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Our code is publicly available at Anonymous GitHub.1

A Time-Pose Function2

Qualitative Results As shown in figure S1, the RGB camera and depth camera covers almost the3

same trajectory in a single flight, the underlying trajectory prior can be learned implicitly in the RGB4

sequence and can be directly transferred into predicting depth camera poses.

Figure S1: A visual demonstration on the trajectory alignment between RGB and depth sequence.
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To better demonstrate our model performances, we qualitatively show the differences between our6

estimated trajectories and the ground-truth trajectories in figure S2.7

B More on the Network Architectures of the Time-Pose Function8

Multi-resolution Hash Grid This part additionally introduces the details of our implementation9

of the time-pose function. For the queried time-stamp ti, the hash encoding of ⌊xi⌋ − 1, ⌊xi⌋, and10

⌊xi⌋ + 1 are extracted in each layer Gl
θ of the multi-resolution hash grid. We perform quadratic11
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Figure S2: Qualitative result of the Time-Pose Function on the AUS datasets.
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Figure S3: A top-view of the trajectories covered in AUS-NY and AUS-SF.
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Figure S4: A top-view of the trajectories covered in AUS-Virtual scenes.
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Figure S5: Architecture. Our implementation of the Time-Pose Function with a multi-resolution
hash grid.

interpolation on the extracted hash feature:12

f l
i =

1

2
(ti − ⌊xi⌋)(ti − ⌊xi⌋ − 1)Gl

θ(⌊xi⌋ − 1)

− (ti − ⌊xi⌋+ 1)(ti − ⌊xi⌋ − 1)Gl
θ(⌊xi⌋)

+
1

2
(ti − ⌊xi⌋+ 1)(ti − ⌊xi⌋)Gl

θ(⌊xi⌋+ 1).

(S1)

The interpolated feature are then concatenated together: fi = concat{f l
i}Ll=1. The concatenated13

feature vector is then processed through the MLP to calculate the output pose vector x̂i and q̂i. (Figure14

S5).15

MLP-based This part introduces the details of the MLP-based implementation of the time-pose16

function. We use a 10-layer MLP with 1024 dimensions in each layer, including a skip connection17

that concatenates the timestamp input to the 5th layer. The input timestamp is encoded by the MLP18

to obtain feature encoding Vi. Two fully connected layers are placed after the shared MLP to decode19

the feature vector Vi to the camera pose. (Figure S6).20
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Figure S6: Architecture. The MLP-based implementation of the Time-Pose Function.

1-D Feature Grid The 1-D feature grid version of the implementation has the same feature grid21

representation and interpolation functions as our multi-resolution hash feature grid, except for the22

hash encoding and multiple grid layers. (Figure S7).23
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Figure S7: Architecture. The 1-D feature grid-based implementation of the Time-Pose Function.

Ground-truth Ours Mega-NeRF-Depth

Figure S8: Qualitative results of the comparison of ours with Mega-NeRF-Depth.

C Comparison with Mega-NeRF-Depth24

The estimated depth camera pose from the time-pose function is acceptable, but not sufficient for25

direct use to supervise scene geometry. We compared our method against Mega-NeRF [5] with26

depth supervision that takes the time-pose function output as depth camera poses. The qualitative27

results (Figure S8) and the quantitative results (Table 3 in the main paper) show that the direct use28

of outputted camera pose may help increase the performance of Mega-NeRF in depth prediction.29
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Figure S9: Data Example RGB images and the corresponding timestamps in each AUS trajectory.

However, the depth prediction results obtained in this way have significant artifacts at the edges of30

the scene, and in addition, Mega-NeRF-Depth is even inferior to the baseline method that uses only31

RGB as supervision in rendering RGB images.32

D The AUS Dataset33

Capture Settings Our data were collected using a simulator[3] on several city scene models[4, 1]34

that have been built. We took RGB pictures and depth maps of the scene from an overhead view by35

crossing the scene with a virtual drone following a given path.36

We showed some of the captured images along with their timestamps in figure S9.37

Since the output of our simulator is a dense RGB image and depth map, we randomly down-sample38

the dense depth map to a sparser depth map during training to better simulate the real drone shooting39

data, and in the evaluation process, we use the full depth map to calculate the evaluation metrics for40

model depth prediction.41

E Limitations42

Despite the promising results of the time-pose function for localization and the realistic rendered43

images, our system still has limitations:44

• The time-pose function learns only from the time-pose trajectory prior, failing to leverage45

the imagery features. Combining the time-pose function with traditional pose regressors46

may be a good future work;47

• Our scene representation has similar limitations to those of the original NeRF like pose48

accuracy sensitive and slow converging. However, recent advances in improving NeRF are49

easy to transfer to AsyncNeRF as the model structure in our scene representation is similar50

to the original NeRF[2].51
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