxi vi(θ

τ )βi and let its mean be µ. Note 0 ≤ Xτ ≤ v̄∥β∥∞ ≤ 2v̄ due to β ∈ C. So Xτ ’s
are bounded random variables. By Hoeffding’s inequality we have

P
(
|Ht(β)−H(β)| ≥ δ

)
= P

(∣∣∣1
t

t∑
τ=1

Xτ − µ
∣∣∣ ≥ δ

)
≤ 2 exp

(
− δ2t

2v̄2

)
.

By a union bound we get

P
(

sup
βo∈Bo

|Ht(β
o)−H(βo)| ≥ δ

)
≤ 2|Bo| exp

(
− δ2t

2v̄2

)
≤ 2 exp

(
− δ2t

2v̄2
+ n log(2/ϵ)

)
.

Define the event

Et :=
{

sup
βo∈Bo

|Ht(β
o)−H(βo)| ≤ 2v̄√

t

√
log(4/η) + n log(2/ϵ) =: ι

}
. (11)

By setting 2 exp(−δ2t/(2v̄2)+n log(2/ϵ)) = η/2 and solving for η, we have that P(Et) ≥ 1−η/2.

Step 2. Putting together. Recall the event At = {βγ ∈ C}. Now let events At and Et hold.
Note P(At ∩ Et) ≥ 1− η if t ≥ 2v̄2log(4n/η). Then∣∣∣ sup

β∈Rn
++

Ht(β)− sup
β∈Rn

++

H(β)
∣∣∣

=
∣∣∣ sup
β∈C

Ht(β)− sup
β∈C

H(β)
∣∣∣

≤ sup
β∈C

|Ht(β)−H(β)|

≤ 2(v̄ + 2n)ϵ+ ι , (12)

where the first equality is due to event At and the last inequality is due to event Et defined in
Eq. (11). Now we choose the discretization error as ϵ = 1√

t(v̄+2n)
. Then, the expression in Eq. (12)

can be upper bounded as follows.

2(v̄ + 2n)ϵ+ ι

=
2√
t
+

2v̄√
t

√
log(4/η) + nlog(2

√
t(v̄ + 2n)) .

This completes the proof.
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J PROOF OF THEOREM 3

Proof of Theorem 3. The proof idea of this theorem closely follows Section 5.3 of Shapiro et al.
(2021).

We first need some additional notations. Define the approximate solutions sets of surrogate problems
as follows: For a closed set A ⊂ Rn

++, let

B∗
A(ϵ) := {β ∈ A : H(β) ≤ min

A
H + ϵ} ,

Bγ
A(ϵ) := {β ∈ A : Ht(β) ≤ min

A
Ht + ϵ} .

In words, they solve the surrogate optimization problems which are defined with a new constraint
set A. Note that if β∗ ∈ A then B∗

A(ϵ) = A ∩ B∗(ϵ). Recall on the compact set C, both Ht and H
are L-Lipschitz and λ-strongly convex w.r.t the ℓ∞-norm, where L = (v̄ + 2n) and λ =

¯
b/4.

Let r := sup{H(β) −H∗ : β ∈ C}. Then if ϵ ≥ r then C ⊂ B∗(ϵ) and the claim is trivial. Now
we assume ϵ < r.

Define a = min{2ϵ, (r + ϵ)/2}. Note ϵ < a < r. Define S = C ∩ B∗(a). The role of S will be
evident as follows. We will show that, with high probability, the following chain of inclusions holds

Bγ
C(δ)

(1)
⊂ Bγ

S(δ)
(2)
⊂ B∗

S(ϵ)
(3)
⊂ B∗

C(ϵ) .

Step 1. Reduction to discretized problems. We let S′ be a ν-cover of the set S = B∗(a)∩C. Let
X = S′ ∪ {β∗}. In this part the goal is to show

P
(
Bγ

C(δ) ⊂ B∗
C(ϵ)

)
≥ P

(
Bγ

X(δ′) ⊂ B∗
X(ϵ′)

)
where

ν = (ϵ′ − δ′)/4 > 0 , δ′ = δ + Lν > 0 , ϵ′ = ϵ− Lν > 0 .

First, we claim

Claim 1. It holds Bγ
X(δ′) ⊂ B∗

X(ϵ′) =⇒ Bγ
S(δ) ⊂ B∗

S(ϵ) (Inclusion (2)).

Next, we show

Claim 2. Inclusion (2) implies Inclusion (1): Bγ
S(δ) ⊂ B∗

S(ϵ) =⇒ Bγ
C(δ) ⊂ Bγ

S(δ) .

Proofs of Claim 1 and Claim 2 are deferred after the proof of Theorem 3. At a high level, Claim 1
uses the covering property of the set X . Claim 2 exploits convexity of the problem.

Finally, we show Inclusion (3) B∗
S(ϵ) ⊂ B∗

C(ϵ). Note that β∗ belongs to both C and S. And thus
for any β ∈ B∗

S(ϵ), it holds H(β) ≤ minX H+ϵ = H∗+ϵ = minS H+ϵ . We obtain β ∈ B∗
C(ϵ).

To summarize, Claim 1 shows that Bγ
X(δ′) ⊂ B∗

X(ϵ′) implies Inclusion (2). Inclusion (3) holds
automatically. By Claim 2 we know Inclusion (2) implies Inclusion (1). So it holds deterministically
that

{Bγ
X(δ′) ⊂ B∗

X(ϵ′)} ⊂ {Bγ
C(δ) ⊂ B∗

C(ϵ)} .

Step 2. Probability of inclusion for discretized problems. Now we bound the probability
P(Bγ

X(δ′) ⊂ B∗
X(ϵ′)).

For now, we forget the construction X = S′ + {β∗} where S′ is a ν-cover of S. Let X ⊂ C be any
discrete set with cardinality |X|.
Let β∗

X ∈ argminX H be a minimizer of H over the set X . For β ∈ X define the random variable
Y τ
β := F (β∗

X , θτ ) − F (β, θτ ). Also let µβ := E[Y τ
β ], which is well-defined by the i.i.d. item

assumption. Let D := supβ∈X ∥β − β∗
X∥∞.
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Consider any 0 ≤ δ′ < ϵ′. If X − B∗
X(ϵ′) is empty, then all elements in X are ϵ′-optimal for the

problem minX H . Next assume X − B∗
X(ϵ′) is not empty. We upper bound the probability of the

event Bγ
X(δ′) ̸⊂ B∗

X(ϵ′).

P
(
Bγ

X(δ′) ̸⊂ B∗
X(ϵ′)

)
= P

(
there exists β ∈ X − B∗

X(ϵ′), Ht(β) ≤ Ht(β
∗
X) + δ′

)
≤

∑
β∈X−B∗

X(ϵ′)

P
(
Ht(β) ≤ Ht(β

∗
X) + δ′

)
=

∑
β∈X−B∗

X(ϵ′)

P
(
1

t

t∑
τ=1

Y τ
β ≥ −δ′

)

≤
∑

β∈X−B∗
X(ϵ′)

P
(
1

t

t∑
τ=1

Y τ
β − µβ ≥ ϵ′ − δ′

)
(A)

≤
∑

β∈X−B∗
X(ϵ′)

exp
(
− 2t(ϵ′ − δ′)2

L2
f∥β − β∗∥2∞

)
(B)

≤ |X| exp
(
− 2t(ϵ′ − δ′)2

L2
f∥β − β∗

X∥2∞

)
. (13)

Here in (A) we use the fact that µβ = H(β∗
X) − H(β) > −ϵ′ for β ∈ X − B∗

X(ϵ′). In (B),
using Lf -Lipschitzness of f on the set C, we obtain |Y τ

β − µβ | ≤ 2Lf∥β − β∗
X∥∞ and then apply

Hoeffding’s inequality for bounded random variables. Setting Eq. (13) equal to α and solving for t,
we have that if

t ≥ c′ ·
L2
fD

2

(ϵ′ − δ′)2

(
log |X|+ log

1

α

)
, (14)

then P
(
Bγ

X(δ′) ̸⊂ B∗
X(ϵ′)

)
≤ α. Note the above derivation applies to any finite set X ⊂ S.

Now we use the construction X = S′ + {β∗}. Then the cardinality of X can be upper bounded by
(4/ν)n. Note since β∗ ∈ X it holds β∗ = β∗

X . We apply the result in Eq. (14) with the following
parameters

ν = (ϵ′ − δ′)/(4L) , δ′ = δ + Lν , ϵ′ = ϵ− Lν , ϵ′ − δ′ =
1

2
(ϵ− δ) ,

D = min{
√
2a/λ, 2} , |X| ≤

( 16L

ϵ− δ

)n
.

We justify the choice of D. First, S ⊂ C implies D ≤ 2. By the λ-strong convexity of H on C: for
all β ∈ X ⊂ S ⊂ B∗(a), it holds

(1/2)λ∥β − β∗
X∥2∞ = (1/2)λ∥β − β∗∥2∞ ≤ H(β)−H∗ ≤ a

=⇒ D = sup
β∈X

∥X − β∗
X∥∞ ≤

√
2a/λ .

Substituting these quantities into the bound Eq. (14) the expression becomes

t ≥ c′ ·
L2
f

(ϵ− δ)2
·min

{
2a

λ
, 4

}
·
(
n log

( 16L

ϵ− δ

)
+ log

1

α

)
.

Here c′ is an absolute constant that changes from line to line. Moreover, noting that a ≤ 2ϵ and
δ ≤ ϵ/2 implies a/(ϵ− δ)2 ≤ 8/ϵ, we know that if

t ≥ c′ · L2
f min

{
1

λϵ
,
1

ϵ2

}
·
(
n log

( 16L

ϵ− δ

)
+ log

1

α

)
, (15)

then P
(
Bγ

X(δ′) ⊂ B∗
X(ϵ′)

)
≥ 1−α. By plugging in Lf = v̄, L = (2n+ v̄) and λ =

¯
b/4, we know

P
(
Bγ

S(δ) ⊂ B∗
S(ϵ)

)
≥ 1− α as long as

t ≥ c′ · v̄2 min

{
1

¯
bϵ
,
1

ϵ2

}
·
(
n log

(16(2n+ v̄)

ϵ− δ

)
+ log

1

α

)
.
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Step 3. Putting together. By Lemma 1, if t ≥ 2v̄2log(2n/α) then βγ ∈ C with probability
≥ 1 − α. Under the event βγ ∈ C, it holds Bγ

C(δ) = C ∩ Bγ(δ). Since β∗ ∈ C it holds that
B∗

C(ϵ) = C ∩ B∗(ϵ). Moreover, if t satisfies the bound in Eq. (15), we know Inclusion (2) holds
with probability ≥ 1 − α, which then implies Inclusion (1). So if t satisfies the two requirements,
t ≥ 2v̄2log(2n/α) and Eq. (15), then with probability ≥ 1− 2α,

C ∩ Bγ(δ) = Bγ
C(δ) ⊂ B∗

C(ϵ) = C ∩ B∗(ϵ) .

Proof of Claim 1. To see this, for β ∈ Bγ
S(δ) let β′ ∈ X be such that ∥β − β′∥∞ ≤ ν. By

Lipschitzness of Ht on C, we know

Ht(β
′) ≤ Ht(β) + Lν (Lipschitzness of Ht)

≤ min
S

Ht + δ + Lν (β ∈ Bγ
S(δ))

≤ min
X

Ht + δ + Lν (X ⊂ S)

= min
X

Ht + δ′ .

This implies the membership β′ ∈ Bγ
X(δ′). Furthermore, we have

Bγ
X(δ′) ⊂ B∗

X(ϵ′) ⊂ B∗
C(ϵ

′) .

Here the first inclusion is simply the assumption that Bγ
X(δ′) ⊂ B∗

X(ϵ′). The second inclusion
follows by the construction of X; since β∗ ∈ X , we know B∗

X(ϵ′) ⊂ B∗
C(ϵ

′) and thus minX H =
minX H = H∗. We now obtain

β′ ∈ B∗
C(ϵ

′) .

Using the Lipschitzness of H on C, we have for all β ∈ Bγ
S(δ)

H(β) ≤ H(β′) + Lν (Lipschitzness of H)

≤ min
C

H + ϵ′ + Lν (β′ ∈ B∗
C(ϵ

′))

= min
C

H + ϵ .

So we conclude β ∈ B∗
C(ϵ), implying Bγ

S(δ) ⊂ B∗
C(ϵ). This completes the proof of Claim 1.

Proof of Claim 2. This claim relies on convexity of the problem.

Assume, for the sake of contradiction, there exists β⋄ ∈ Bγ
C(δ) but β⋄ ̸∈ Bγ

S(δ). The only possi-
bility this can happen is β⋄ ∈ C but β⋄ ̸∈ S = C ∩B∗(a). So β⋄ ̸∈ B∗(a) (note a < r implies the
set C − B∗(a) is not empty), which by definition means

H(β⋄)−H∗ > a . (16)

Now define

β̄ = argmin
β∈S

Ht(β) ∈ Bγ
S(δ) .

By the assumption Bγ
S(δ) ⊂ B∗

S(ϵ), we know β̄ ∈ B∗
S(ϵ) and so

H(β̄)−H∗ ≤ ϵ . (17)

Next, let βc = cβ̄ + (1− c)β⋄ with c ∈ [0, 1], which is a point lying on the line segment joining the
two points β̄ and β⋄. By the optimality of β⋄ ∈ Bγ

C(δ) and β̄ ∈ C, we know Ht(β
⋄) ≤ H(β̄) + δ.

By convexity of Ht, we have for all c ∈ [0, 1],

Ht(β
c) ≤ max{Ht(β̄),Ht(β

⋄)} ≤ Ht(β̄) + δ . (18)

Now consider the map K : [0, 1] → R+, c 7→ H(βc)−H∗. Since any convex function is continuous
on its effective domain (Rockafellar, 1970, Corollary 10.1.1), we know H is continuous. Continuity
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of H implies continuity of K. Note K(0) = H(β⋄) −H∗ > a by Eq. (16) and K(1) = H(β̄) −
H∗ ≤ ϵ by Eq. (17). By intermediate value theorem, there is c∗ ∈ [0, 1] such that ϵ < H(βc∗) −
H∗ < a. Moreover, by H(βc∗) − H∗ < a and βc∗ ∈ C we obtain βc∗ ∈ S = B∗(a) ∩ C. In
addition, recalling Ht(β

c∗) ≤ Ht(β̄) + δ (Eq. (18)), we conclude by definition βc∗ ∈ Bγ
S(δ).

At this point we have shown the existence of a point βc∗ such that

βc∗ ∈ Bγ
S(δ) , βc∗ ̸∈ B∗(ϵ) .

This clearly contradicts the assumption Bγ
S(δ) ⊂ B∗

S(ϵ) = B∗(ϵ)∩S. This completes the proof of
Claim 2.

Proof of Corollary 1. Under the event {βγ ∈ C}, the set C ∩ Bγ(0) = {βγ}. Moreover, βγ ∈
C ∩ B∗(ϵ) implies H(βγ) ≤ H(β∗) + ϵ. This completes the proof.

Proof of Corollary 2. Under the event {βγ ∈ C}, we use strong convexity of H over C w.r.t. ℓ2-
norm and obtain λ

2 ∥β
γ−β∗∥22 ≤ H(βγ)−H(β∗) where λ =

¯
b/4 is the strong-convexity parameter.

For the second claim we use the equality βγ
i = bi/u

γ
i and β∗

i = bi/u
∗
i . For β, β′ ∈ C, it holds

| 1
βi

− 1
β′
i
| ≤ 4

bi2
|βi − β′

i|. And so ∥uγ − u∗∥2 =
∑

i(bi)
2( 1

βγ
i
− 1

β∗
i
)2 ≤

∑
i

16
(bi)2

|βγ
i − β∗

i |2 ≤
16
(
¯
b)2 ∥β

γ − β∗∥22. So we obtain ∥uγ − u∗∥2 ≤ 4

¯
b∥β

γ − β∗∥2. We complete the proof.

K PROOF OF THEOREMS 4 AND 5

Proof of Theorem 4. We aim to apply Lemma 7 to our problem. To do this we first introduce surro-
gate problems

Hγ
C := min

β∈C
Ht(β) , H∗

C := min
β∈C

H(β) .

Since β∗ ∈ C we know H∗
C = H∗. We write down the decomposition

√
t(Hγ −H∗) =

√
t(Hγ −Hγ

C) +
√
t(Hγ

C −H∗
C) .

For the first term we show that
√
t(Hγ − Hγ

C)
p→ 0. Choose any ϵ > 0, define the event Aϵ

t =

{
√
t|Hγ − Hγ

C | ≥ ϵ}. By Lemma 1 we know that with probability 1, βγ ∈ C eventually and so
Hγ − Hγ

C = 0 eventually. This implies P((Aϵ
t)

c eventually) = 1 ⇔ P(Aϵ
t infinitely often) = 0.

By Fatou’s lemma, lim supt→∞ P(Aϵ
t) ≤ P(lim supt→∞ Aϵ

t) = 0. We conclude for all ϵ > 0,
limt→∞ P(

√
t|Hγ −Hγ

C | > ϵ) = 0.

For the second term, we invoke Lemma 7 and obtain
√
t(Hγ

C−H∗
C)

d→N (0,Var[F (β∗, θ)]), where
we recall F (β, θ) = maxi βivi(θ)−

∑n
i=1bi log βi. To do this we verify all hypotheses in Lemma 7.

• The set C is compact and therefore Condition 7.a is satisfied.
• The function F is finite for all β ∈ Rn

++ and thus Condition 7.b holds.
• The function F (·, θ) is (2n+ v̄)-Lipschitz on C for all θ, and thus Condition 7.c holds.
• Condition 7.d holds because the function H has a unique minimizer over C.

Now we calculate the variance term.

VarF (β∗, θ) = Varmax
i

{vi(θ)β∗
i }

= Var p∗(θ)

=

∫
Θ

(p∗)2 dS(θ)−
(∫

Θ

p∗ dS(θ)

)2

=

∫
Θ

(p∗)2 dS(θ)− 1 ,
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where in the last equality we used
∫
p∗ =

∑n
i=1bi = 1. By Slutsky’s theorem, we obtain the claimed

result.

Proof of Theorem 5. We verify all the conditions in Theorem 2.1 from Hjort and Pollard (2011).

Because H is C2 at β∗, there exists a neighborhood N of β∗ such that H is continuously differen-
tiable on N . By Theorem 6 this implies that the random variable ϵ(β, ·)−1 is finite almost surely for
each β ∈ N . This implies I(β, θ) is single valued a.s. for β ∈ N .

Define
D(θ) := ∇F (β∗, θ) = G(β∗, θ)−∇Ψ(β∗)

where we recall the subgradient G(β∗, θ) = ei(β∗,θ)vi(β∗,θ) and i(β∗, θ) = argmaxi β
∗
i vi(θ) is the

winner of item θ when the pacing multiplier of buyers is β∗. Let
R(h, θ) := F (β∗ + h, θ)− F (β∗, θ)−D(θ)⊤h

measure the first-order approximation error. By optimality of β∗ we know ∇H(β∗) = E[D(θ)] = 0.
Moreover, by twice differentiability of H at β∗, the following expansion holds:

H(β∗ + h)−H(β∗) =
1

2
h⊤(∇2H(β∗)

)
h+ o(∥h∥22) .

To invoke Theorem 2.1 from Hjort and Pollard (2011), we check the following stochastic version of
differentiability condition holds

E[R(h, θ)2] = o(∥h∥22) as ∥h∥2 ↓ 0 . (19)
As a quick remark, by E[D(θ)] = 0 we know E[|R(h, θ)|] = o(∥h∥2). Therefore, the above
condition is a slightly stronger condition. Recall E[F (β, θ)] = E[f(β, θ)] +Ψ(β), where f(β, θ) =
maxi βivi(θ). We discuss the f part and the Ψ part separately. Note

(R(h, θ))2 ≤ 2
(
f(β∗ + h, θ)− f(β∗, θ)− (ei(β∗,θ)vi(β∗,θ))

⊤h
)2︸ ︷︷ ︸

=:I(h,θ)

+ 2
(
Ψ(β∗ + h)−Ψ(β∗)−∇Ψ(β∗)⊤h

)2︸ ︷︷ ︸
=:II(h)

.

By the assumption that H is twice differentiable at β∗, we know Eq. (NO-TIE) holds at β∗, and
so ϵ(β∗, θ) > 0. By Lemma 8, for h small enough so that ∥h∥∞ ≤ ϵ(β∗, θ)/(3v̄) we have
argmaxi β

∗
i vi = argmaxi(β

∗
i + hi)vi and thus f(β∗ + h) = vi(β∗,θ)(βi(β∗,θ) + hi(β∗,θ)). And

so f(β∗ + h) − f(β∗, θ) = vi(β∗,θ)hi(β∗,θ) = G(θ)⊤h. Again, since ϵ(β∗, θ)−1 is finite almost
surely, we know for almost every θ, the term I(h, θ) is exactly zero as h ↓ 0. So I(h, θ)/∥h∥22 → 0.
By smoothness of Ψ we know II(h)/∥h∥22 = (o(∥h∥2)2)/∥h∥22 → 0. By bounded convergence
theorem we can exchange limit and expectation and obtain

0 ≤ lim
∥h∥2↓0

E
[
R(h, θ)2

∥h∥22

]
≤ E

[
lim

∥h∥2↓0
(I(h, θ) + II(h))/∥h∥22

]
= 0 .

We conclude Eq. (19) holds true.

At this stage we have verified all the conditions in Theorem 2.1 from Hjort and Pollard (2011).
Invoking the theorem we obtain

√
t(βγ − β∗) = −[∇2H(β∗)]−1

(
1√
t

t∑
τ=1

D(θτ )

)
+ op(1) .

In particular,
√
t(βγ−β∗)

d→N (0, [∇2H(β∗)]−1Var(D)[∇2H(β∗)]−1). We calculate the variance
matrix of D:

Var(D(θ)) = Var

( n∑
i=1

1(Θ∗
i )vi(θ)ei

)

=

n∑
i=1

Ω2
i (eie

⊤
i ) (A)

= Diag({Ω2
i }i) ,
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where in (A) we have used Ω∗
i ∩ Ω∗

j = ∅ for j ̸= i when Eq. (NO-TIE) holds at β∗.

Proof of CLT for β This follows from the discussion above.

Proof of CLT for u. We use the delta method. Take g(β) = [b1/β1, . . . , bn/βn]. Then the asymp-
totic variance of

√
t(g(βγ) − g(β∗)) is ∇g(β∗)⊤Σβ∇g(β∗). Note ∇g(β∗) is the diagonal matrix

Diag({−bi/β
∗
i
2}). From here we obtain the expression for Σu.

L PROOFS FOR ANALYTICAL PROPERTIES OF THE DUAL OBJECTIVE

Remark 1 (Comment on Theorem 6). We briefly discuss why differentiability is related to the gap in
buyers’ bids. Recall f̄(β) = E[maxi βivi(θ)]. Let δ ∈ Rn

+ be a direction with positive entries, and
let I(β, θ) = argmaxi βivi(θ) be the set of winners of item θ which could be multivalued. Consider
the directional derivative of f̄ at β along the direction δ:

lim
t↓0

E
[
maxi(βi + tδi)vi(θ)−maxi βivi(θ)

t

]
= E

[
lim
t↓0

maxi(βi + tδi)vi(θ)−maxi βivi(θ)

t

]
= E

[
max

i∈I(β,θ)
vi(θ)δi

]
,

where the exchange of limit and expectation is justified by the dominated convergence theorem.
Similarly, the left limit is

lim
t↑0

E
[
maxi(βi + tδi)vi(θ)−maxi βivi(θ)

t

]
= E

[
min

i∈I(β,θ)
vi(θ)δi

]
.

If there is a tie at β with positive probability, i.e., the set I(β, θ) is multivalued for a non-zero
measure set of items, then the left and right directional derivatives along the direction δ do not
agree. Since differentiability at a point β implies existence of directional derivatives, we conclude
differentiability implies Eq. (NO-TIE).

Proof of Theorem 6. Recall f(β, θ) = maxi βivi(θ). Note f is differentiable at β if and only if
ϵ(β, θ) > 0. Let Θdiff(β) := {θ : f(β, θ) is continuously differentiable at β}. Then

Θdiff(β) =

{
θ :

1

ϵ(β, θ)
< ∞

}
= {θ : I(β, θ) is single-valued} .

By Proposition 2.3 from Bertsekas (1973) we know f̄(β) = E[f(β, θ)] =
∫
Θ
f(β, θ) dS(θ) is

differentiable at β if and only if S(Θdiff(β)) = 1. From here we obtain Theorem 6.

Remark 2. Suppose Eq. (NO-TIE) holds in a neighborhood N of β∗, i.e., 1
ϵ(β,θ) is finite a.s. for each

β ∈ N , then by Theorem 6 we know H is differentiable on N . In fact, a stronger statement holds:
H is continuously differentiable on N . See Proposition 2.1 from Shapiro (1989).

Proof of Theorem 10. Eq. (INT) holds in a neighborhood N of β∗ implies the Eq. (NO-TIE) holds
on N , and thus H is differentiable on N with gradient ∇H(β) = E[vi(β,θ)ei(β,θ)] + ∇Ψ =
E[G(β, θ)] +∇Ψ. To compute the Hessian w.r.t. the first term, we look at the limit

lim
∥h∥↓0

E
[
G(β∗ + h, θ)−G(β∗, θ)

∥h∥

]
. (20)

Lemma 8 (ϵ(β, θ) as Lipschitz parameter of G). Suppose for some β ∈ Rn
++ the gap function

ϵ(β, θ) > 0. Let β′ = β + h.
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• If ∥h∥∞ ≤ ϵ(β, θ)/v̄ then I(β′, θ) is single-valued and moreover i(β′, θ) = i(β, θ), im-
plying G(β′, θ) = G(β, θ).

• It holds ∥G(β + h, θ)−G(β, θ)∥2 ≤ 6v̄2 · 1
ϵ(β,θ)∥h∥2 for all β + h ∈ Rn

+.

Suppose we could exchange expectation and limit in Eq. (20), then the above expression would
become zero: for a fixed θ, since Eq. (NO-TIE) holds at β∗, i.e, ϵ(β∗, θ) > 0, we apply Lemma 8 and
obtain lim∥h∥↓0 (G(β∗ + h, θ)−G(β∗, θ))/∥h∥ = 0. This implies that H is twice differentiable
at β∗ with Hessian ∇2H(β∗) = ∇2Ψ(β∗). It is then natural to ask for sufficient conditions for
exchanging limit and expectation.

By Lemma 8, we know the ratio (G(β∗ + h, θ)−G(β∗, θ))/∥h∥ is dominated by 6v̄ϵ(β∗, θ)−1,
which by Eq. (INT) is integrable. By dominated convergence theorem, we can exchange limit and
expectation, and the claim follows.

Proof of Lemma 8. Note that for any β and θ with ϵ(β, θ) > 0, and any β′ = β + h,

∥G(β + h, θ)−G(β, θ)∥2
∥h∥2

≤ 6v̄2 · 1

ϵ(β, θ)
. (21)

To see this, we notice that on one hand, if ∥h∥∞ ≤ ϵ/(3v̄) where ϵ = ϵ(β, θ), then for i = i(β, θ)
and all θ ∈ Θi(β),

β′
ivi(θ) = (βi + hi)vi(θ)

≥ βivi(θ)− ϵ/3 (A)
≥ βkvk(θ) + ϵ− ϵ/3 (B)

≥ β′
kvk(θ)− ϵ/3 + ϵ− ϵ/3 , (C)

where (A) and (C) use the fact ∥h∥∞ ≤ ϵ/(3v̄), and (B) uses the definition of ϵ. This implies
argmaxi β

′
ivi(θ) = argmaxi βivi(θ) and thus G(β + h, θ) − G(β, θ) = 0. On the other hand, if

∥h∥∞ > ϵ/(3v̄), then ∥h∥2 ≥ ∥h∥∞ > ϵ/(3v̄). Using the bound ∥G∥2 ≤ v̄, we obtain Eq. (21).
This completes proof of Lemma 8.

Proof of Theorem 11. By Lemma 5 from Gao and Kroer (2022), we know that at equilibrium the
there exists unique breakpoints 0 = a∗0 < a∗1 < · · · < a∗n = 1 such that buyer i receives the item set
[a∗i−1, a

∗
i ] ⊂ Θ. Moreover, it holds

β∗
1d1 > β∗

2d2 > · · · > β∗
ndn ,

β∗
1c1 < β∗

2c2 < · · · < β∗
ncn .

Now we consider a small enough neighborhood N of β∗. For each β ∈ N , we define the breakpoint
a∗i (β) by solving for θ through βi(ciθ + di) = βi+1(ci+1θ + di+1) for i ∈ [n− 1], a∗0(β) = 0, and
a∗n(β) = 1. As a sanity check, note a∗i (β

∗) = a∗i for all i. Recall Θi(β) = {θ ∈ Θ : vi(θ)βi ≥
vk(θ)βk,∀k ̸= i} is the winning item set of buyer i when pacing multiplier equal β. We will show
later Θi(β) = [a∗i−1(β), a

∗
i (β)] for β ∈ N when N is appropriately constructed.

Now we recall the gradient expression

∇f̄(β) = E[ei(β,θ)vi(β,θ)]

=

n∑
i=1

ei

∫ a∗
i (β)

a∗
i−1(β)

ciθ + di dθ

=

n∑
i=1

ei

(
ci
2

(
[a∗i (β)]

2 − [a∗i−1(β)]
2
)
+ di

(
a∗i (β)− a∗i−1(β)

))
.

On N , the breakpoints a∗i (β) = (−βidi + βi+1di+1)/(βici − βi+1ci+1) is C1 in the parameter β.
We conclude ∇f̄(β) is continuously differentiable.

What remains is to construct such a neighborhood N . Define

δ = min

{
1

2 ¯
∆βd/∆̄d,

1

2 ¯
∆βc/∆̄c,

1

4 ¯
∆a

¯
∆βc/v̄

}
,
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where
¯
∆a := min |ai − ai−1|,

¯
∆βc := min{β∗

i−1ci−1 − β∗
i ci} > 0, ∆̄c := maxi{ci−1 − ci} > 0,

and
¯
∆βd > 0 and ∆̄d > 0 are similarly defined. Let N = {β : ∥β−β∗∥∞ ≤ δ}. The neighborhood

N is constructed so that on N it holds
β1d1 > β2d2 > · · · > βndn ,

β1c1 < β2c2 < · · · < βncn ,

0 = a∗0(β) < a∗1(β) < · · · < a∗n(β) = 1 ,

where the first inequality follows from δ ≤ 1
2 ¯
∆βd/∆̄d, the second inequality from δ ≤ 1

2 ¯
∆βc/∆̄c,

and the third inequality follows from the δ ≤
¯
∆a

¯
∆βc/(4v̄), where v̄ = maxi supθ∈[0,1] ciθ + di.

From here we can see that the partition of item set Θ induced by these breakpoints corresponds to
exactly the winning item sets when buyers’ pacing multiplier is β. So we have shown Θi(β) =
[a∗i−1(β), a

∗
i (β)] for β ∈ N . This finishes the proof of Theorem 11.

Proof of Theorem 12. We need the following technical lemma on the continuous differentiability of
integral functions.

Lemma 9 (Adapted from Lemma 2.5 from Wang (1985)). Let u = [u1, . . . , un] ∈ Rn
++, and

I(u) =

∫ u1

0

dt1· · ·
∫ un

0

h(t1, t2, . . . , tn) dtn ,

where h is a continuous density function of a probabilistic distribution function on Rn
+ and such that

all lower dimensional density functions are also continuous. Then the integral I(u) is continuously
differentiable.

Remark 3. The difference between the above lemma and the original statement is that the original
theorem works with density h and integral function I(u) both defined on Rn, while the adapted
version works with density h and integral I(u) defined only on Rn

++.

Recall the gradient expression

∇f̄(β) = E[ei(β,θ)vi(β,θ)] =
n∑

i=1

ei

∫
vi1(Vi(β))f(v) dv ,

where the set Vi(β) = {v ∈ Rn
+ : viβi ≥ vkβk, k ̸= i}, i ∈ [n], is the values for which buyer i

wins. For now, we focus on the first entry of the gradient, i.e.,
∫
v11(V1(β))f(v) dv. We write the

integral more explicitly as follows. By Fubini’s theorem,∫
v11(V1(β))f(v) dv (22)

=

∫ ∞

0

dv1

∫ β1v1
β2

0

dv2

∫ β1v1
β3

0

dv3· · ·
∫ β1v1

βn

0

(v1f(v1, . . . , vn))︸ ︷︷ ︸
=:A1(v)

dvn . (23)

To apply the lemma we use a change of variable. Let t = T (v) = [v1,
v2
v1
, . . . , vn

v1
] and v =

T−1(t) = [t1, t2t1, . . . , tnt1]. Then Eq. (23) is equal to∫ ∞

0

dt1

∫ β1
β2

0

dt2

∫ β1
β3

0

dt3· · ·
∫ β1

βn

0

(
tn1f(t1, t2t1, . . . , tnt1)

)︸ ︷︷ ︸
=:A2(t)

dtn . (24)

Note E[v1(θ)] =
∫
Rn

++
A1(v) dv =

∫
Rn

++
A2(t) dt = 1. We use Fubini’s theorem and obtain

Eq. (24) =
∫ β1

β2

0

dt2

∫ β1
β3

0

dt3· · ·
∫ β1

βn

0

h(t−1) dt−1 ,

where we have defined h(t−1) =
∫
R+

tn1f(t1, t2t1, . . . , tnt1) dt1. By the smoothness assumption on

h and Lemma 9, we know that the map u−1 7→
∫ u2

0
dt2· · ·

∫ un

0
h(t−1) dtn is C1 for all u−1 ∈ Rn−1

++ .
Moreover, the map β 7→ [β1

β2
, . . . , β1

βn
] is C1. We conclude the first entry of ∇f̄(β) is C1 in the

parameter β. A similar argument applies to other entries of the gradient. We complete the proof of
Theorem 12.

34



Published as a conference paper at ICLR 2023

M PROOF OF THEOREM 8

Proof of Theorem 8. Define the functions

σ̂2(β) :=
1

t

t∑
τ=1

(
F (β, θτ )−Ht(β)

)2
,

σ2(β) := Var(F (β, θ)) = E
[
(F (β, θ)−H(β))2

]
.

We will show uniform convergence of σ̂2 to σ2 on C, i.e., supβ∈C |σ̂2 − σ2| a.s.−→ 0. We first rewrite
σ̂2 as follows

σ̂2(β) =
1

t

t∑
τ=1

(
F (β, θτ )−H(β)

)2
︸ ︷︷ ︸

=:I(β)

− (Ht(β)−H(β))2︸ ︷︷ ︸
=:II(β)

.

By Theorem 7.53 of Shapiro et al. (2021) (a uniform law of large number result for convex random
functions), the following uniform convergence results hold

sup
β∈C

|I(β)− σ2(β)| a.s.−→ 0 , sup
β∈C

|II(β)| a.s.−→ 0 .

The above two inequalities imply supβ∈C |σ̂2 − σ2| a.s.−→ 0. Note the variance estimator σ̂2
NSW =

σ̂2(βγ) and the asymptotic variance σ2
NSW = σ2(β∗). By βγ a.s.−→β∗ we know,

|σ̂2
NSW − σ2

NSW|
= |σ̂2(βγ)− σ2(β∗)|
≤ |σ̂2(βγ)− σ2(βγ)|+ |σ2(βγ)− σ2(β∗)|
→ 0 a.s.

where the first term vanishes by the uniform convergence just established, the second term by conti-
nuity of σ2(·) at β∗. Now we have shown σ̂2

NSW is a consistent variance estimator for the asymptotic
variance. Then note √

t(NSWγ − NSW∗)

σ̂NSW
=

√
t(NSWγ − NSW∗)

σNSW
· σNSW

σ̂NSW
.

Since
√
t(NSWγ−NSW∗)

σNSW

d→N (0, 1) by Theorem 4, and σNSW
σ̂NSW

p→ 1 which is a constant, by Slutsky’s

theorem we know
√
t(NSWγ−NSW∗)

σ̂NSW

d→N (0, 1). This completes the proof of Theorem 8.

Proof of Theorem 13. By assumption, there exists a neighborhood N of β∗ such that the set I(β, θ)
is single-valued for all β ∈ N and almost all θ. So G(β, θ) = vi(β,θ)ei(β,θ) for β ∈ N . Let
Gi(β, θ) = vi1{i = i(β, θ)} be the i-th entry of the vector G(β, θ). For any β′ ∈ N define

Ω̂2
i (β

′) :=
1

t

t∑
τ=1

(
Gi(β

′, θτ )−
(
1

t

t∑
τ=1

Gi(β
′, θτ )

))2

.

By βγ a.s.−→β∗, we know that for large enough t, βγ ∈ N . Moreover, we claim
βγ ∈ N =⇒ Gi(β

γ , θτ ) = tuγ,τ
i .

To see this, βγ ∈ N implies that the set of items that incurs a tie is zero-measure, i.e, S(θ :
I(βγ , θ) multivalued) = 0. By the first-order condition of finite sample EG (Fact 2), the equilibrium
allocation in the observed market is then unique and pure (no splitting of items, xγ,τ

i ∈ {0, 1
t }), in

which case Gi(β
γ , θ) = 1{i = i(β, θ)}vi(θτ ) = txγ,τ

i vi(θ
τ ) = tuγ,τ

i and thus Ω̂2
i (·)|βγ = Ω̂2

i . By
Theorem 7.53 of Shapiro et al. (2021) (a uniform law of large number result for continuous random
functions) one can show the following uniform convergence result

sup
β∈N

|Ω̂2
i (β)−Var[Gi(β, θ)]|

a.s.−→ 0 .

Noting Ω2
i = Var[Gi(β

∗, θ)], the uniform convergence result implies Ω̂2
i (β

γ)−Var[Gi(β
∗, θ)]

p→ 0,
which is equivalent to Ω̂2

i
p→Ω2

i .

This completes the proof of Theorem 13.
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We start by formally defining quasilinear market equilibrium.

Definition 6. The long-run QME, QME (b, v, s) is an allocation-utility-price tuple (x∗, u∗, p∗) ∈
(L∞

+ )n × Rn
+ × L1

+ such that conditions in Definition 1 hold, except that buyer optimality is now
defined as

2’ x∗
i ∈ Di(p

∗) and u∗
i = ⟨vi − p∗, xi⟩ for all i where the demand Di of buyer i is its set of

utility-maximizing allocations given the prices and budget:

Di(p) := argmax{⟨vi − p, xi⟩ : xi ∈ L∞
+ , ⟨p, xi⟩ ≤ bi} .

Definition 7. The observed QME, QME γ(b, v, s), given an item sequence γ, is an allocation-
utility-price tuple (xγ , uγ , pγ) ∈ (Rt

+)
n × Rn

+ × Rt
+ such that Definition 2 holds except that buyer

optimality is now defined as

2’ xγ
i ∈ Di(p

γ) and uγ
i = ⟨vi(γ)− pγ , xi⟩ for all i, where (overloading notations)

Di(p) := argmax{⟨vi(γ)− p, xi⟩ : xi ≥ 0, ⟨p, xi⟩ ≤ bi} .

We will need the following convex program characterizations of infinite-dimensional QME intro-
duced in Secion 6 of Gao and Kroer (2022). First we state the primal and dual convex programs.

sup

n∑
i=1

(bi logµi − δi) (P-QEG)

s.t. µi ≤ ⟨vi, xi⟩+ δi,∀i ∈ [n]
n∑

i=1

xi ≤ s

µi ≥ 0, δi ≥ 0, xi ∈ L1(Θ)+,∀i ∈ [n]

inf ⟨p, 1⟩ −
n∑

i=1

bi log βi (P-DQEG)

s.t. p ≥ βivi, βi ≤ 1,∀i ∈ [n]

p ∈ L1(Θ)+, β ∈ Rd
+

Fact 3 (Theorem 10 from Gao and Kroer (2022) and Appendix C in Gao et al. (2021)). The following
holds.

1. First-order conditions. For any feasible solutions (x∗
QEG, µ

∗, δ∗) to Eq. (P-QEG) and a feasible
solution (p∗QEG, β

∗) to Eq. (P-DQEG). They are optimal both to the respective convex programs if
and only if

p∗QEG = max
i

β∗
i vi⟨

p∗QEG, 1−
∑

ix
∗
QEG,i

⟩
= 0

µ∗
i =

bi
β∗
i

,∀i

δ∗i (1− β∗
i ) = 0,∀i⟨

p∗QEG − β∗
i vi, x

∗
i

⟩
= 0,∀i

2. Equilibrium. A pair of allocations and prices (x∗, p∗) is a QME if and only if there exists a
δ∗ and β∗ such that (x∗, δ∗) and (p∗, β∗) are optimal solutions to Eq. (P-QEG) and Eq. (P-DQEG),
respectively.

3. Bounds on β∗. It holds bi
νi+bi

≤ β∗
i ≤ 1 for all i, where νi =

∫
vi(θ) dS(θ).

36



Published as a conference paper at ICLR 2023

Note the variable µ in Eq. (P-QEG) doest not correspond to the equilibrium utility of buyer i at
optimality. The equilibrium utility of buyer i is ⟨vi − p∗, x∗

i ⟩. By the discussion in Section 6 of Gao
and Kroer (2022), if β∗

i < 1, then ⟨vi − p∗, x∗
i ⟩ = (1 − β∗

i )µ
∗
i . If β∗

i = 1, then ⟨vi − p∗, x∗
i ⟩ = 0.

Moreover, δ∗i represents the leftover budget in equilibrium (Conitzer et al., 2022a).

Proof of Theorem 14. Given the above equivalence results, we use (p∗, x∗) to denote both the equi-
librium prices and allocations, as well as the optimal p and x variables in the quasilinear EG pro-
grams.

Now the study of the convergence of revenue is reduced to that of the convergence behavior of
convex programs

min
0<β≤1n

Ht(β) “ =⇒ ” min
0<β≤1n

H(β)

Note that in contrast to the EG programs for linear utilities (Eq. (P-DEG) and Eq. (S-DEG)), we now
have an upper bound on the variables β.

By repeating the proof of Theorem 9 we obtain βγ a.s.−→β∗. To show almost sure convergence of
revenue, we note∣∣∣1

t

t∑
τ=1

pτ −
∫
Θ

p∗(θ)s(θ) dµ(θ)
∣∣∣

≤ 1

t

t∑
τ=1

|max
i

{vi(θτ )βγ
i } −max

i
{vi(θτ )β∗

i }|+
∣∣∣1
t

t∑
τ=1

max
i

{vi(θτ )β∗
i } −

∫
Θ

p∗(θ)s(θ) dµ(θ)
∣∣∣

≤ v̄∥βγ − β∗∥∞ +
∣∣∣1
t

t∑
τ=1

max
i

{vi(θτ )β∗
i } −

∫
Θ

p∗(θ) dS(θ)
∣∣∣ a.s.−→ 0 .

Here the first term converges to zero a.s. by βγ a.s.−→β∗, and the second term converges to 0 a.s. by
strong law of large numbers and noting E[maxi{vi(θ)β∗

i }] = E[p∗(θ)]. This proves the first part of
the statement.

Define
¯
βQ,i :=

bi
νi+bi

and β̄Q := 1. We know
¯
βQ,i ≤ β∗

i ≤ β̄Q from Fact 3. Here we use subscript
Q to denote quantities related to the quasilinear market. Define the set

CQ :=

n∏
i=1

[
bi

2νi + bi
, 1

]
.

Clearly we have β∗ ∈ CQ. Furthermore, for t large enough βγ ∈ CQ with high probability. To
see this, if t satisfies t ≥ 2(v̄/mini νi)

2 log(2n/η), then 1
t

∑t
τ=1vi(θ

τ ) ≤ 2E[vi(θ)] for all i with
probability ≥ 1− η. By a bound on βγ in the QME

βγ
i ≥ bi

bi +
1
t

∑t
τ=1vi(θ

τ )
,

(see Section 6 in Gao and Kroer (2022)), we obtain βγ
i ≥ bi

bi+2νi
(recall νi = E[vi(θ)]).

To obtain the convergence rate, we simply repeat the proof of Theorem 3. Let LQ and λQ be the
Lipschitz constant and strong convexity constants of H and Ht w.r.t ℓ∞-norm on CQ. We obtain
from Eq. (15) that with probability ≥ 1− 2α, there exists a constant c′ such that as long as

t ≥ c′ · L2
Q min

{
1

λQϵ
,
1

ϵ2

}
·
(
n log

(16LQ

ϵ− δ

)
+ log

1

α

)
, (25)

it holds |H(βγ)−H(β∗)| < ϵ and that βγ ∈ CQ (see Corollary 1).

Next we calculate LQ and λQ. Note on CQ, the minimum eigenvalue of ∇2Ψ(β) = Diag{ bi
(βi)2

}
can be lower bounded by

¯
b. So we conclude λQ =

¯
b. And the Lipschitzness constant can be seen by
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the following. For β, β′ ∈ CQ,

|Ht(β)−Ht(β
′)|

≤ 1

t

t∑
τ=1

∣∣max
i

{vi(θτ )βi} −max
i

{vi(θτ )β′
i}
∣∣+ n∑

i=1

bi
∣∣ log βi − log β′

i

∣∣
≤ v̄∥β − β′∥∞ +

n∑
i=1

bi ·
1

bi/(2νi + bi)
|βi − β′

i|

≤
(
v̄ + 2ν̄n+ 1

)
∥β − β′∥∞ .

Similar argument shows that H is also (v̄ + 2ν̄n + 1)-Lipschitz on CQ. We conclude LQ = (v̄ +
2ν̄n + 1). Now Eq. (25) shows that for t = Ω(

¯
b−1) (so that the 1/(λQϵ) term in the min becomes

dominant) we have

|H(βγ)−H(β∗)| = Õp

(
n
(
v̄ + 2ν̄n+ 1

)2
¯
bt

)
,

where we use Õp to ignore logarithmic factors of t. Moreover,

∥βγ − β∗∥∞ ≤
√
2|H(βγ)−H(β∗)|/λQ = Õp

(√
n
(
v̄ + 2ν̄n+ 1

)
¯
b
√
t

)
.

From here we obtain

|REVγ − REV∗|

≤ v̄∥βγ − β∗∥∞ +
∣∣∣ 1t t∑

τ=1

max
i

{vi(θτ )β∗
i } −

∫
Θ

p∗(θ) dS(θ)
∣∣∣

= Õp

(
v̄
√
n
(
v̄ + 2ν̄n+ 1

)
¯
b
√
t

)
+Op

(
v̄√
t

)
= Õp

(
v̄
√
n
(
v̄ + 2ν̄n+ 1

)
¯
b
√
t

)
.

We conclude |REVγ−REV∗| = Õp

(
v̄
√
n(v̄+2ν̄n+1)

¯
b
√
t

)
. This completes the proof of Theorem 14.
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Figure 2: Mean and standard errors of NSWγ of observed markets of sizes t = 100, 200, . . . , 5000 (k = 10
repeats) sampled from the infinite-dimensional market M1 with linear valuations vi(θ) = aiθ + ci.
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Figure 3: Empirical distribution of
√
t(NSWγ − NSW∗) and N (0, σ2

NSW). Kolmogorov-Smirnov test null
hypothesis:

√
t(NSWγ − NSW∗) values are sampled i.i.d. from N (0, σ2

NSW); alternative hypothesis: they
are not sampled i.i.d. from N (0, σ2

NSW); test statistic: 0.1256; p-value: 0.3779.
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Figure 4: Q-Q Plot of
√
t(NSWγ − NSW∗) values against theoretical quantiles of N (0, σ2

NSW); a (near)
straight line indicates that

√
t(NSWγ − NSW∗) values appear to be normal.
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Figure 5: Mean and standard errors of NSWγ of observed markets of sizes t = 100, 200, . . . , 5000 (k = 10
repeats) sampled from the infinite-dimensional market M2 with linear valuations vi(θ) = a⊤

i θ+ ci, ai ∈ R10.
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