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A Description of MaxVol and TTOpt algorithms

A.1 Maxvol Algorithm

The search for the maximal element in a large matrix can be significantly simplified if one can
obtain a "good" submatrix, for example, a maximal-volume submatrix. Finding the maximal-volume
submatrix of a nondegenerate matrix A ∈ RN×R, N > R is an NP-hard problem. In this paper,
we adapted the maxvol algorithm [3] which can find a submatrix C ∈ RR×R of A, such that its
determinant is close to maximum in absolute value. The algorithm selects a set of R rows denoted by
I ⊂ [1, . . . , N ] which form the matrix C = A[I, :].

For the given tolerance threshold ϵ (ϵ ≥ 1 and close to one), we find the set I as follows:

1. Compute the LU-decomposition A = PLU and store the permutation of the first R rows
(according to the matrix P ) in the list I .

2. Generate the matrix Q ∈ RR×N as a solution to the linear system with an upper triangular
matrix U : UTQ = AT .

3. Compute the matrix B ∈ RN×R as a solution to the linear system with the lower triangular
matrix L: (L[: R, :])TBT = Q.

4. Find the maximum modulo element b = Bi,j of the matrix B. If |b| ≤ ϵ, then terminate the
algorithm1 by returning the current list I and matrix B.

5. Update the matrix B ← B − B[:, j] (B[i, :] − eTj ) b
−1, where ej is the j-th unit basis

vector.
6. Update the list I as I[j]← i.
7. Return to step 4.

It can be shown that at each step k of the algorithm the volume of the submatrix C increases by a
factor not less than ϵ. Therefore, the estimate for the number of iterations, K, is the following:

K =
log ( |det (Ĉ)| )− log ( |det (C(0))| )

log ϵ
, (1)
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1In addition to the indices of the rows I that form the maximal-volume submatrix C ∈ RR×R, we also

obtain the matrix of coefficients B ∈ RN×R such that A = BC.

36th Conference on Neural Information Processing Systems (NeurIPS 2022).



where Ĉ is the exact maximal-volume submatrix and C(0) is an initial approximation obtained from
the LU-decomposition (see step 1 above). The computational complexity of the algorithm is the sum
of the initialization complexity and the complexities of K iterations. The complexity equals

O
(
NR2 +KNR

)
. (2)

In the context of the maximal matrix element search problem, other definitions of "good" submatrices
are possible. For example, one can search for a rectangular submatrix containing rows or columns
which span the largest volume. The rect_maxvol algorithm can be used in this case. We employ
rect_maxvol [7] to choose rectangular submatrices within the framework of the TTOpt algorithm to
adaptively increase the rank.

Consider an arbitrary nondegenerate matrix A ∈ RN×R (N > R). We search for a rectangular sub-

matrix Ĉ ∈ R(R+∆R)×R, R+∆R < N , which maximizes the rectangular volume
√

det (ĈT Ĉ)

objective. An approximation C to Ĉ can be found as follows. The first R rows of C are obtained by
the maxvol algorithm. The following rect_maxvol algorithm will find additional ∆R rows:

1. First, generate R indices of rows I ∈ NR and the coefficient matrix B ∈ RN×R of the
initial approximation using the maxvol algorithm.

2. Compute the vector l ∈ RN containing the norms of the rows: l[j] = (B[j, :])TB[j, :] for
j = 1, 2, . . . , N .

3. Find the maximum modulo element of the vector l, i.e. i = argmax(l).

4. If the current length R+∆R of the vector I is greater than or equal to R(max) or if l[i] ≤ τ2,
then terminate the algorithm2 by returning the current list I and matrix B.

5. Update the coefficient matrix as

B :=
[
B − B(B[i,:])TB[i,:]

1+B[i,:](B[i,:])T
B(B[i,:])T

1+B[i,:](B[i,:])T

]
.

6. Update the vector of row norms

l[j] := l[j]− |B[j, :](B[i, :])T |2

1 +B[i, :](B[i, :])T
, j = 1, 2, . . . , N.

7. Add current row index i to the list I .

8. Return to step 3.

The approximate computational complexity of this algorithm according to the work [7] is O(NR2),
and the expected number of rows in the resulting submatrix is 2R− 1 for the case τ = 1.

A.2 TTOpt Algorithm

In Algorithm A.1 we present the details of the TTOpt implementation. The TTOpt algorithm builds
the TT proxy of the minimized function which is iteratively updated. The procedure of updating
the TT proxy is outlined in Algorithm A.2 (function update_left, that updates core tensors of the
network from right to left ) and in Algorithm A.3 (function update_right, updates core tensors of the
network from left to right ). The requests to the objective function and the transformation of resulting
values are presented in Algorithm A.4 (function eval).

The procedure begins by building one-dimensional uniform grids xi (i = 1, 2, . . . , d) for the function
argument along each mode, using the specified bounds of the rectangular search domain Ω. Note that,
if necessary, arbitrary nonuniform grids can be used, taking into account the specific features of the
function under consideration.

2As a criterion for stopping the algorithm, we consider either the achievement of the maximum number of
rows in the maximal-volume submatrix (R(max)), or the sufficiently small norm of the remaining rows in the
matrix of coefficients B.
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Algorithm A.1: Multivariable function minimizer TTOpt.
Data: function J(θ), where θ ∈ Ω ⊂ Rd; boundary points of the rectangular domain

Ω = [a1, b1]× [a2, b2]× · · · × [ad, bd]; the number of grid points for every dimension
N1, N2, . . . , Nd; number of inner iterations (sweeps) kmax; maximum TT-rank rmax.

Result: approximation of the spatial point θmin ∈ Rd at which the function J reaches its minimum in the
region Ω and a corresponding function value Jmin ∈ R.

1 // Construct a uniform grid x1,x2, . . . ,xd:
2 Set xi[m] = ai + (bi − ai) · m−1

Ni−1

3 for all i = 1, . . . , d and m = 1, 2, . . . , Ni.
4 // Initialize the TT-ranks R0, R1, . . . , Rd:
5 Set R0 = 1.
6 for i = 1 to (d− 1) do
7 Set Ri = min (Ri−1 ·Ni, Ri ·Ni, rmax).
8 end
9 Set Rd = 1.

10 // Initialize set of points of interest X0,X1, . . . ,Xd:
11 Set X0 = None.
12 for i = 0 to (d− 2) do
13 Set Gi = random(Ri ·Ni, Ri+1) from the standard normal distribution.
14 Compute QR-decomposition Q,R = QR(Gi).
15 Compute indices mopt = maxvol(Q).
16 Set Xi+1 = update_right(Xi,xi, Ni, Ri,mopt).
17 end
18 Set Xd = None.
19 // Iterate in a loop to find optimal θmin and Jmin:
20 Set θmin = None and Jmin = +∞.
21 for k = 1 to kmax do
22 // Traverse the TT-cores from right to left:
23 for i = d to 1 do
24 Compute z,θmin, Jmin = eval(∗).
25 Reshape z to matrix Z ∈ RRi×ni·Ri+1 .
26 Compute Q,R = QR(ZT ).
27 Compute indices mopt = rect_maxvol(Q[:, 0 : R[i]]).
28 Set Xi = update_left(Xi+1,xi, Ni, Ri+1,mopt).
29 end
30 // Traverse the TT-cores from left to right:
31 for i = 1 to d do
32 Compute z,θmin, Jmin = eval(∗).
33 Reshape z to matrix z ∈ RRi·ni×Ri+1 .
34 Compute Q,R = QR(Z).
35 Compute indices mopt = rect_maxvol(Q).
36 Set Xi = update_right(Xi+1,xi, Ni, Ri+1,mopt).
37 end
38 end
39 return (θmin, Jmin).

Algorithm A.2: Function update_left to update points of interest when traverse the tensor modes
from right to left.
Data: current set of points for the (i+ 1)-th mode Xi+1; grid points xi; number of grid points

Ni; TT-rank Ri+1; list of indices to be selected mopt.
Result: new set of points Xi.

1 Set W1 = ones(Ri+1)⊗ xi and W2 = Xi+1 ⊗ ones(Ni)
2 Set Xi = [W1,W2].
3 Select subset of rows Xi = Xi[mopt, :].
4 return Xi.
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Algorithm A.3: Function update_right to update points of interest when traverse the tensor
modes from left to right.
Data: current set of points for the i-th mode Xi; grid points xi; number of grid points Ni;

TT-rank Ri; list of indices to be selected mopt.
Result: new set of points Xi+1.

1 Set W1 = ones(Ni)⊗Xi and W2 = xi ⊗ ones(Ri).
2 Set Xi+1 = [W1,W2].
3 Select subset of rows Xi+1 = Xi+1[mopt, :].
4 return Xi+1.

Algorithm A.4: Function eval to compute the target function in points of interest.
Data: Xi; Xi+1; Ri; Ni; Ri+1; J; θmin, Jmin (see Algorithm A.1 for details).
Result: transformed function values z ∈ RRi·Ni·Ri+1 , updated θmin and Jmin.

1 Set W1 = ones(Ni ·Ri+1)⊗Xi.
2 Set W2 = ones(Ri+1)⊗ xi ⊗ ones(Ri).
3 Set W3 = Xi+1 ⊗ ones(Ri ·Ni).
4 Set Xcurr = [W1,W2,W3] ∈ RRi·Ni·Ri+1×d.
5 // Compute function for each point in Xcurr:
6 Set ycurr = J(Xcurr).
7 if min (ycurr) < Jmin then
8 Set mmin = argmin(ycurr).
9 Set θmin = Xcurr[mmin, :].

10 Set Jmin = ycurr[mmin].
11 end
12 // Compute smooth function for each value in ycurr:
13 Set z = π

2 − arctan (ycurr − Jmin).
14 return (z,θmin, Jmin).

We then randomly initialize the TT proxy tensor with input ranks rmax. If necessary, we reduce some
of the ranks to satisfy the condition Ri−1Ni ≥ Ri (i = 1, 2, . . . , d− 1). Note that in this case, for
all TT-cores Gi ∈ RRi−1×Ni×Ri (i = 1, 2, . . . , d), the right unfolding matrices G(2)

i ∈ RRi−1·Ni×Ri

will turn out to be “tall” matrices, that is, their number of rows is not less than the number of columns,
and hence we can apply maxvol and rect_maxvol algorithms to these matrices.

Next, we iteratively traverse all tensor modes (using corresponding TT-cores) in the direction from
right to left and vice versa. We evaluate (and transform) the objective function to refine the selected
rows and columns. For each k-th mode of the tensor we evaluate the submatrix J

(C)
k ∈ RRk−1·Nk×Rk

of the corresponding unfolding matrix, compute its QR decomposition, find the row indices of the
rectangular maximal-volume submatrix Ĵk ∈ R(Rk+∆Rk)×Rk of the Q factor and add resulting
indices of the original tensor to the index set Xk.

The arguments for target function evaluation in Algorithm A.4 are selected as merged left and right
index sets, constructed from previous rect_maxvol computations. After each request to the objective
function, we update the current optimal value Jmin and then transform the calculated values by the
mapping (7) described in the main text.

B Additional Experiments

B.1 Experiments with benchmark functions

In Section 3.1 we compared the TTOpt solver3 with baseline methods, applied to various model func-
tions [4]. The list of functions is presented in Table 1. For each function, we provide the lower/upper

3We implemented the TTOpt algorithm in a python package with detailed documentation, demos, and
reproducible scripts for all benchmark calculations.
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Table 1: Benchmark functions for comparison of the considered optimization algorithms and
performance evaluation of the TTOpt approach. For each function, we present the lower grid bound
(a), the upper grid bound (b), the global minimum (Jmin) and the analytical formula. Note that Jmin

for the F6 function is given for the 10-dimensional case.

Function a b Jmin Formula

F1
(Ackley)

−32.768 32.768 0. f(x) = −Ae−B
√

1
d

∑d
i=1 x2

i −
e

1
d

∑d
i=1 cos (Cxi) + A + e1, where A = 20,

B = 0.2 and C = 2π

F2
(Alpine)

−10 10 0. f(x) =
∑d

i=1 |xi sinxi + 0.1xi|

F3
(Brown)

−1 4 0. f(x) =
∑d−1

i=1

(
x2
i

)(x2
i+1+1)

+
(
x2
i+1

)(x2
i+1)

F4
(Exponential)

−1 1 −1. f(x) = −e− 1
2

∑d
i=1 x2

i

F5
(Griewank)

−600 600 0. f(x) =
∑d

i=1
x2
i

4000 −
∏d

i=1 cos
(

xi√
i

)
+ 1

F6
(Michalewicz)

0 π −9.66015 f(x) = −
∑d

i=1 sin (xi) sin
2m

(
ix2

i

π

)
F7
(Qing)

0 500 0. f(x) =
∑d

i=1

(
x2
i − i

)2
F8
(Rastrigin)

−5.12 5.12 0. f(x) = A·d+
∑d

i=1

(
x2
i −A · cos (2π · xi)

)
,

where A = 10

F9
(Schaffer)

−100 100 0 f(x) =
∑d−1

i=1 (0.5 +
sin2 (
√

x2
i+x2

i+1)−0.5

(1+0.001(x2
i+x2

i+1))
2 )

F10
(Schwefel)

−500 500 0. f(x) = 418.9829 · d−
∑d

i=1 xi · sin (
√
|xi|)

grid bounds (a and b) and global minimum (Jmin). Note that many benchmarks is multimodal (have
two or more local optima), introducing additional complications into the optimization problem.

The main configurable parameters of our solver are the mode size (N ; N = 2q in the case of
quantization, where q is the number of submodes in the quantized tensor); the rank (R), and the
limit on the number of requests to the objective function (M ). The choice of these parameters can
affect the final accuracy of the optimization process. Below we present the results of the studies of
parameter importance. In all calculations, we fixed the non-varying parameters at the values provided
in Section 3.1.

Mode size influence. To reach high accuracy, we need fine grids. As we indicated in Section 2.6, in
this case, the quantization of the tensor modes seems attractive. We reshape the original d-dimensional
tensor J ∈ RN1×N2×···×Nd into the tensor J̃ ∈ R2×2×···×2 of a higher dimension d · q, but with
smaller modes of size 2, and apply the TTOpt algorithm to this “long” tensor instead of the original
one.
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Table 2: Comparison of the “direct” (TT) and “quantized” (QTT) TTOpt solvers in terms of the
final error (absolute deviation of the obtained value from the exact minimum) for various benchmark
functions. The reported values are averaged over ten independent runs.

MODE SIZE F1 F2 F3 F4 F5 F6 F7 F8 F9 F10

256 TT 1.2E+00 2.0E-02 0.0E+00 7.7E-05 1.0E+00 9.8E-02 9.4E+01 8.0E-01 4.2E-01 4.5E-01
QTT 1.2E+00 2.3E-02 0.0E+00 7.7E-05 1.0E+00 1.6E-01 9.4E+01 8.0E-01 3.9E-01 4.5E-01

1024 TT 1.6E+01 4.2E+00 3.0E+01 2.6E-01 5.7E+01 2.0E+00 1.9E+10 4.7E+01 1.5E+00 1.1E+03
QTT 1.8E-01 8.2E-03 6.9E-05 4.8E-06 2.1E-01 7.1E-02 5.2E+00 5.0E-02 1.2E-01 2.8E-02

4096 TT 1.9E+01 1.5E+01 5.0E+08 5.1E-01 1.4E+02 5.7E+00 5.1E+10 9.8E+01 3.5E+00 2.6E+03
QTT 3.5E-02 1.8E-03 0.0E+00 3.0E-07 3.9E-02 4.3E-02 2.6E-01 3.1E-03 8.7E-02 1.0E-02

16384 TT 2.0E+01 1.9E+01 9.9E+17 5.9E-01 1.7E+02 5.9E+00 6.3E+10 1.2E+02 3.8E+00 3.2E+03
QTT 8.2E-03 7.8E-04 2.7E-07 1.9E-08 2.6E-02 8.9E-02 2.2E-02 1.9E-04 1.2E-01 3.8E-04

65536 TT 2.0E+01 1.9E+01 1.2E+10 6.7E-01 2.2E+02 7.8E+00 7.1E+10 1.6E+02 4.4E+00 3.6E+03
QTT 2.0E-03 1.3E-04 1.2E-09 1.2E-09 2.2E-02 7.1E-02 9.4E-04 1.2E-05 1.4E-01 1.6E-04

262144 TT 2.1E+01 2.3E+01 1.7E+16 8.0E-01 3.0E+02 8.4E+00 8.9E+10 1.8E+02 4.5E+00 3.7E+03
QTT 5.0E-04 3.3E-05 1.1E-09 7.3E-11 3.0E-02 3.8E-02 3.7E-05 7.6E-07 1.4E-01 1.3E-04

1048576 TT 2.1E+01 2.8E+01 5.5E+16 8.3E-01 3.3E+02 8.4E+00 1.2E+11 1.9E+02 4.4E+00 3.7E+03
QTT 1.3E-04 1.2E-05 0.0E+00 4.5E-12 1.7E-02 6.8E-02 5.9E-06 4.7E-08 1.1E-01 1.3E-04

In Table 2 we present the comparison of optimization results for the basic algorithm without quan-
tization (“TT”) and for the improved algorithm with quantization (“QTT”). For each value N of
the mode size, we choose the number of submodes in the quantized tensor as q = log2 N . The
QTT-solver gives several orders of magnitude more accurate results than the TT-solver. At the same
time, for the QTT-solver, a regular decrease in the error is observed with an increase in the mode size.
Thus, for the stable operation of gradient-free optimization methods based on the low-rank tensor
approximations, it is necessary to quantize the modes of the original tensor.

Rank influence. The rank (the size of the maximal-volume submatrices) determines how many
points are queried at each iteration of the TTOpt algorithm, and this parameter is similar to population
size in evolutionary algorithms. Small maximal-volume submatrices may give a better bound for
maximal elements (see Eq. (3) from the main text), but finding small submatrices may be more
challenging for the algorithm and may lead to numerical instabilities. At the same time, when
choosing rank R, we should take into account that the algorithm will need 2 ·T · (dq) ·P ·R2 function
calls, where T is the number of sweeps (it should be at least 1, however, for better convergence, it is
worth taking values of 4−5) and P = 2 is a submode size. Hence we have inequality R ≤

√
M

4·T ·d·q· ,
where M is a given limit on the number of function requests.

In Figure 1 we demonstrate the dependence of the TTOpt’s accuracy on the rank. As can be seen,
with small ranks (1 or 2), we have too low accuracy for most benchmarks. At the same time, the
accuracy begins to drop at too high-rank values (7 or more), which is due to the insufficient number
of sweeps taken by the algorithm for convergence.

Number of function queries influence. The number of requests to the objective function can be
determined automatically based on algorithm iterations. Thus, with a total number of sweeps T ,
we will have O

(
T · d ·max1≤k≤d

(
NkR

2
k

))
calls to the objective function. However, in practice, it

turns out to be more convenient to limit the maximum number of function calls, M , according to the
computational budget.

In Figure 2 the dependence of the accuracy on the total number of requests, M , to the objective
function is presented. Predictably, as M increases, the accuracy also increases. The plateau for
benchmarks are associated with the dependence of the result on the remaining parameters (R, q) of
the TTOpt solver.
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Figure 1: The dependence of the final error (absolute deviation of the obtained value from the exact
minimum) on the rank for various benchmark functions. The reported values are averaged over ten
independent runs.

Figure 2: The dependence of the final error (absolute deviation of the obtained value from the exact
minimum) on the number of target functions calls for various benchmark functions. The reported
values are averaged over ten independent runs.

Function dimensionality influence. One of the advantages of the proposed approach is the possi-
bility of its application to essentially multidimensional functions. In Table 3 we present the results of
TTOpt for functions of various dimensions (we removed the F6 function from benchmarks, since
its optima are known only for 2, 5 and 10-dimensional cases). Note that as a limit on the number
of requests of the objective function, we choose 104 · d, and the values of the remaining parameters
were chosen the same as above.

As can be seen, even for 500-dimensional functions, the TTOpt method results in fairly accurate
solutions for most benchmarks. However, for benchmarks F4, F7 and F9 the errors are larger than
for lower dimensions. We suspect that our heuristic of the number of objective function evaluations
is not accurate in these cases.

7



Table 3: The result of the TTOpt optimizer in terms of the final error ϵ (absolute deviation of the
obtained optimal value relative to the global minimum) and computation time τ (in seconds) for
various benchmark functions and various dimension numbers (d).

FUNCTION d = 10 d = 50 d = 100 d = 500

F1 ϵ 3.9E-06 3.9E-06 3.9E-06 3.9E-06
τ 3.1 37.8 131.0 3153.5

F2 ϵ 2.9E-07 3.7E-06 5.2E-06 2.1E-05
τ 2.5 36.3 129.5 3153.1

F3 ϵ 2.3E-12 4.9E-10 1.1E-09 4.7E-09
τ 2.6 36.8 132.6 3205.4

F4 ϵ 4.4E-15 2.2E-14 4.4E-14 1.0E+00
τ 2.5 35.6 129.2 3131.1

F5 ϵ 2.5E-02 3.7E-02 3.7E-02 3.7E-02
τ 2.5 36.1 130.4 3132.2

F7 ϵ 5.5E-09 8.9E-08 3.4E-07 5.6E+02
τ 2.5 35.6 130.2 3123.7

F8 ϵ 4.6E-11 2.3E-10 4.6E-10 2.3E-09
τ 2.5 35.6 130.1 3124.0

F9 ϵ 3.4E-01 9.3E-01 2.2E+00 1.0E+01
τ 2.5 36.0 130.6 3157.4

F10 ϵ 1.3E-04 6.4E-04 1.3E-03 6.4E-03
τ 2.6 35.7 130.0 3140.7

Table 4: Comparison of the TTOpt optimizer with Bayesian optimization [6] baselines in terms of
the final error ϵ (absolute deviation of the obtained optimal value relative to the global minimum) and
computation time τ (in seconds) for various 10-dimensional benchmark functions. Note that τ values
for Simultaneous Optimistic Optimization (SOO), Direct Simultaneous Optimistic Optimization
(dSOO), Locally Oriented Global Optimization (LOGO) and Random Optimization (RANDOM)
refers to the time measured for a complied C-code, while our TTOpt optimizer is implemented in
python, and will be more time-efficient if written in C.

ACKLEY RASTRIGIN ROSENBROCK SCHWEFEL

TTOPT
ϵ 3.9E-06 4.6E-11 3.9E-01 8.4E-02
τ 1.23 1.21 1.18 1.21

DSOO ϵ 4.0E-10 2.0E+00 8.1E+00 5.3E+02
τ 8.10 7.20 7.75 7.01

SOO ϵ 9.0E-10 2.29E+00 7.0E+02 5.2E+02
τ 7.44 7.57 0.66 7.31

LOGO ϵ 1.2E-09 3.44E+01 7.9E+00 5.3E+02
τ 6.80 0.77 7.06 7.51

RANDOM ϵ 1.1E+01 2.29E+00 1.5E+00 1.2E+03
τ 0.78 7.34 7.25 0.77
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B.2 Comparison with Bayesian optimization

In Table 4 we present the results of TTOpt and several Bayesian methods for 10-dimensional
benchmarks. We selected functions supported by the Bayesian optimization package from4 [6]. Note
that in all cases we chose 105 as the limit on the number of requests to the objective function and the
values of the remaining parameters were chosen the same as above. TTOpt outperforms all tested
Bayesian algorithms for Rastrigin, Rosenbrock, and Schwefel functions. For the Ackley function, the
difference in accuracy is not significant. On average, TTOpt is faster than Bayesian methods, despite
they are implemented in C language. We stress that standard Bayesian methods are not applicable in
higher-dimensional problems.

B.3 Formulation of reinforcement learning problem as black-box optimization task

Here we describe a typical reinforcement learning setting within Markov decision process formalism.
The agent acts in the environment that has a set of states S . In each state s ∈ S the agent takes an
action from a set of actions a ∈ A. Upon taking this action, the agent receives a local reward r(s, a)
and reaches a new state s′, determined by the transition probability distribution T (s′ | s, a). The
policy π(a | s) specifies which action the agent will take depending on its current state. Upon taking
T (T is also called horizon) actions, the agent receives a cumulative reward, defined as

J =

T−1∑
t=0

γtr(st, at), (3)

where γ ∈ [0, 1] the is discounting factor, specifies the relevance of historic rewards for the current
step.

The goal of the agent is to find the policy π∗(a | s) that maximizes the expected cumulative reward
J over the agent’s lifetime. In policy-based approaches, the policy is approximated by a function
π(a | s,θ) (for example, a neural network), which depends on a vector of parameters θ. It follows
then that the cumulative reward is a function of the parameters of the agent:

J(θ) = E(st,at)∼T ,π(θ)

[ T−1∑
t=0

γtr(st, at))

]
, (4)

where r(st, at) ∼ r(st, π(st−1 | θ). In case of episodic tasks we can assume γ = 1. Finding an
optimal policy can be done by maximizing the cumulative reward J with respect to parameters θ:

π∗(a | s) = π(a | s,θ∗), (5)

where θ∗ ≃ argmax J(θ). Notice that J may be non-differentiable due to the stochastic nature of T
or the definition of r, depending on a particular problem formulation. However, this does not pose a
problem for direct optimization algorithms.

To summarize, the RL problem can be transformed into a simple optimization problem for the
cumulative reward J(θ). The parameters of this function are the weights of the agent. Optimization
of the cumulative reward with direct optimization algorithms is an on-policy learning in RL algorithm
classification.

B.4 Rank dependence study

Since rank is an important parameter of our method, we studied its influence on the rewards in RL,
see Figure 5. Note that the rank determines how many points are queried at each iteration, and this
parameter is similar to population size in evolutionary algorithms. We found almost no dependency
of the final reward on rank after R > 3 (on average). The Eq. (3) from the main text states that small
maximal-volume submatrices should give a better bound for the maximal element. However, finding
small submatrices may be more challenging for the algorithm. It turns out that reward functions in
considered RL tasks are "good" for the maximum volume heuristic, e.g., even with small ranks, the
algorithm produces high-quality solutions.

4The source code is available at https://github.com/Eiii/opt_cmp
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Table 5: The mean and standard deviation ( E ± σ) of final cumulative reward before and after
fine-tuning with TTOpt. The policy’s weights are from the original repository of ARS [5].

ARS [5] ARS TTOPT(28)
ANT-V3 4972.48±21.58 5039.90±57.00
HALFCHEETAH-V3 6527.89±82.70 6840.39±87.41
HOPPER-V3 3764.74±355.08 3296.49±11.81
HUMANOID-V3 11439.79±51.44 11560.01±54.08
SWIMMER-V3 354.43±2.32 361.87±1.76
WALKER2D-V3 11519.77±112.55 11216.25±88.32

Table 6: The number of hidden units in each layer of convolutional policy h, the total number of
parameters d, the sizes of the state and action spaces A and S, the rank R and the activation function
between the layers (Act.). The average number of function quires per iteration (population size) in
the case of TTOpt and ES baselines, respectively, is denoted by Q (the values separated by a comma).
The number of seeds is Sd.

H D S A R Act. Q Sd

S 8 55 8 2 3 TANH 55, 64 7
L 8 55 8 2 3 RELU 53, 64 7
I 4 26 4 1 3 TANH 57, 64 7
H 4 44 17 6 5 TANH 120, 128 7

B.5 Constraint Handling in Evolutionary Algorithms

There are two options to satisfy constraints in evolutionary computation called projection and
penalization. These steps can be represented as two functions, θp = fproj(θ), and fpen(θp,θ) with
a regularization term:

Jp(θ) = J(θp)− λfpen(θp,θ). (6)

In this work, we use the constraint functions described below. CDF projection is applied in exper-
iments with mode size N = 3 (see Table 3 from the main text). The idea is to use the cumulative
density function to map normally distributed parameters of the policies to {-1,0,1} set:

θ =


−1 CDF(θ) ≤ 1

3 ,

0 1
3 < CDF(θ) < 2

3 ,

1 CDF(θ) ≥ 2
3 .

(7)

Uniform projection is applied when N = 256 in experiments shown in Table (3) from the main text.
In this case, the idea is to keep the value if it satisfies the bounds, otherwise, we draw a new sample
uniformly from a grid defined in Algorithm A.1:

θip =

{
θi, if L ≤ θi ≤ U,

xi[k] otherwise.
(8)

Quadratic penalty is applied in all experiments. If L and U are the bounds, then fpen(θp,θ) =∑
i:θi<L(L− θi)2 +

∑
i:θi>U (θ

i − U)2. We set λ = 0.1 in all experiments.

B.6 Reinforcement Learning Experiments

Figure 3 and Figure 4 show training curves for all test environments which were not included in the
main text.

Fine-tuning of Linear Policies. We use TTOpt to fine-tune Augmented Random Search (ARS) [5]
linear policies obtained from the original paper. The cost function is the average of seven independent
episodes with fixed random seeds. The upper and lower grid bounds are estimated using statistics of
pre-trained linear policies: bi = θi ± α · σ(θ) with α = 0.1. For Ant, Humanoid [2], Walker [2] and
HalfCheetah [9] we select α = 0.5, and for Swimmer [1] and Hopper [8] we set α = 1.
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Figure 3: Training curves of TTOpt and baselines for N = 3 possible weight values: (−1, 0, 1).
Left is the dependence of the average cumulative reward on the number of interactions with the
environment (episodes). Right is the same reward depending on the execution time. The reward is
averaged for seven seeds. The shaded area shows the difference of one standard deviation around the
mean.
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Figure 4: Training curves of TTOpt and baselines for N = 256 possible weight values. Left is the
dependence of the average cumulative reward on the number of interactions with the environment
(episodes). Right is the same reward depending on the execution time. The reward is averaged for
seven seeds. The shaded area shows the difference of one standard deviation around the mean.
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Figure 5: The dependency of the final cumulative reward on rank. The mean, the minimum, and the
maximum over seven random seeds are presented. The mode size is N = 3.
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