
Supplementary Material

Anonymous Author(s)
Affiliation
Address
email

Our code is publicly available at Anonymous GitHub.1

A Time-Pose Function2

Qualitative Results As shown in figure S1, the RGB camera and depth camera covers almost the3

same trajectory in a single flight, the underlying trajectory prior can be learned implicitly in the RGB4

sequence and can be directly transferred into predicting depth camera poses.

Figure S1: A visual demonstration on the trajectory alignment between RGB and depth sequence.

5

To better demonstrate our model performances, we qualitatively show the differences between our6

estimated trajectories and the ground-truth trajectories in figure S2.7

B More on the Network Architectures of the Time-Pose Function8

Multi-resolution Hash Grid This part additionally introduces the details of our implementation9

of the time-pose function. For the queried time-stamp ti, the hash encoding of ⌊xi⌋ − 1, ⌊xi⌋, and10

⌊xi⌋ + 1 are extracted in each layer Gl
θ of the multi-resolution hash grid. We perform quadratic11

Submitted to 37th Conference on Neural Information Processing Systems (NeurIPS 2023). Do not distribute.

https://anonymous.4open.science/r/async-nerf


NY Simple

NY Hard

NY Manual

SF Simple SF Hard SF Manual

Bridge

School Town

Castle

Figure S2: Qualitative result of the Time-Pose Function on the AUS datasets.

AUS-NY Simple AUS-NY Hard AUS-NY Manual

AUS-SF Simple AUS-SF Hard AUS-SF Manual

Figure S3: A top-view of the trajectories covered in AUS-NY and AUS-SF.

2



Bridge Town School Castle

Figure S4: A top-view of the trajectories covered in AUS-Virtual scenes.

40

Interp

10
2
4

10
2
4

10
2
4

10
2
4

10
2
4

2
0

2
0

2
0

2
0

2
0

hash0 hash1

Interp

20 20

concat

2
0

2
0

2
0

2
0

2
0

1024

1024

Figure S5: Architecture. Our implementation of the Time-Pose Function with a multi-resolution
hash grid.

interpolation on the extracted hash feature:12

f l
i =

1

2
(ti − ⌊xi⌋)(ti − ⌊xi⌋ − 1)Gl

θ(⌊xi⌋ − 1)

− (ti − ⌊xi⌋+ 1)(ti − ⌊xi⌋ − 1)Gl
θ(⌊xi⌋)

+
1

2
(ti − ⌊xi⌋+ 1)(ti − ⌊xi⌋)Gl

θ(⌊xi⌋+ 1).

(S1)

The interpolated feature are then concatenated together: fi = concat{f l
i}Ll=1. The concatenated13

feature vector is then processed through the MLP to calculate the output pose vector x̂i and q̂i. (Figure14

S5).15

MLP-based This part introduces the details of the MLP-based implementation of the time-pose16

function. We use a 10-layer MLP with 1024 dimensions in each layer, including a skip connection17

that concatenates the timestamp input to the 5th layer. The input timestamp is encoded by the MLP18

to obtain feature encoding Vi. Two fully connected layers are placed after the shared MLP to decode19

the feature vector Vi to the camera pose. (Figure S6).20

3



10
2
4

10
2
4

10
2
4

10
2
4

10
2
4

Skip connection

10
2
4

10
2
4

10
2
4

10
2
4

10
2
4

1024

1024

Figure S6: Architecture. The MLP-based implementation of the Time-Pose Function.

1-D Feature Grid The 1-D feature grid version of the implementation has the same feature grid21

representation and interpolation functions as our multi-resolution hash feature grid, except for the22

hash encoding and multiple grid layers. (Figure S7).23

2
0

2
0

2
0

2
0

2
0

Interp

10
2
4

10
2
4

10
2
4

10
2
4

10
2
4

1024

1024

Figure S7: Architecture. The 1-D feature grid-based implementation of the Time-Pose Function.

Ground-truth Ours Mega-NeRF-Depth

Figure S8: Qualitative results of the comparison of ours with Mega-NeRF-Depth.

C Comparison with Mega-NeRF-Depth24

The estimated depth camera pose from the time-pose function is acceptable, but not sufficient for25

direct use to supervise scene geometry. We compared our method against Mega-NeRF [5] with26

depth supervision that takes the time-pose function output as depth camera poses. The qualitative27

results (Figure S8) and the quantitative results (Table 3 in the main paper) show that the direct use28

of outputted camera pose may help increase the performance of Mega-NeRF in depth prediction.29

4



1663842652.438123 1663842715.6884723 1663842752.337254 1663842812.3085334 1663842862.2865996

1667093775.5007393 1667093938.7672222 1667094605.2434402 1667094745.1694252 1667094935.1154773

1667545170.3645442 1667545423.6899483 1667545460.3477304 1667545610.3419302 1667545673.6672812

1667619651.5680182 1667619781.5637913 1667619798.235147 1667619811.5614314 1667619844.9041426

1667618380.0807662 1667618423.3956902 1667618463.3925436 1667618503.398397 1667618686.7023072

1667617414.4666367 1667617454.47549 1667617511.1286986 1667617541.1353388 1667617644.4515429

N
Y

S
F

B
ri

d
g
e

T
o

w
n

S
ch

o
o

l
C

as
tl
e

Figure S9: Data Example RGB images and the corresponding timestamps in each AUS trajectory.

However, the depth prediction results obtained in this way have significant artifacts at the edges of30

the scene, and in addition, Mega-NeRF-Depth is even inferior to the baseline method that uses only31

RGB as supervision in rendering RGB images.32

D The AUS Dataset33

Capture Settings Our data were collected using a simulator[3] on several city scene models[4, 1]34

that have been built. We took RGB pictures and depth maps of the scene from an overhead view by35

crossing the scene with a virtual drone following a given path.36

We showed some of the captured images along with their timestamps in figure S9.37

Since the output of our simulator is a dense RGB image and depth map, we randomly down-sample38

the dense depth map to a sparser depth map during training to better simulate the real drone shooting39

data, and in the evaluation process, we use the full depth map to calculate the evaluation metrics for40

model depth prediction.41

E Limitations42

Despite the promising results of the time-pose function for localization and the realistic rendered43

images, our system still has limitations:44

• The time-pose function learns only from the time-pose trajectory prior, failing to leverage45

the imagery features. Combining the time-pose function with traditional pose regressors46

may be a good future work;47

• Our scene representation has similar limitations to those of the original NeRF like pose48

accuracy sensitive and slow converging. However, recent advances in improving NeRF are49

easy to transfer to AsyncNeRF as the model structure in our scene representation is similar50

to the original NeRF[2].51

5



F Acknowledgement52

We thank Kirill Sibiriakov for the realistic city scene model of New York and San Francisco [4], and53

the Visual Computing Research Center at Shenzhen University for their open accessed Urbanscene3D54

dataset[1].55

References56

[1] Liqiang Lin, Yilin Liu, Yue Hu, Xingguang Yan, Ke Xie, and Hui Huang. Capturing, reconstructing, and57

simulating: the urbanscene3d dataset. In ECCV, 2022.58

[2] Ben Mildenhall, Pratul P. Srinivasan, Matthew Tancik, Jonathan T. Barron, Ravi Ramamoorthi, and Ren59

Ng. NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis. In Andrea Vedaldi, Horst60

Bischof, Thomas Brox, and Jan-Michael Frahm, editors, Computer Vision – ECCV 2020, Lecture Notes in61

Computer Science, pages 405–421, Cham, 2020. Springer International Publishing.62

[3] Shital Shah, Debadeepta Dey, Chris Lovett, and Ashish Kapoor. AirSim: High-Fidelity Visual and Physical63

Simulation for Autonomous Vehicles. In Field and Service Robotics, Results of the 11th International64

Conference, {FSR} 2017, Zurich, Switzerland, 12-15 September 2017, volume 5 of Springer Proceedings in65

Advanced Robotics, pages 621–635. Springer, 2017. titleTranslation:.66

[4] Kirill Sibiriakov. Artstation page https://www.artstation.com/vegaart, 2022.67

[5] Haithem Turki, Deva Ramanan, and Mahadev Satyanarayanan. Mega-NeRF: Scalable Construction of68

Large-Scale NeRFs for Virtual Fly- Throughs. In 2022 IEEE/CVF Conference on Computer Vision and69

Pattern Recognition (CVPR), pages 12912–12921, June 2022. ISSN: 2575-7075.70

6


	Time-Pose Function
	More on the Network Architectures of the Time-Pose Function
	Comparison with Mega-NeRF-Depth
	The AUS Dataset
	Limitations
	Acknowledgement

