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ABSTRACT

The advancements in artificial intelligence in recent years, such as Large Lan-
guage Models (LLMs), have fueled expectations for breakthroughs in genomic
foundation models (GFMs). The code of nature, hidden in diverse genomes since
the very beginning of life’s evolution, holds immense potential for impacting hu-
mans and ecosystems through genome modeling. Recent breakthroughs in GFMs,
such as Evo, have attracted significant investment and attention to genomic mod-
eling, as they address long-standing challenges and transform in-silico genomic
studies into automated, reliable, and efficient paradigms. In the context of this
flourishing era of consecutive technological revolutions in genomics, GFM studies
face two major challenges: the lack of GFM benchmarking tools and the absence
of open-source software for diverse genomics. These challenges hinder the rapid
evolution of GFMs and their wide application in tasks such as understanding and
synthesizing genomes, problems that have persisted for decades. To address these
challenges, we introduce GFMBench, a framework dedicated to GFM-oriented
benchmarking. GFMBench standardizes benchmark suites and automates bench-
marking for a wide range of open-source GFMs. It integrates millions of genomic
sequences across hundreds of genomic tasks from four large-scale benchmarks,
democratizing GFMs for a wide range of in-silico genomic applications. Addi-
tionally, GFMBench is released as open-source software, offering user-friendly
interfaces and diverse tutorials, applicable for AutoBench and complex tasks
like RNA design and structure prediction. To facilitate further advancements in
genome modeling, we have launched a public leaderboard showcasing the bench-
mark performance derived from AutoBench. GFMBench represents a step to-
ward standardizing GFM benchmarking and democratizing GFM applications.

REFERENCES

Josh Abramson, Jonas Adler, Jack Dunger, Richard Evans, Tim Green, Alexander Pritzel, Olaf
Ronneberger, Lindsay Willmore, Andrew J Ballard, Joshua Bambrick, et al. Accurate structure
prediction of biomolecular interactions with alphafold 3. Nature, pp. 1–3, 2024.

Manato Akiyama and Yasubumi Sakakibara. Informative rna base embedding for rna structural
alignment and clustering by deep representation learning. NAR genomics and bioinformatics, 4
(1):lqac012, 2022.

Stephen F Altschul, Warren Gish, Webb Miller, Eugene W Myers, and David J Lipman. Basic local
alignment search tool. Journal of molecular biology, 215(3):403–410, 1990.

Žiga Avsec, Roman Kreuzhuber, Johnny Israeli, Nancy Xu, Jun Cheng, Avanti Shrikumar, Abhi-
manyu Banerjee, Daniel S Kim, Thorsten Beier, Lara Urban, et al. The kipoi repository accel-
erates community exchange and reuse of predictive models for genomics. Nature biotechnology,
37(6):592–600, 2019.

Jiayang Chen, Zhihang Hu, Siqi Sun, Qingxiong Tan, Yixuan Wang, Qinze Yu, Licheng Zong, Liang
Hong, Jin Xiao, Tao Shen, et al. Interpretable rna foundation model from unannotated data for
highly accurate rna structure and function predictions. bioRxiv, pp. 2022–08, 2022.

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Ken Chen, Yue Zhou, Maolin Ding, Yu Wang, Zhixiang Ren, and Yuedong Yang. Self-supervised
learning on millions of pre-mrna sequences improves sequence-based rna splicing prediction.
bioRxiv, pp. 2023–01, 2023.

Yanyi Chu, Dan Yu, Yupeng Li, Kaixuan Huang, Yue Shen, Le Cong, Jason Zhang, and Mengdi
Wang. A 5’ utr language model for decoding untranslated regions of mrna and function predic-
tions. Nature Machine Intelligence, pp. 1–12, 2024.

Hugo Dalla-Torre, Liam Gonzalez, Javier Mendoza-Revilla, Nicolas Lopez Carranza, Adam Henryk
Grzywaczewski, Francesco Oteri, Christian Dallago, Evan Trop, Bernardo P de Almeida, Hassan
Sirelkhatim, et al. The nucleotide transformer: Building and evaluating robust foundation models
for human genomics. bioRxiv, pp. 2023–01, 2023.

Christian Dallago, Jody Mou, Kadina E Johnston, Bruce J Wittmann, Nicholas Bhattacharya,
Samuel Goldman, Ali Madani, and Kevin K Yang. Flip: Benchmark tasks in fitness landscape
inference for proteins. bioRxiv, pp. 2021–11, 2021.

Padideh Danaee, Mason Rouches, Michelle Wiley, Dezhong Deng, Liang Huang, and David Hen-
drix. bprna: large-scale automated annotation and analysis of rna secondary structure. Nucleic
acids research, 46(11):5381–5394, 2018.

Bernardo P de Almeida, Hugo Dalla-Torre, Guillaume Richard, Christopher Blum, Lorenz Hexemer,
Maxence Gélard, Javier Mendoza-Revilla, Priyanka Pandey, Stefan Laurent, Marie Lopez, et al.
Segmentnt: annotating the genome at single-nucleotide resolution with dna foundation models.
bioRxiv, pp. 2024–03, 2024.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: pre-training of deep
bidirectional transformers for language understanding. In NAACL-HLT (1), pp. 4171–4186. As-
sociation for Computational Linguistics, 2019.

Richard Evans, Michael O’Neill, Alexander Pritzel, Natasha Antropova, Andrew Senior, Tim Green,
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A RELATED WORKS

A.1 BENCHMARK

Recognizing the critical role of benchmarking in genomic modeling, several tools have been devel-
oped to evaluate genomic models. Among these are RNABench (Runge et al., 2024), GenBench (Liu
et al., 2024), BEACON (Ren et al., 2024), and DEGB (West-Roberts et al., 2024).

RNABench focuses on a set of benchmarks, such as RNA secondary structure prediction, and lacks
support for evaluating the latest pre-trained models. GenBench is a modular DNA benchmarking
framework that provides a DNA evaluation solution but does not extend to RNA benchmarking,
and it may not prioritize user-friendliness. BEACON is a recent benchmarking tool aimed at RNA
foundational models, offering some RNA evaluation datasets. However, it may lack benchmarking
scalability and the complexity of its environment setup poses challenges for novices. DEGB serves
as an evaluation benchmark for genomic embeddings, supporting both amino acids and nucleic
acids. Its main limitation lies in the small scale of its evaluation benchmarks, and it does not support
downstream applications of GFMs. Classic genomic modeling tools like Kipoi1 (Avsec et al., 2019)
have been developed to standardize access to trained models for genomic sequence analysis, offering
a repository of models. However, Kipoi focuses on providing access to classic models, not GFMs,
rather than benchmarking comprehensively.

There are some protein benchmarking tools, such as ProteinGym (Notin et al., 2024), Flip (Dallago
et al., 2021) and Peer (Xu et al., 2022), to name a few. ProteinGym is a large-scale benchmarking
tool focused on protein fitness prediction and design. It provides over 250 deep mutational scanning
assays, offering a standardized dataset to evaluate machine learning models across millions of mu-
tated protein sequences. ProteinGym is designed to assess both zero-shot and supervised models,
particularly in predicting the effects of mutations and aiding protein engineering for applications like
genetic disease, agriculture, and healthcare. Flip provides a benchmark for predicting the protein
sequence-function relationship, a critical aspect of protein engineering. It includes data for tasks

1https://kipoi.org
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such as adeno-associated virus stability, protein domain stability, and thermostability from multiple
protein families. Flip is designed to evaluate model generalization under various conditions, such as
low-resource or extrapolative scenarios. Its datasets are curated to assess the capacity of models to
predict functional properties of proteins in real-world protein engineering tasks. Peer is a compre-
hensive multi-task benchmark that offers 17 tasks across five categories, including protein function
prediction, localization, structure, and interaction predictions. It evaluates a wide range of machine
learning methods, from traditional approaches to large pre-trained protein language models. Peers’
broad scope helps assess model performance in different protein-related tasks, contributing to ad-
vancements in protein sequence understanding and engineering.

Existing tools do not adequately address the challenges of comprehensive, large-scale evaluation of
RNA and DNA GFMs. They often lack support for downstream applications and do not facilitate
the ease of use or scalability necessary to catalyses the democratization and revolution of GFM
research. This gap has motivated the development of a new benchmarking tool designed to cover
a broad spectrum of foundational DNA and RNA models and provide an extensive benchmarking
suite.

A.2 GENOMIC FOUNDATION MODELS

In recent years, the modeling of biological sequences, including DNA, RNA, and proteins, has
garnered significant attention. Protein modeling, exemplified by works such as AlphaFold (Jumper
et al., 2021; Evans et al., 2021; Abramson et al., 2024) and ESM (Lin et al., 2022), has advanced
considerably over the past years, outpacing developments in DNA and RNA modeling.

In the domain of genomic sequence modeling, early efforts focused on adapting natural language
processing architectures to handle genomic data. For instance, DNABERT (Ji et al., 2021) repur-
posed the BERT (Devlin et al., 2019) architecture for genomic sequences, demonstrating preliminary
success on in-silico genomic tasks. Building upon this, DNABERT2 (Zhou et al., 2023) introduced
improvements by replacing k-mer tokenization with byte-pair encoding (BPE) tokenization, enhanc-
ing model performance across multiple species.

To explore the capabilities of large-scale foundation models (FMs), the Nucleotide Transformers
V2 (Dalla-Torre et al., 2023), AgroNT (Mendoza-Revilla et al., 2023), and SegmentNT (de Almeida
et al., 2024) scaled models to billions of parameters. These models achieved promising results
in understanding DNA genomes, with parameter counts reaching up to 2.5 billion and 1 billion,
respectively. AgroNT, pre-trained on multi-species edible plant DNA sequences, however, did not
transfer effectively to RNA sequence modeling in subsequent experiments. Addressing the challenge
posed by the considerable length of genomic sequences, recent works have emphasized long-range
sequence modeling and introduced auto-regressive FMs, such as HyenaDNA (Nguyen et al., 2023)
and Evo (Nguyen et al., 2024).

In the context of RNA genomic modeling, several preliminary studies have emerged, including
scBERT (Yang et al., 2022), RNABERT (Akiyama & Sakakibara, 2022), RNA-FM (Chen et al.,
2022), RNA-MSM (Zhang et al., 2023), and RNAErnie (Wang et al., 2024). These models, however,
are typically trained on limited-scale databases due to the scarcity and expense of obtaining RNA
sequences. Some FMs focus on specific RNA types, such as coding sequences (CDS)(Hallee et al.,
2023), 5’ untranslated regions (5’UTR)(Chu et al., 2024), 3’ untranslated regions (3’UTR)(Yang
et al., 2023), or precursor mRNA sequences(Chen et al., 2023), which constrains their ability to
capture the full diversity of RNA sequences. Uni-RNA (Wang et al., 2023) has been reported to
achieve strong performance owing to its large-scale model and extensive database. However, it is
not open-sourced, precluding direct comparison in experiments. ChatNT (Richard et al., 2024) is
a multimodal conversational agent designed to assist with tasks involving DNA, RNA, and protein
sequences. It can handle diverse genomic and proteomic tasks, such as predicting sequence struc-
tures, simulating biological processes, or interacting with foundational models. ChatNT integrates
advanced AI models to facilitate research in genomic data processing, enhancing accessibility and
scalability in tasks across multiple biological modalities.
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Table 1: The brief statistics of subtasks in the RGB. These benchmark datasets are held out or not
included in the pretraining database. The numbers of examples in training, validation and testing
sets are separated by “/”. ∗ indicates the datasets are used for zero-shot performance evaluation only.

Task Task Type # of examples # of classes Metric Sequence length Source
SNMD Token classification 8, 000/1, 000/1, 000 2 AUC 200 This work
SNMR Token classification 8, 000/1, 000/1, 000 4 macro F1 200 This work
mRNA Token regression 1, 735/193/192 — RMSE 107 Kaggle
bpRNA Token classification 10, 814/1, 300/1, 305 3 macro F1 ≤ 512 (Danaee et al., 2018)
AchiveII Token classification 2278/285/285 3 macro F1 ≤ 500 (Mathews, 2019)
RNAStrAlign Token classification 17483/2186/2185 3 macro F1 ≤ 500 (Tan et al., 2017)

B BENCHMARK DETAILS

B.1 RNA GENOMIC BENCHMARK

The detailed task descriptions for each nucleic acid and species, including the number of examples,
classes, evaluation metric, and sequence length, are outlined in Table 1. Each task is carefully
curated to reflect the complexity and variety inherent in genomic data, providing a robust framework
for assessing the nuanced capabilities of state-of-the-art RNA FMs. RGB contains 6 SN-level tasks
that are curated or collected from published articles. The purpose of RGB is to benchmark genomic
FMs in challenging SN-level modeling tasks such as the detection and repair of SN mutations,
mRNA sequence degradation rates, and RNA secondary structure prediction. Due to the lack of a
plant RNA benchmark dataset, RGB includes the modeling of RNA sequences from a variety of
species, e.g., plant and human. The sequence length in RGB ranges from 107 to 512, which is
sufficient for most RNA understanding tasks. In summary, these multi-species and SN-level tasks
in RGB serve as the first comprehensive benchmark utilized to assess the RNA sequence modeling
capabilities of GFMBench and its baseline models. The brief introduction of the datasets in RGB is
as follows:

• Single-Nucleotide Mutation Detection (SNMD): We developed a plant RNA dataset synthesiz-
ing the single-nucleotide mutations. Focused on identifying potential single nucleotide changes,
this task is essential for detecting mutations linked to genetic disorders. The SNMD dataset intro-
duces up to 10 random mutations in the original sequences, regardless of variation ratios. Cross-
entropy is utilized as the loss function for this binary token classification task.

• Single-Nucleotide Mutation Repair (SNMR): This task challenges the model to suggest correc-
tive actions at the single nucleotide level, aiding in gene therapy approaches. The SNMR dataset
mirrors the SNMD dataset, with cross-entropy as the loss function, indicating a token 4-way (i.e.,
A, U, C, G) classification task.

• mRNA Degrade Rate Prediction (mRNA): Estimating the decay rate of nucleotides in mRNA
sequences, this task is vital for deciphering gene expression and regulation. The dataset orig-
inates from the Kaggle COVID-19 vaccine design competition2, focusing solely on sequence-
based degradation rate prediction and excluding RNA structures. It’s a token regression task using
MSE as the loss function, with the dataset re-split into training, validation, and testing sets for
evaluation.

• RNA Secondary Structure Prediction (bpRNA & Archive2 & RNAStralign): Aiming to pre-
dict RNA folding into secondary structures, this task is fundamental to RNA functionality and
interactions. We evaluated GFMBench on four datasets, bpRNA (Danaee et al., 2018) (TR0,
VL0, TS0 sets), ArchiveII (Mathews, 2019), RNAStralign (Tan et al., 2017) and Rfam (Kalvari
et al., 2021). Following existing works, we have excluded sequences over 512 bases and complex
structures, simplifying to three symbols: ‘(’, ‘.’, ‘)’Ṙesults may not directly compare with
other studies due to these modifications. Cross-entropy serves as the loss function.

Please find the appendix for the input and output examples of each subtask in RGB. The detailed task
descriptions for each nucleic acid and species, including the number of examples, classes, evaluation
metric, and sequence length, are outlined in Table 1. Each task is carefully curated to reflect the
complexity and variety inherent in genomic data, providing a robust framework for assessing the
nuanced capabilities of state-of-the-art RNA FMs.

2https://www.kaggle.com/competitions/stanford-covid-vaccine
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Table 2 show the virtual examples of different datasets in RGB. Please refer to our supplementary
materials to find the datasets for more details.

Table 2: The virtual input and output examples in the four benchmarks. The “. . . ” represents the
sequences that are omitted for better presentation and the red color indicates the wrong prediction in
classification tasks. In the mRNA dataset, all single nucleotides have three values to predict. Note
that “T” and “U” can be regarded as the same symbol in RNA sequences and depend on different
datasets.

Genome Type Dataset Column Examples

RNA

SNMD
Input Sequence G A G T A . . . T T G A G

True Label 0 0 1 0 0 . . . 0 0 1 0 0
Prediction 0 0 0 0 0 . . . 0 0 1 0 0

SNMR
Input Sequence T A C G A . . . C T G A T

True Label T A C A A . . . G T A A T
Prediction T A C A A . . . C T G A T

mRNA
Input Sequence G G . . . A C

True Label [0.1,0.3,0.2] [0.8,0.4,0.1]. . . [0.9,0.4,0.3] [0.5,0.2,0.6]
Prediction [0.1,0.3,0.2] [0.8,0.4,0.1]. . . [0.9,0.4,0.3] [0.5,0.2,0.6]

bpRNA
Input Sequence G G C G A . . . C U U U U

True Label ( ( ( · · . . . · · ) ) )
Prediction ( ( ( ( · . . . · ) ) ) )

DNA

Classification
Input Sequence A T C G A . . . T A G

True Label 1
Prediction 0

Regression
Input Sequence G C C A T . . . G C T

True Label 2.56
Prediction 2.45

Chrom Acc (Multi-label)
Input Sequence A T C G . . . C T G

True Label [1, 0, 1, 1, 0, 1, 1, 0, 1]
Prediction [1, 1, 1, 1, 0, 1, 1, 0, 1]

B.2 PLANT GENOMIC BENCHMARK

PGB (Mendoza-Revilla et al., 2023) provides a comprehensive suite of datasets designed to evalu-
ate and improve the predictive capabilities of GFMs in plant biology. This benchmark, as shown
in Table 3, encompasses a range of critical genomic tasks, including binary classification, single
and multi-variable regression, and multi-label classification, addressing various aspects of plant
genomics such as RNA processing, gene expression, and chromatin accessibility. By integrating
diverse genomic tasks, the PGB aims to facilitate advanced research and development in plant ge-
nomics, offering a robust platform for the assessment and enhancement of model performance across
different plant species. To obtain a detailed description of PGB, please refer to Agro-NT (Mendoza-
Revilla et al., 2023).

B.3 GENOMIC UNDERSTANDING EVALUATION

GUE (Zhou et al., 2023) serves as a DNA genomic benchmark, encompassing 36 datasets across nine
crucial genome analysis tasks applicable to a variety of species. Similar to PGB and GB, it is used for
evaluating the generalizability of GFMBench on DNA genome benchmarking. To thoroughly assess
the capabilities of genome foundation models across sequences of varying lengths, tasks have been
chosen with input lengths spanning from 70 to 10, 000. The brief statistics for each dataset included
in the GUE benchmark are displayed in Table 4, and the task descriptions are available in Zhang
et al. (2023). Due to resource limitations, we do not include large-scale FMs in this benchmark,
e.g., Agro-NT. Besides, we run the evaluation on a subset of GUE, where for each task we randomly
select at most 10k samples from the original splits, e.g., training, testing and validation (if any) sets.

B.4 GENOMIC BENCHMARKS

GB is also a DNA-oriented FM benchmark suite, which can be used for generalizability evaluation
of OmniGenome. It contains a well-curated collection of datasets designed for the classification
of genomic sequences, focusing on regulatory elements across multiple model organisms. This
collection facilitates robust comparative analysis and development of genomic FMs. The task names
in the original repository are complex, we abbreviate the names as follows:
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Table 3: The genomic tasks in the Plant Genomic Benchmark. This table briefly enumerates each
task by name, the number of datasets available, the type of classification or regression analysis
required, the range of sequence lengths, and the total number of samples in each dataset. Please find
the dataset details of PGB in Agro-NT.

Task # of datasets Task Type Total # of examples # of classes Metric Sequence length
Polyadenylation 6 Sequence classification 738, 918 2 macro F1 400
Splice site 2 Sequence classification 4, 920, 835 2 macro F1 398
LncRNA 2 Sequence classification 58, 062 6 macro F1 101− 6000
Promoter strength 2 Sequence regression 147, 966 — RMSE 170
Terminator strength 2 Sequence regression 106, 818 — RMSE 170
Chromatin accessibility 7 Multi-label classification 5, 149, 696 9− 19 macro F1 1, 000
Gene expression 6 Multi-variable regression 206, 358 — RMSE 6, 000
Enhancer region 1 Sequence classification 18, 893 2 macro F1 1, 000

Table 4: Statistics of tasks in the GUE, these details can be found in Section B.2. from Zhang et al.
(2023).

Task Metric Datasets Training Validation Testing

Core Promoter Detection macro F1
tata 4, 904 613 613

notata 42, 452 5, 307 5, 307
all 47, 356 5, 920 5, 920

Promoter Detection macro F1
tata 4, 904 613 613

notata 42, 452 5, 307 5, 307
all 47, 356 5, 920 5, 920

Transcription Factor Prediction (Human) macro F1

wgEncodeEH000552 32, 378 1, 000 1, 000
wgEncodeEH000606 30, 672 1, 000 1, 000
wgEncodeEH001546 19, 000 1, 000 1, 000
wgEncodeEH001776 27, 497 1, 000 1, 000
wgEncodeEH002829 19, 000 1, 000 1, 000

Splice Site Prediction macro F1 reconstructed 36, 496 4, 562 4, 562

Transcription Factor Prediction (Mouse) macro F1

Ch12Nrf2\iggrab 6, 478 810 810
Ch12Zrf384hpa004051\iggrab 5, 395 674 674

MelJun\iggrab 2, 620 328 328
MelMafkDm2p5dStd 1, 904 239 239

MelNelf\iggrab 15, 064 1, 883 1, 883

Epigenetic Marks Prediction macro F1

H3 11, 971 1, 497 1, 497
H3K14ac 26, 438 3, 305 3, 305

H3K36me3 29, 704 3, 488 3, 488
H3K4me1 25, 341 3, 168 3, 168
H3K4me2 24, 545 3, 069 3, 069
H3K4me3 29, 439 3, 680 3, 680

H3K79me3 23, 069 2, 884 2, 884
H3K9ac 22, 224 2, 779 2, 779

H4 11, 679 1, 461 1, 461
H4ac 27, 275 3, 410 3, 410

Covid Variant Classification macro F1 Covid 77, 669 7, 000 7, 000

Enhancer Promoter Interaction macro F1

GM12878 10, 000 2, 000 2, 000
HeLa-S3 10, 000 2, 000 2, 000
HUVEC 10, 000 2, 000 2, 000
IMR90 10, 000 2, 000 2, 000
K562 10, 000 2, 000 2, 000

NHEK 10, 000 2, 000 2, 000

Species Classification macro F1
fungi 8, 000 1, 000 1, 000
virus 4, 000 500 500

• DEM corresponds to ”Demo Coding vs Intergenomic Seqs”

• DOW is for ”Demo Human or Worm”

• DRE represents ”Drosophila Enhancers Stark”

• HCE is short for ”Human Enhancers Cohn”

• HEE denotes ”Human Enhancers Ensembl”

• HRE abbreviates ”Human Ensembl Regulatory”

• HNP shortens ”Human Nontata Promoters”
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• HOR is an abbreviation for ”Human Ocr Ensembl”

• DME simplifies ”Dummy Mouse Enhancers Ensembl”

The brief statistics for each dataset included in the GUE benchmark are displayed in Table 4. Similar
to GUE, we run the evaluation on a subset of GB, where for each task we randomly select at most
10k samples from the original splits, e.g., training, testing and validation (if any) sets.

Table 5: The brief statistics of datasets reported in the genomic benchmark (Grešová et al., 2023).

Task # of Sequences # of Classes Class Ratio Median Length Standard Deviation
DME 1, 210 2 1.0 2, 381 984.4
DEM 100, 000 2 1.0 200 0.0
DOW 100, 000 2 1.0 200 0.0
DRE 6, 914 2 1.0 2, 142 285.5
HCE 27, 791 2 1.0 500 0.0
HEE 154, 842 2 1.0 269 122.6
HRE 289, 061 3 1.2 401 184.3
HNP 36, 131 2 1.2 251 0.0
HOR 174, 456 2 1.0 315 108.1

C DATA FILTERING IN BENCHMARKING

The pertaining involves RNA sequences and structures prediction, we take the data and annotation
leakage problem seriously.

• To avoid structure annotation leakage of downstream benchmarks, the secondary structure pre-
dictors for all FMs were randomly initialized for fair comparisons, which means the pre-trained
structure predictor of GFMBench was not used in benchmarks, except for zero-shot SSP experi-
ments. Please find the source codes for details.

• To reduce sequence leakage caused by evolutionary conservative sequences across multiple
species, we use the ch-hit-est tool to calculate the sequence similarity between sequences from
the OneKP database and downstream tasks. We adopt the similarity threshold of 80% for ch-hit-
est (Li & Godzik, 2006) to eliminate sequences whose homogeneous sequences appeared in the
OneKP database. Subsequently, we exploit the blastn (Altschul et al., 1990) tool to query poten-
tially leaked sequences in downstream benchmark datasets and further alleviate the data leakage
problem. The e-value has been set to 1 for rigorous sequence filtering.

C.1 EXPERIMENT SETTINGS

In this experiment, we carefully selected a set of key hyperparameters to optimize model perfor-
mance. Below are the main hyperparameter settings along with detailed explanations:

• Dropout: To prevent the model from overfitting during training, we set the Dropout value to 0,
meaning that no random neuron dropout is applied during training. This choice was made based
on our consideration of model stability and generalization ability.

• Learning Rate: We set the learning rate to 2e-5, which is a relatively small value to ensure stable
convergence, especially in complex training tasks. A smaller learning rate helps to avoid drastic
fluctuations during the training process, leading to more precise optimization.

• Weight Decay: We applied a weight decay of 0.01 to control model complexity and prevent
overfitting. Weight decay is a regularization technique that effectively constrains the growth of
model parameters, maintaining the model’s generalization capability.

• Adam Optimizer: We used the Adam optimizer with its parameters set to β1 = 0.9 and
β2 = 0.999. The Adam optimizer combines the benefits of momentum and adaptive learning
rates, accelerating convergence and adapting to different gradient changes, thereby improving the
efficiency and effectiveness of model training.
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Table 6: The brief statistics of RNA and DNA FM baselines. Please note that the pertaining data
scales cannot be directly compared because the measurements are different in various publications.
The detailed introduction of these FMs can be found in original publications.

Model Tokenization # of Params. Pre-training Data Scale Pre-training Data Source Species Sequence Type
DNABERT-2 BPE 117M 32.49B Tokens The 1000 Genomes Project Human + 135 Species DNA
NT-V2-100M k-mers 96M 300B Tokens The 1000 Genomes Project, etc. Human + 850 Species DNA
HyenaDNA-Large SNT 47M 3.2B Tokens Genome Reference Consortium Human DNA
Caduceus SNT 1.9M 35B Tokens Genome Reference Consortium Human DNA
Agro-NT-1B k-mers 985M 472.5B Tokens Ensembl Plants Database 48 Edible Plants DNA

SpliceBERT SNT 19M 2M Sequences UCSC Genome Browser Multi-Vertebrates precursor-mRNA
RNA-BERT SNT 0.5M 4, 069 RNA Families The RNA Families Database Multi-Species ncRNA
RNA-MSM SNT 96M 4, 069 RNA Families The RNA Families Database Multi-Species ncRNA
RNA-FM SNT 96M 23M Sequences RNAcentral Database Multi-Species ncRNA
3UTRBERT k-mers 86M 20, 362 Sequences The GENCODE Project Human mRNA 3’UTR

OmniGenome SNT 186M 54.2B Tokens The OneKP Initiative 1124 Plant Species mRNA, CDS, UTR

• Learning Rate Scheduler: We opted for a linear decay learning rate scheduler, allowing the
learning rate to gradually decrease during training. This strategy helps the model make smaller
adjustments as it approaches the optimal solution, ensuring a better convergence outcome.

• Batch Size: The batch size was set to 8. This relatively small batch size helps to efficiently train
the model within limited memory resources, particularly when handling large-scale data, enabling
a balance between model performance and computational resource usage.

• # of Epochs: We set the number of training epochs to 20. This setting ensures that the model can
fully learn the features within the data while avoiding the negative effects of overtraining.

• Early Stopping: We implemented an early stopping mechanism, terminating the training early
if the validation performance does not improve for 5 consecutive epochs. This mechanism effec-
tively prevents model overfitting and saves training time.

It is important to note that for different tasks, some hyperparameter settings may be adjusted. To
obtain accurate experimental results, please refer to the detailed parameter configurations in the
compiled dataset specific to each task.

C.2 DEVELOPMENT ENVIRONMENT

The benchmark experiments based on GFMBench were conducted on a dedicated Linux computa-
tion node, equipped with 2 NVIDIA RTX 4090 GPUs. For distributed model training, we employed
version 4.44.0 of the Transformers library alongside version 0.28.3 of the Accelerate library. Our
implementation framework of choice for GFMBench was PyTorch, specifically version 2.1.0. The
ViennaRNA version is 2.6.4 in our experiments. While some existing code was adapted for the mod-
ules within GFMBench, the majority of the codebase, such as genomic sequences preprocessing,
model pre-training, objective functions, and experiments, was meticulously crafted from scratch.

C.3 EVALUATION BASELINES

To comprehensively evaluate the performance of the existing GFMs across the integrated bench-
marks, i.e., RGB, PGB, GUE and GB, we have obtained the results of existing GFMs based on
GFMBench.

Please note that it is assumed that the structure annotation from ViennaRNA is always available
for structure-contextualized modeling to enhance OmniGenome. In SSP tasks, we can also use the
ViennaRNA’s structure annotations as contexts to improve downstream SSP performance. Please
refer to Appendix C.3 for brief introductions of these FMs.

We can compare GFMBench with the following RNA and DNA FMs shown in Table 6 as baselines
to help evaluate the performance of GFMBench. We are aware that some FMs are also developed
for RNA, such as Uni-RNA (Wang et al., 2023), 5UTR-LM (Chu et al., 2024), etc. However, we
cannot compare GFMBench with them because their source codes are very hard to work with in our
efforts or are not publicly available. To help understand the baseline FMs, we briefly summaries the
FM in the following sections. Please find the method and experiment details of these FMs in the
original publications.
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• ViennaRNA (Lorenz et al., 2011). ViennaRNA is a comprehensive genomic analysis tool that
includes a diverse set of interfaces, such as RNAFold3 and RNAInverse4 design. ViennaRNA
serves as the baseline for RNA structure prediction and RNA design in our experiments.

• DNABERT2 (Zhou et al., 2023). DNABERT2 is one of the latest DNA FMs which improves the
performance of DNABERT. The main modification of DNABERT2 is the tokenization method,
which was changed to BPE from k-mers.

• HyenaDNA (Nguyen et al., 2023). HyenaDNA is an autoregressive FM optimized for long-range
genome data processing. HyenaDNA is based on the Hyena convolution architecture and capable
of handling sequences up to 1M bases in length.

• Caduceus (Schiff et al., 2024). Caduceus5 is an advanced DNA language model built on the
MambaDNA architecture, designed to address challenges in genomic sequence modeling, such as
long-range token interactions and reverse complementarity (RC).

• Nucleotide Transformer (NT) V2 (Dalla-Torre et al., 2023). The NT FMs were trained on DNA
data, including the human reference genome and multi-species DNA sequences. They aim to cap-
ture the complex patterns within nucleotide sequences for various genome modeling applications.

• Agricultural Nucleotide Transformer (Agro-NT) (Mendoza-Revilla et al., 2023). Agro-NT is a
large-scale DNA FM (1B parameters) akin to the Nucleotide Transformers but with a focus on
plant DNA.

• SpliceBERT (Chen et al., 2023). It was trained on 2M precursor messenger RNA (pre-mRNA)
and specialised in RNA splicing of pre-mRNA sequences.

• 3UTRBERT (Yang et al., 2023). This model was trained on 20k 3’UTRs for 3’UTR-mediated gene
regulation tasks. It uses k-mers tokenization instead of SNT. RNA-BERT (Akiyama & Sakakibara,
2022). RNA-BERT is a BERT-style model pre-trained on a large corpus of non-coding RNA
sequences. It uses masked language modeling (MLM) as its primary training objective. The
model is designed to predict RNA structural alignments and can be fine-tuned for various RNA
sequence classification and regression tasks

• RNA-MSM (Zhang et al., 2024) RNA-MSM is an unsupervised RNA language model based on
multiple sequence alignment (MSA). It is the first model of its kind to produce embeddings and at-
tention maps that directly correlate with RNA secondary structure and solvent accessibility. RNA-
MSM is particularly effective for tasks involving evolutionary relationships in RNA sequences.

• RNA-FM (Chen et al., 2022) RNA-FM is a BERT-based RNA foundation model trained on a vast
dataset of non-coding RNA sequences. The model excels in predicting RNA structure and function
by leveraging masked language modeling (MLM) during pre-training. RNA-FM’s training data
is sourced from the RNAcentral database, providing it with extensive knowledge across diverse
RNA species.

• GFMBench. GFMBench is the RNA genome FM that advocates the importance of sequence-
structure alignment. Moreover, it is the first FM which addressed the in-silico RNA design task.

• OmniGenome: A FM dedicated to RNA genome modeling. This model leverages the
computation-based structure to enhance the genome modeling ability and archives impressive
performance on both RNA and DNA genomes.

D PUBLIC LEADERBOARD

The public leaderboard has been launched with the manuscript, and the current layout of the leader-
board is illustrated in Figure 1. We have included the results of open-source GFMs among four
benchmark suites, and new results can be expected from the community. We are still working to
include the performance of recent GFMs, and refine the leaderboard interface with better integrity.

3https://www.tbi.univie.ac.at/RNA/RNAfold.1.html
4https://www.tbi.univie.ac.at/RNA/RNAinverse.1.html
5https://huggingface.co/kuleshov-group/caduceus-ps_seqlen-131k_d_

model-256_n_layer-16
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Figure 1: The current webpage interface of the public leaderboard.

E LIMITATIONS

The GFM benchmarking may not reflect the accurate performance in biology reality, we attribute
the limitations of benchmarking to two major aspects:

• Lack of in-vivo Data: One of the critical limitations of GFMs lies in the absence of in-vivo verified
genome data. While GFMs perform well in in-silico environments, where computational models
and simulations are used to predict biological processes, these models are rarely validated against
in-vivo data, which refers to experimental data obtained from living organisms. This presents a
significant challenge for accurately translating model predictions to real-world biological appli-
cations. To be more specific, the complexity of biological systems, including interactions within
cells, tissues, and organisms, often introduces variables that are not fully captured in computa-
tional simulations. For example, gene regulation, environmental factors, and cellular responses to
genetic modifications may behave differently in living organisms than predicted by models trained
on in-silico data. As a result, GFMs might not fully capture the biological complexity, leading to
discrepancies between predicted and actual outcomes.

• Model Scale Constraints: The second major limitation is the model scales in benchmarking.
As GFMs become larger and more sophisticated, their performance improves, but this scaling
comes at a significant cost. Training as well as benchmarking large-scale GFMs requires immense
computational resources, including high-performance GPUs or TPUs, massive memory allocation,
and extensive storage for datasets. The cost of acquiring and maintaining this infrastructure can
be prohibitive for many research institutions or companies, limiting access to cutting-edge GFMs.

F ETHIC STATEMENT

The development of GFMs presents various ethical challenges that must be carefully considered.
As we push the boundaries of what is possible with large-scale GFMs, such as Evo, it is crucial to
establish a responsible framework for their development and application. GFMs enable advanced ca-
pabilities like generating and predicting DNA sequences at a whole-genome scale, which opens the
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door to significant breakthroughs in fields such as genetic engineering and therapeutic development.
However, these same capabilities pose risks related to bio-security, inequality, and environmental
disruption.

Safety and Ethical Implications: GFMs like OmniGenome could be misused by malicious actors for
harmful purposes, such as creating synthetic organisms that could threaten bio-safety. It is essential
to establish strict guidelines on access and use, including the development of safety guardrails,
access controls, and audits to monitor queries and research outcomes.

Health and Social Inequity: While the open-source nature of GFMs promotes transparency and
accessibility, there are concerns that the benefits of these tools may disproportionately favor well-
resourced organizations, such as pharmaceutical companies, which could lead to further inequalities
in global health. Intellectual property considerations also arise, as companies using open-source
tools might monopolize treatments or set prohibitive costs, exacerbating health disparities.

Environmental Impact: The enhanced capabilities for genetic manipulation that GFMs enable could
disrupt natural ecosystems, leading to potential loss of biodiversity or the emergence of harmful
species. Additionally, the computational demands of training large models have environmental
costs, such as increased carbon footprints, that must be weighed against the benefits of the scientific
advancements.

In response to these concerns, we are committed to promoting ethical guidelines, transparency, and
the responsible use of GFMs. We will collaborate with the community to continually refine these
guidelines as the field evolves.

G SOCIAL IMPACT

The societal impact of GFMs is substantial, with applications ranging from personalized medicine to
environmental management. These models have the potential to revolutionize fields such as health-
care and agriculture by providing deeper insights into genetic data, enabling the discovery of new
biomarkers, and assisting in the development of more effective therapies. In healthcare, GFMs can
drive advancements in precision medicine, allowing for personalized treatments based on individual
genetic profiles, which could drastically improve patient outcomes for conditions such as cancer or
rare genetic disorders. In agriculture, GFMs can contribute to sustainable practices by improving
crop yields and resistance to disease. However, careful consideration must be given to the ecologi-
cal balance, as genetic modifications could have unforeseen consequences on ecosystems. As GFMs
continue to evolve, their responsible development and deployment will be crucial to ensuring that
their societal impact is positive and equitable.

However, there are also risks associated with the unequal access to these powerful tools. Entities
with more resources and technical expertise may benefit disproportionately from GFMs, accelerating
their research and economic returns while leaving lower-resourced institutions and countries at a
disadvantage. To mitigate this, it is critical to ensure that access to GFMs is democratized through
open-source initiatives, global collaboration, and capacity-building efforts in low-resource settings.
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