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Figure 1: Comparison of LLVM vs LLAVIDAL : In real world scenarios, web-video trained models
struggle to understand Activities of Daily Living due to the subtle nuances in the video, whereas our
ADL-X trained LLAVIDAL model triumphs in understanding complex human-object interactions.

Abstract

Large Language Vision Models (LLVMs) have demonstrated effectiveness in
processing internet videos, yet they struggle with the visually perplexing dynamics
present in Activities of Daily Living (ADL) due to limited pertinent datasets
and models tailored to relevant cues. To this end, we propose a framework for
curating ADL multiview datasets to fine-tune LLVMs, resulting in the creation of
ADL-X, comprising 100K RGB video-instruction pairs, language descriptions, 3D
skeletons, and action-conditioned object trajectories. We introduce LLAVIDAL,
an LLVM capable of incorporating 3D poses and relevant object trajectories to
understand the intricate spatiotemporal relationships within ADLs. Furthermore,
we present a novel benchmark, ADLMCQ, for quantifying LLVM effectiveness in
ADL scenarios. When trained on ADL-X, LLAVIDAL consistently achieves state-
of-the-art performance across all ADL evaluation metrics. Qualitative analysis
reveals LLAVIDAL’s temporal reasoning capabilities in understanding ADL. The
link to the dataset is provided at: https://adl-x.github.io/

1 Introduction
Human cognitive perception integrates information from multiple sensory modalities to form a unified

representation of the world [1]. Towards emulating human cognitive perception in digital intelligence,
initial efforts focused on integrating vision and language modalities [2, 3| 4} 5| 16]. Subsequently,
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the success of LLMs like GPT [7]], PALM [&]], BLOOM [9] led to the introduction of multimodal
conversational models[[10} [11}, 12} [13} [14% [15] [16] that combine image pixels and LLMs, we dub
as Large Language-Vision Language Models (LLVMs). However, these image-based LLVMs lack
the capability for complex reasoning and interactions, particularly in understanding spatio-temporal
relationships involved in human activities. In this study, we investigate the understanding of Activities
of Daily Living (ADL) videos by LLVMs, which present various challenges including multiple exo-
centric viewpoints, fine-grained activities with subtle motion, complex human-object interactions, and
long-term temporal relationships. We envision that LLVMs capable of addressing these challenges
will significantly influence the future intelligent systems, particularly in healthcare applications such
as eldercare monitoring, cognitive decline assessment, and robotic assistance development.

Recently, [17,[18}[19} 20,21} 22| 23] have integrated videos into LLMs, leading to the development
of video-based LLLVMs capable of capturing spatio-temporal features. However, these models are
predominantly trained on large-scale web videos [24, 125, 26,127, 28], which mainly consists of sports
clips, movie excerpts, and instructional videos. These videos, typically filmed by professionals,
follow strict temporal sequences in closely controlled background (e.g., Paragliding). The evident
temporal structure and scene semantics in such videos facilitate spatial understanding within LLVMs,
as shown in E} In contrast, ADL videos pose additional challenges, characterized by temporal
unstructuredness where diverse actions may unfold concurrently within a single sequence [29]]. For
instance, a person cooking could intermittently engage in unrelated activities like making a phone call
or drinking water, disrupting the linear progression of the composite action cooking. Consequently,
existing LLVMs trained on web videos struggle to capture such visually perplexing dynamics inherent
in ADL scenarios. Moreover, unlike specialized video architectures designed for understanding
ADL [30, 311 132} [33] 34} 135/ 136]], these LLVMs lack explicit utilization of cues like 3D poses or
object encodings, which are crucial for understanding ADL. These cues aid in learning view-invariant
representations and capturing fine-grained details essential for interpreting complex human activities.
Hence, the current limitations in understanding ADL stem from the lack of instruction tuning of
LLVMs on real-world multiview ADL datasets captured in indoor settings and the simplistic design
of LLVMs with holistic operations.

To this end, we propose a framework of curating ADL videos for instruction tuning LLVMs. This
framework introduces the ADL-X dataset, comprising 100K untrimmed RGB video-instruction pairs,
3D poses (P), language descriptions, and action-conditioned object trajectories (see Table[I)). We then
introduce the Large LAnguage VIsion model for Daily Activities of Living (LLAVIDAL), trained on
ADL-X, which integrates videos, 3D poses, and object cues into the LLM embedding space. Our study
explores various strategies for integrating 3D pose information and human-object interactions within
LLVMs, demonstrating that language contextualized features extracted from 3D poses and object
trajectories can effectively be integrated into LLAVIDAL. Furthermore, we introduce a benchmark
ADL Multiple Choices Question (ADLMCQ), specifically designed to evaluate the effectiveness of
LLVMs for ADL. ADLMCQ includes action recognition (ADLMCQ-AR) and action forecasting
(ADLMCQ-AF), assessed through a multiple choice question-answering task. We also evaluate
existing LLVMs for generating video description of ADL scenes and compare their performance with
LLAVIDAL. Our empirical findings indicate that LLAVIDAL with object cues, outperforms other
LLVMs, including those trained on datasets of ten times the size, on the ADL benchmarks.

To summarize our contributions:

* We introduce ADL-X, the first multiview RGBD instruction ADL dataset, curated through a
novel semi-automated framework for training LLVMs.

* LLAVIDAL is introduced as the first LLVM tailored for ADL, incorporating 3D poses and
object cues into the embedding space of the LLM.

* A new benchmark, ADLMCAQ, is proposed for an objective evaluation of LLVMs on ADL
tasks, featuring MCQ tasks for action recognition & forecasting.

» Exhaustive experiments are conducted to determine the optimal strategy for integrating
poses or objects into LLAVIDAL. Evaluation of existing LLVMs on ADLMCQ and video
description tasks reveals that LLAVIDAL trained on ADL-X significantly outperforms
baseline LLVMs.
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Table 1: Video Instruction Dataset Comparison.

Dataset Modalities Subjects Multiple Videos QA Pairs Atomic Actions Temporal Object Type
Views per Vid Rand. Traj.
TimelT[21] RGB+L NA No 173000 173K Medium No No Web
VideoChat[17 RGB+L NA No 8196 11K Low No No Web
Valley([26 RGB+L NA No 64,687 65K Low No No Web
VideoChatGPT [20. RGB+L NA No 27,801 100K Medium No No Web
ADL-X RGB+P+L 106 Yes 16,343 100K High Yes Yes ADL

2 Semi-automated Framework for generating ADL Video-instructions Pairs

This section describes the data curation framework employed for the creation of a novel dataset,
ADL-X. This dataset specifically caters to the instruction tuning of LLVMs within the ADL domain.
ADL-X comprises video recordings of ADLs. To enrich the dataset and facilitate LLM training,
question-answer (QA) pairs were generated from a corpus of long-form ADL videos. These QA
pairs target various aspects of the ADLs, including: human pose configuration, objects relevant to
the human actions, scene appearance, and the fine-grained actions performed. We hypothesize that
incorporating such instructional tuning during the LLVM training process will promote alignment of
visual tokens within the LLM’s embedding space. ADL-X represents a comprehensive ADL dataset
encompassing various modalities: - RGB videos, 3D poses, Language descriptions, object tracklets.
This rich dataset offers a valuable tool for evaluating the capabilities of LLVMs in tasks related to
ADLs, including description, recognition, and anticipation.

A critical characteristic of ADL videos lies in the inherent spontaneity of the actions performed.
Unlike scripted scenarios [25, 37, 38], fine-grained actions within ADLs often occur randomly. To
capture this essential characteristic within our dataset, we curated ADL-X from NTU RGB+D 120
dataset [39]. This selection was motivated by the dataset’s focus on ADL videos and its inherent
diversity in terms of actions, subjects, and camera viewpoints. Also, this data curation framework
could be extended to any existing trimmed/untrimmed ADL datasets [40, 41| 42]. Below, we elaborate
the steps involved in building the ADL-X in a chronological order.

Person-centric Cropping. ADL tasks necessitate a focus on the individual performing the actions,
the actions themselves, and the human-object interactions. To achieve this targeted focus within the
data curation framework, we implemented a person-centric cropping strategy leveraging the pose
information captured through Kinect sensors [43]]. By using the pose information in each frame
of the NTU RGB+D 120 dataset, we are able to detect and crop out the person(s) performing the
actions. This cropping process effectively reduces the amount of background information present
in the videos, eliminating data irrelevant to the target ADLs. This step is crucial as existing ADL
datasets often contain extensive background information that is not relevant to the actions being
performed. The presence of such extraneous information can significantly hinder subsequent stages
within the data curation framework.
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Figure 2: Dataset Curation Pipeline: We employ CogVLM[44] as our person-centric image captioner
and GPT 3.5 Turbo[7] as our summarizer and QA generator.

Stitching shorts clips. To capture the inherent randomness of real-world ADLs, we constructed a set
of 160 composite action sequences. These sequences were generated by prompting a GPT to combine
individual actions from the original NTU RGB+D 120 dataset’s list of 120 actions (denoted as A1, Ao,
..., A120). An example sequence structure could be represented as A; — A3z — Aj7. Following these
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generated composite action sequences, we temporally stitched together short video clips (clip}, where
a is the action class) from the NTU dataset. This stitching process ensured that all clips within a video
belonged to the same subject and camera view, maintaining coherence in the resulting video sequence.
For instance, a stitched video sequence might be represented as [clip,la1 clz’pi2 clz‘p}ng] where r1, 72,
r3 represent unique clip identifiers within the dataset for the specific subject performing the actions
(actions 1, 3, and 17, respectively). The intentional randomness of the generated action sequences
reflects the unstructured flow of actions encountered in ADL. To further enhance diversity and ensure
no bias towards specific subject-action combinations, we shuffled both the action sequences and the
subject assignments. This process resulted in the creation of 16,343 stitched videos with an average
5 actions per video.

Frame Level Captioning and Dense Descriptions. This step is the process of generating weak
pseudo-labels for automated instruction tuning of the LLVM with the curated dataset. An image
captioning model CogVLM [44] is employed to automatically generate frame-level captions for the
stitched ADL videos at a rate of 0.5 fps. These captions are subsequently compiled into a dictionary
linking each frame identifier to its corresponding description. To enhance the reliability of the pseudo-
labels, we implemented an action-conditioned filtering while generating the video descriptions. The
dictionary with the frame descriptions, along with the action labels present in the stitched videos,
are then used to prompt a GPT 3.5 turbo model to generate a cohesive structured description of the
entire stitched video, constrained to a maximum of 300 words. This step leverages the known action
labels associated with each video to remove irrelevant noise potentially introduced during the caption
generation process. We evaluated various image captioning models, including BLIP-2 [45], and
InstructBLIP [46] for frame-level caption generation. However, CogVLM is ultimately chosen due
to its ability to generate denser and appropriate descriptions. Please refer to the appendix for our
detailed prompting strategy in generating the descriptions.

Generating QA Pairs. LLVMs necessitate training data in the form of question-answer (QA) pairs.
To generate domain-specific QA pairs for ADL, we leverage the dense video descriptions obtained in
the previous step as illustrated in Figure 2] An instruction template (detailed in the Appendix) guides
GPT-3.5 in formulating questions across various categories relevant to ADL. These categories include:
video summary, performed actions, spatial details, human-object interactions and other video-specific
inquiries. Through this prompting approach, we curate a dataset of 100K video instruction pairs,
namely ADL-X, for the stitched ADL videos. These QA pairs benefit from the detailed descriptions
and person-centric cropping, resulting in reduced LLM hallucinations compared to other existing
methods [17, 20]].

Notably, the framework employed for constructing ADL-X from trimmed, labeled action videos can
be generalized to other existing datasets. This generalization paves the way for efficient training of
domain-specific LLVMs.

Rgspgnsg; In the video, a person is seen drinking something from a bottle.

Large Language Model (Vicuna v1.1) ,*.

Pose Projection 0, Video Projection d' Object Projection 6,
User Query

Pose Tokens Video Tokens Object Tokens
What is the
PoselM VLM ObjectLM action .

(PoseCLIP) (CLIP-L/14) (Owiv2, BLIP2) performed in

the video?
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Figure 3: Overview of LLAVIDAL, which utilizes an LLM to integrate multiple modalities, including
video, pose, and object features. Videos are represented by embeddings obtained from a VLM, poses
are processed through (PoseLM), and object embeddings are obtained through (ObjectLLM). These
embeddings are projected into the LLM space, where they are concatenated with tokenized text
queries for instruction tuning.
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3 LLAVIDAL: An LLVM for ADL

LLAVIDAL is a large language vision model designed to align ADL videos with an LLM to generate
meaningful conversation about the daily activities performed by humans. This model, similar
to Video-ChatGPT [20] and LLaVA [18], integrates a visual encoder with the Vicuna language
decoder [47] and is fine-tuned on instructional language-vision data. Unlike Video-ChatGPT [20]] and
LLaVA [18]], LLAVIDAL leverages the random temporal structure present in ADL-X and incorporates
additional data modalities such as 3D human poses and human-object interaction cues. This allows
LLAVIDAL to generate accurate conversations that are not only contextually appropriate but also
temporally aligned with the human activities depicted in the input video. This section will first present
a background of LLVM models to align videos with LLMs. Then, we will outline the strategies
employed to integrate 3D poses and object interaction cues within the language space of the LLM
for enhanced understanding of videos featuring ADL. Subsequently, we will describe the training
architecture of LLAVIDAL.

3.1 Background: LLVM

Following [20], given an input video denoted by v; € RT*H*WXC where T represents the frames
encoded using a pretrained vision-language model (VLM) CLIP-L/14 [2] to obtain frame-level
embeddings for the video, x; € RTxhxwxD with D as the embedding dimension, and h = H/p,
w = W/p representing the dimensions adjusted by patch size p. Temporal and spatial features
are extracted by aggregating these frame-level embeddings along the respective dimensions. The
video-level features, V; € RF»*DPv are obtained by concatenating the temporal and spatial features,
where F), represents the spatio-temporal tokens and D, is the video feature dimension. The video
features are projected into the LLM embedding space using a linear projection layer 7,,. Thus, we
obtain input tokens @, for the video features:

Qo = To(V;) € RFv*E (1

The text query is also tokenized such that Q; € R¥** X The text query @y, refers to a question from
the training data. The input to the LLM is the concatenation of Q); and @Q,, following the template :
[USER: (Q:) (Q,) Assistant:]. We perform instruction-tuning of the LLM on the prediction tokens,
using its original auto-regressive training objective. The parameters of the LLM are frozen, thus the
loss gradients only propagate through the projection layer 7.

3.2 3D Poses for LLAVIDAL

ADL are rich in actions that primarily involve the movements of critical body parts or joints. The
dataset ADL-X includes 3D human poses, which can be utilized to incorporate human kinematics
and view-invariant features into the input embedding space of a LLM. These poses can be integrated
into the LLM input space in several ways: as an additional text query @ for instruction tuning of
the LLM, by deriving language descriptions of joint movements to provide context for the LLM, or
through features extracted using a suitable pose-language encoder.

Poses as QA. We input the 3D joint coordinates alongside the associated human action from the
video into GPT-3.5 Turbo [7], which generates a general description of the pose. This description is
then re-fed into GPT-3.5 Turbo to generate two QA pairs that provide detailed explanations of the
action’s motions. These QA pairs are subsequently added to the set of text queries ); in our training
set for instruction tuning the LLM.

Poses as Context. To extract contextual information from human poses, we initially identify five
peripheral joints — the head, right hand, left hand, right knee, and left knee — due to their significant
contribution to motion in various actions. Using GPT-3.5 Turbo, we generate descriptions of the
motion for each of these joints based on their trajectories throughout the video, specifically focusing
on how the coordinates of these five joints evolve. The generated descriptions, denoted as @7,
are subsequently appended to the text query @)y, incorporates these pose descriptions as additional
contextual information. This enriched query Q¢ = [Q} Q] is then employed for instruction
tuning of the LLAVIDAL.

Poses as Features. To incorporate poses as tokens into the LLM, it is crucial to align the pose
features with a language-contextualized space. To achieve this, we utilize a pretrained Pose-Language
model (PoseLLM), specifically PoseCLIP, to extract pose features that are aligned with the language
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domain. The PoseCLIP model comprises a pose backbone [48] and a CLIP text encoder [2], and it
undergoes training in two phases. Initially, the pose backbone is pretrained on the NTU RGB+D
dataset [49] for action classification. Subsequently, in the second phase, we optimize the similarity
between pose features and text features, which encode the prompts describing their action labels,
using cross-entropy supervision as outlined in [3]]. Further details on the training of this model are
provided in the Appendix. These pose features, denoted as P; € R»*P» where D, represents the
pose feature dimension, can be utilized as input tokens for training LLAVIDAL.

3.3 Action-Conditioned Object Cue for LLAVIDAL

To comprehensively understand ADL, it is crucial to not only grasp the semantics of objects but
also their trajectories, which are closely linked to the actions performed. Consequently, we propose
to explicitly utilize these object trajectories as integral components for training LLAVIDAL. Our
framework involves a two-stage pipeline to extract object information directly from RGB video
data: (i) Action-conditioned object detection and (ii) Object Localization and Tracking. Both stages
leverage off-the-shelf models that are effective without the need for additional training, facilitating
integration into LLAVIDAL for ADL analysis.

Action conditioned object detection. Given a stitched ADL video, which comprises a sequence of
trimmed video segments (denoted as clip;), the first stage extracts the categories of objects present
that are pertinent to the actions performed within each clip. We uniformly sample 8 frames from each
video and employ a pre-trained BLIP-2 model [435] to generate a list of distinct objects observed in
the frames. To avoid training LLAVIDAL with noisy data, we perform a filtering on the list of objects
using the ground-truth action labels and GPT-3.5. Specifically, for each clip; within a stitched video,
we input the corresponding action label and the list of detected objects to GPT-3.5 and prompt it
to identify the object(s) most relevant to the given action. For instance, if the objects plant, chair,
bottle, table are detected in a video labeled with the action Drinking, GPT-3.5 is expected to filter
out and select [bottle] as the relevant object for clip;. Refer to the appendix for our detailed action
conditioned object detection prompting strategy.

Object Localization and Tracking. Given the list of relevant objects identified in the first stage,
the second stage involves spatial localization of these objects within the scene and their temporal
association (i.e., object tracking) based on the feature similarity of the image regions corresponding
to the localized objects in the stitched video. We employ a pre-trained open vocabulary object
localization model (ObjectLM), OWLv2 [50], and input the list of relevant objects detected in stage
1 along with the corresponding video. Localization and tracking are performed on 8 frames that
are uniformly sampled from clip; within a stitched video. For each frame, we obtain bounding
boxes B; € R™"**, where each bounding box corresponds to one of the n relevant objects in the tth
frame. Features for each object are then extracted from the image regions within these bounding
boxes using our object localization model. We denote the features for the objects in frame ¢ as
O, € R¥*Do_where D, is the object feature dimension. To associate objects across frames, we
utilize a feature-based object tracking approach. Specifically, for each object in frame ¢, represented
by the feature vector Of € RP¢, we compute the cosine similarity between O and all feature vectors
in frame ¢ + 1. The object ¢ in frame ¢ is then associated with the object in frame ¢ + 1 that exhibits
the highest similarity score. This matching process is iterated for all objects in each frame, thereby
establishing a track for each relevant object throughout the sampled frames. These object tracks, with
corresponding bounding boxes and features, facilitate the integration of object information into the
training of LLAVIDAL: Object as QA, Object as context, and Object as features.

Object as QA. Similar to the approach taken with poses, to generate QA pairs for objects, we
formulate a question based on the trajectory coordinates of the relevant object(s). These QA pairs are
added to the set of text queries () for instruction tuning LLAVIDAL.

Object as Context. To integrate the context of detected objects into the LLM space, we append
the list of relevant object labels, denoted by ()¢, to each text query token @);. Consequently, the
updated text query is represented as Q7€ = [Q? @Q.]. This enhanced text query, Q7¢*, is utilized
for instruction tuning.

Object as Features. The object features extracted during the object localization and tracking stage are
utilized as input tokens @, € R8*P-_ which are incorporated alongside the text query tokens (Q)
and input video tokens (@, ). For n relevant objects detected, the object query (), is structured using
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the following template [(Q,) = (QL) (Q?) ...(Q")] where Q) € R®* P> represent the features of
each relevant object in the video.

3.4 Training LLAVIDAL

As illustrated in Figure |3} the QA pairs, along with context or features obtained from the RGB video,
3D poses, and object cues can be integrated into LLAVIDAL. Integrating QA pairs and contextual
information is straightforward; they are introduced into ); and trained using standard methods for
LLVM. However, to integrate other modalities with features, we feed these additional cues through
specific projection layers designed to align them with the input space of the LLM. Accordingly, the
video, pose, and object features are projected into the LLM embedding space using linear projection
layers 7; for each cue j = {v, p, o}, resulting in LLM input token representation of the video, pose,
and object cues, respectively:

Qv =To(Vi); Qp=Tu(F); Qo=Ts(0;) 2)

where Q; € RYi*K_ Thus, the input to the LLM comprises the concatenation of @ and Q; for
j = {v, p, 0}, structured according to the template: [USER: (Q;) (Q.) (Q,) (Qp) Assistant:]. This
training scheme ensures that the video, object, and pose cues are effectively aligned to the LLM embed-
ding space, facilitating an accurate understanding of ADL. During the inference, LLAVIDAL utilizes
only the holistic video cue, omitting person-centric cropping and consequently eliminating additional
cues. In practice, the embedding dimensions are D,, = 1024 for visual, D, = 512 for object features,
D,, = 216 for pose features and K = 4096. The number of tokens is set as I, = 356 and F}, = 256
for visual and pose tokens respectively. We train LLAVIDAL for 3 epochs with a batch size of 32
and a learning rate of 2¢~° on 8 A6000 48GB GPUs. For the purpose of promoting research in this
field, we also provide the pose features and object trajectories of LLAVIDAL along with the dataset.

4 Experiments

4.1 Experimental Setting

Evaluation Metrics. Inspired by [20], LLVM’s ability to generate video-level descriptions is
evaluated. This involves comparing the generated descriptions with ground truth and scoring them
on dimensions such as Correctness of Information, Detail Orientation, Contextual Understanding,
Temporal Understanding, and Consistency, with scores scaled to be bounded at 100. Due to the
subjective nature of this metric, Mementos Evaluation [51] is also conducted to assess the recognition
of common action-verbs and object-nouns in the video descriptions compared to ground truth,
presenting F1 scores for these classifications. However, comparing video descriptions generated
by LLVMs presents a challenge due to the inherently subjective nature of these descriptions. Some
objective evaluation benchmarks for LLVMs [52} 53} 154] primarily focus on video tasks involving
in-the-wild activities. Therefore, this paper introduces novel benchmarks for assessing LLVM’s
temporal understanding of ADL videos. We propose two new ADLMCQ benchmarks including
ADLMCQ-AR and ADLMCQ-AF. ADLMCQ-AR involves multiple-choice question-answering for
action recognition, where the model selects the correct action from a set of options given a question
about the action performed in a video. Similarly, ADLMCQ-AF focuses on action forecasting,
requiring the model to predict the next action based on the preceding actions. It is important to note
that all evaluations are performed zero-shot.

Evaluation Datasets. For ADLMCQ-AR evaluation, we utilize the Charades [55] and Toyota
Smarthome [56] datasets. Evaluation for ADLMCQ-AF is conducted using LEMMA [57]] and Toyota
Smarthome Untrimmed (TSU) [58] datasets. Video description tasks are assessed using the Charades
and TSU datasets, both featuring long-duration videos with multiple actions per video. Notably,
for the TSU dataset, we manually annotated video descriptions with fine-grained details regarding
activities performed by elderly individuals, employing 6 human annotators for 174 videos. Our
evaluation relies on these annotated descriptions, which we also provide to the community as part of
the test set for ADL-X.

4.2 TImpact of ADL-X Training on LLVMs

To understand the requirement of ADL-X, we assess VideoChatGPT [20] trained on 100K in-
struction pairs from ActivityNet [25]], trimmed NTU120 [39]], and ADL-X in Table Notably,
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Table 2: Impact of ADL-X Training

Method Training ADLMCQ-AR ADLMCQ-AF Action Description (Charades)
Data (Smarthome) (LEMMA) Object Action Correctness
VideoChatGPT [20] ActivityNet 40.8 35.7 14.8 16.1 35.8
VideoChatGPT [20] NTU120 49.8 335 27.0 10.1 38.8
ADL-X ChatGPT [20] ADL-X 52.3 44.8 32.2 13.4 43.0

ADL-X ChatGPT, trained on ADL-X, consistently outperforms the others in both ADLMCQ-AR
and ADLMCQ-AF tasks. However, it’s worth mentioning that while the baseline [20] exhibits strong
performance in the action metric of Mementos, it notably underperforms in the object metric. It’s
important to emphasize that ADLMCQ evaluations offer more objective and reliable assessments for
understanding the temporal comprehension of LLVMs.

Table 3: Introducing Pose and Object Cues into LLAVIDAL

Method ADLMCQ-AR ADLMCQ-AF AD (Charades) AD (TSU)
Charades Smarthome LEMMA TSU Object Action Object Action

ADL-X ChatGPT 58.0 52.3 448 25.25 16.6 14.8 16.6 14.8
Pose QA 48.5 49.0 42.0 212 31.8 14.0 16.5 159
Pose Context (PC) 50.8 54.0 45.0 223 30.5 14.8 18.6 154
Pose Features (PF) 56.7 57.0 513 26.0 327 13.5 18.2 13.0
PC + PF 52.5 53.1 44.6 249 32.1 13.6 17.5 15.6
Object QA 51.1 50.1 40.3 23.0 32.1 13.7 17.0 16.0
Object Context 44.6 46.2 41.8 21.0 31.2 14.7 17.2 16.5
Object Features (OF) 59.0 58.8 52.6 27.0 33.1 14.3 18.0 17.7
PF + OF 56.2 56.1 51.0 26.6 30.4 14.1 20.0 14.1

4.3 How to introduce object and pose cues into the LLLM space?

Table [3explores the integration of pose and object cues into LLAVIDAL. We evaluate incorporating
poses as QA, context (PC), and features (PF). While both pose context and features outperform
the baseline ADL-X ChatGPT, projecting pose features directly into the LLM embedding space
yields superior performance. This suggests the effectiveness of language contextualization for
pose information. Combining pose context and features hinders performance, suggesting potential
redundancy. In contrast, object cues as QA or context offer minimal discriminative information
for the LLM. However, object features derived from ObjectL.M significantly improve performance
across most tasks, highlighting their importance in understanding ADL. A detailed analysis of these
cues’ impact on ADLMCQ action classes is provided in the Appendix, revealing complementary
information learned. Interestingly, LLAVIDAL with object features outperforms the model with
pose features on all tasks. However, attempts to combine both pose and object features result in
performance converging towards the pose-only model. We hypothesize this is due to the challenge
of optimizing the projection layer 7, that effectively aligns both 7, and 7,. Therefore, multi-cue
integration is left for future work. Given its superior performance, LLAVIDAL with object features is
used for the remainder of the paper.

Table 4: Performance on Video Description. [CL: Correctness of Information, DO: Detail Orientation,
CU: Contextual Understanding, TU: Temporal Understanding, Con: Consistency)

Method Training Charades TSU

Data Size Object Action CI DO CU TU Con | Object Action CI DO CU TU Con
CogVLM [44] + GPT [Z 1.5B Images 19.8 9.4 442 420 332 330 406 16.8 6.1 41.0 370 37.6 344 402
CogVLM [44] + Llama [11 1.5B Images 20.9 9.3 442 418 348 320 406 17.9 7.8 30.0 334 354 338 30.0
BLIP2 [45] + GPT [7] 1.5B Images 21.1 17.3 33,6 338 354 300 344 | 232 228 380 354 306 372 384
VideoLlama [19 2.6M QA Pairs 14.7 159 322 320 360 344 396 | 210 134 332 304 312 346 420
VideoLlava [18] 1.2M QA Pairs 15.8 155 382 444 440 374 402 | 209 153 378 338 402 404 396
VideoChatGPT [20. 100K QA Pairs 14.8 16.1 358 442 416 422 378 21.8 180 43.0 458 414 43.0 500
ADL-X ChatGPT [20 100K QA Pairs | 32.2 134 430 46.8 422 438 38.6 16.6 148 430 472 39.6 376 50.0

LLAVIDAL 100K QA Pairs | 33.1 143 518 542 440 492 418 18.0 177 460 48.6 422 458 58.0

4.4 Comparison to the state-of-the-art

We compare LLAVIDAL against the state-of-the-art (SOTA) in the performance on video description
generation and ADLMCQ tasks involving action recognition and forecasting.

Video Description Generation. Table ] shows the performance comparison of baseline LLVMs and
LLAVIDAL on their video description capabilities on the Charades and TSU datasets. Video-level
descriptions are obtained directly from the Charades dataset. For the TSU dataset, comprising lengthy
videos, we segment each video into 1-minute clips and input them individually to the LLVMs for
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Q. Pick the correct action that is being performed in the
video among the options?

a) Pouring coffee grains b) using tablet
c) pbrinking from bottle d) Cleaning dishes Q. Describe the video in detail?
é‘@ The person is cleaning M\ The person is cleaning The video depicts a man and a woman in a bedroom. The man is seen bending
? dishes > = dishes > over a bed, while the woman is standing next to him. The man then proceeds
s to pull the matcress away from the bed frame, revealing the box spring. He
m The person is using a (r_;}& = . ££ . é@ then proceeds to pull the box spring out of the bed frame. The woman then
tablet > 5 Pouring coffee grains ' takes the box spring and places it on the floor. The man then pulls the

) - mattress back into the bed frame. The video focuses on the actions of the
a) Action Recognition Task man and woman in the bedroom, with a particular emphasis on the movements
e 8 and interactions with the objects in the room.

In the video, a young man is seen working in a bedroom. He is seen laying
down a bed, folding a bed, and putting a bed away. The man is wearing a
black shirt and a blue jacket. The room has a white floor and a white wall.
The man is also seen using a chair and a table. The video is shot in a home
in India. The man is seen working alone in the room.

Q .what action should the human perform after the action "get cup on
table with hand" was performed followed by the action “"turn-on Tv
with remote"?'choose from the following options

\) In the video, a person is seen moving a blue blanket or sheet off a bed,
a) Throw tissue in trash-can b) Put meat or tomato in fridge - possibly to clean or rearrange the bed. The person is also seen walking

with hand ‘B owards a table with a laptop on it, possibly to use the laptop for work
) Fill cup with water-dispenser d) put lettuce or wrapping on or entertainment.

table with hand
e) Close wrapping ) put lettuce or bread with

hand

In the video, a person is seen moving a blue and white blanket from a bed,
; - - possibly to clean or rearrange the room. The person is also seen walking
é@ Throw tissue in trash-can > & Put lettuce or wrapping on S\ towards a bed with a blue pillow, which suggests that they are interacting
= EElLQ oD (e with the bed and its contents. The room has a white floor, a blue blanket on
the bed, and a chair nearby. The person's actions and interactions with the
(S*& Fill cup with water objects in the room, such as the bed and the chair, highlight the ongoing
L %) dispenser activities within the space.

&

b) Action Forecasting Task c) Video Description Task

. N -
€@ video LLava [F) Video LLaMA 3 Video-chatePT {5 LLAVIDAL

Figure 4: Qualitative results comparing LLAVIDAL with SOTA models. Incorrect descriptions are

marked in red.
generating clip-level descriptions. Subsequently, we concatenate all clip-level descriptions and utilize

GPT-3.5 turbo to summarize them into a video-level description, following the same instruction
template utilized in our dense description pipeline for ADL-X. LLAVIDAL consistently surpasses
SOTA and outperforms all models including, image captioners-summarizers pipelines which are
trained on billions of images, across all 5 VideoChatGPT metrics. However, in the Mementos
Evaluation, LLVM baselines exhibit superior performance over LLAVIDAL in the Smarthome
domain. This discrepancy may be attributed to the loss of relevant information when generating
video-level descriptions using GPT.

Table 5: ADLMCQ - Action Recognition Table 6: ADLMCQ - Action Forecasting
Method Charades Smarthome Method LEMMA TSU
VideoLlama 33.0 27.4 VideoLlama 20.8 15.6
VideoLlava [18] 44.4 54.0 VideoLlava [18] 32.2 20.2
VideoChatGPT [20] 56.0 40.8 VideoChatGPT [20] 35.7 25.0
ADL-X ChatGPT [20] 58.0 52.3 ADL-X ChatGPT [20] 44.8 253
LLAVIDAL 59.0 58.8 LLAVIDAL 52.6 27.0

ADLMCQ. Table 5] compares LLAVIDAL to SOTA LLVMs on the ADLMCQ-AR benchmark.
LLAVIDAL achieves significant improvements, surpassing VideoChatGPT by +5.4% and +44.1% on
the Charades and Smarthome datasets, respectively. Similarly, Table [ldemonstrates LLAVIDAL's
superiority on the ADLMCQ-AF benchmark. It outperforms VideoChatGPT by up to +47.3%,
highlighting its exceptional capability in action forecasting tasks.

Figure ] provides a visual comparison of LLAVIDAL against representative baselines on the ADL
benchmarks. More visual samples are provided in the Appendix.

5 Conclusion & Future Work

In this work, we present a framework for curating ADL datasets for instruction tuning LLVMs,
thus introducing ADL-X. We introduce LLAVIDAL, an LLVM capable of integrating 3d poses and
human-object interaction cues by projecting their language contextualized representations into the
LLM embedding space. To assess LLVM performance in ADL scenarios, we propose the ADLMCQ
benchmark. Results demonstrate that LLAVIDAL, when trained on ADL-X, surpasses other LLVM
baselines in ADLMCQ tasks, indicating its efficacy in grasping intricate temporal relationships within
ADL contexts. Future research will focus on expanding ADL-X by integrating additional curated
ADL datasets and exploring stage-wise training strategies to effectively integrate both pose and object
cues within LLAVIDAL.
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Appendix

A Overview

The Supplementary material is organized as follows:

¢ Section[B} Related Work

* Section[C} PoseCLIP

 Section[Dr Additional Dataset Details

* Section[E} Additional Implementation Details

* Section[F} Improving Actions: Pose Cues vs Object Cues
* Section[G} Additional Qualitative Evaluation

* Section[Ht LLM Prompts Used

* Section[lt Limitations

* Section[J} Licensing and Intended Use

B Related Work

In this section, we delve into the recent datasets proposed for instruction tuning of LLVMs. We also
present the recent advancements in multimodal conversational models both with image captioners
and video encoders which consist of an LLM at the final stage to leverage its generation and linguistic
understanding capabilities.

Data: Existing video-centric instruction datasets, such as VideoChat[17]], Valley[26], Video-
ChatGPT [20], and TimeChat [21], have made significant strides in advancing general video under-
standing and dialogue. However, these datasets exhibit limitations that render them inadequate for
training LLVMs to understand with ADL. The primary issues lie in the insufficient task coverage,
brevity of video lengths, and lack of real-world complexity that characterize ADL. While the TimelT
dataset from TimeChat offers improved video duration and task diversity compared to its predeces-
sors [S9, 20} [17, 261, it still falls short of fully capturing the intricacies and extended temporal nature
of many multi-step ADL tasks. Similarly, ActivityNet [25]], despite being a large-scale benchmark
with 203 activity classes, falls short in terms of its applicability to ADL. While ActivityNet boasts a
diverse taxonomy, the selected activity classes are not tailored to the ADL domain. The dataset’s focus
on general video understanding does not guarantee sufficient representation of the unique challenges
posed by ADL, such as intricate object interactions, fine-grained actions, and long-term temporal
dependencies. It is to be noted that previous approaches like VideoChatgpt [20], VideoLlava [[18]
derive their instruction dataset from ActivityNet. Webvid, which is now de-comissioned due to
privacy issues introduced in [60], consists of 2.5 million video-text pairs scraped from the web.
Although it is a large-scale dataset, the videos are not specifically focused on ADL. The dataset
covers a broad range of topics and video types, which may not adequately capture the nuances and
challenges specific to ADL scenarios.

Image captioners + LLM. Advancements in the abilities of LLMs in contextual understanding
and language generation has led to the rise of multimodal conversational models. These methods,
typically employ foundation models to generate visual features from images and project them to
a space compatible with the language models. Flamingo [14] uses vision-language resampler in
conjunction with gated cross-attention while BLIP2 introduces Q-Former map image features to the
LLM embedding space. MiniGPT4 [10] uses a simple linear projection layer. However, these model
fall short of becoming conversational assistants due to the absence of human instruction feedback. To
this end, mPLUG-OWL [13]] first aligns visual and linguistic features by multimodal autoregressive
pretraining. It then performs mutlimodal instruction tuning with LoRA [61], which facilitates
responses to be natural and aligned with human instructions. IntructBLIP [46] and LLaVA [12]
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introduce large scale human instruction datasets that facilitate LLM finetuning. PaLl [15] and
Qwen-VL [16] are capable of direct training of the LLMs during pretraining or supervised finetuning
stages. However, it leads to a loss of generalizability of the natural language capabilities of the LLM.
CogVLM [44], on the other hand, introduces separate layers into the Transformer Block of the LLM
to process image features using an independent QKV matrix and Feed Forward Network for images.

Large Language Vision Models (LLVMs). Researchers have been rigorously investigating methods
to understand videos and develop video-conversational models integrated with large language models
(LLMs). Methods like Socratic Models [[62]] and VideoChat [17], use pretrained foundation vision
encoders [63}164] along with LLMs to adapt them for video tasks.

Among dialog based models, VideoChatCaptioner [65] summarizes a video based on conversations
between ChatGPT [7] and a captioner like BLIP2 [45]], while ChatVideo [[66] uses task-specific
foundation models to create a database of "tracklets". A database manager and ChatGPT [[7] work
to generate responses from user queries during inference. Some approaches [67, [68] divide each
video into segments and either option descriptions for each segment to be shared directly with
LLMs or encode each segment, concatenate the tokens and project them to the LLM space. Models
like [17, 19} 21]] leverage Query Transformer (Q-Former) [45] for effective feature encoding and
alignment. VideoLLaMA [19] first uses a vision transformer with an image Q-Former to obtain
frame-level representations and then a video Q-Former for temporal modelling. TimeChat [21]],
which can encode variable length videos, uses a timestamp-aware frame encoder with a Q-Former to
infuse temporal information into the vision tokens and subsequently a sliding window Q-Former to
condense the frame-level features for the Projection Layer.

Similar to [19], VideoLLaVA [18] jointly trains on images and videos, however, it pre-aligns the
visual modalities to language using LanguageBind [69] encoders. VideoChatGPT [20] leverages both
temporal and spatial features if a video, obtained by average pooling the frame-level features spatially
and temporally, respectively. In contrast to these models, LLAVIDAL incorporates both 3D Pose
and object cues into LLaVA type conversational models. The integration of these cues is instrumental
for the effective interpretation of ADL videos.

C PoseCLIP

PoseCLIP is a Pose-Language Model (PoseLM) that aligns 3D poses to a language contextualized
space. It consists of two components: a Pose Encoder and a Text Encoder. Here we use a Hypergraph
Transformer, Hyperformer [48]] as the Pose Encoder, due to its ability to learn representations, based
on the human kinematics and its capability of efficient skeleton action recognition. The pose encoder
fp first processes each pose sequence, P; € RT»>3%J " where each frame within the sequence T,
comprises .J joints. The Pose encoder generates frame-level pose representations which are aggregated
using a Temporal Pooling Layer to obtain sequence-level representations z?. The Text Encoder f; is
derived from the CLIP [2] text encoder which is frozen and computes a text representation 2! for the
corresponding action label(¢;). The PoseCLIP undergoes a two-stage training scheme. In the first
stage, the pose encoder is pretrained on NTURGB+D [39], for Skeleton Action Recognition. In the
second stage, the pose and text embeddings are aligned by maximizing their corresponding cosine
similarities. The loss is given by [4]

z) = TIPpr(Pi), z = fi(ts) A3

exp(sim(zf, 21) /)
ECE l’ Z Zl exp(szm( Zjs J)/T) @

where 7 is a temperature parameter and sim(z,y) denotes the cosine similarity between x and y.
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@: wWhat are the actions in
flCG oo the video?
Charadas

vi ECI ll"C ude A: The person is drinking
‘woman k ‘ w ma r1_| something.

Q: What are the cbjects
present?

din

ho

- i .
Test Data i " be " I A: Sofa, Bottle, Plant.

Video Description:
The video shows a person
wearing a white shirt
o= Supur = T ey standing in front of a green
Lt et I Lt sofa. The person is drinking
\ ‘ [B8S something from a bottle.
1 There is a plant present in
the background.

Figure 5: Overview of ADL-X. Top Left: Training and test data distribution; Top Middle: Wordcloud
of Textual Representation of Training Data; Bottom Left: Sample video frames with detected relevant
object Bottom Middle: 3D Poses of the corresponding sample video; Right: Sample QA pairs

D Additional Dataset Details

Question Types. We divide our QA in different questions so that our model understands human
object interaction holistically, we lay emphasis on actions performed and the sequence of actions
occurring in the video and likewise how objects are associated with the actions. We carefully design
such questions relevant to the videos with GPT 3.5 Turbo. The questions encompasses actions
happening, summarization, objects in the scene, color of the objects and questions related to the
video. For Pose as QA and Object as QA we construct two more questions each, for object we add
"What are the relevant objects in the scene?" and "What is the object in the trajectory [x1,y1,x2,y2]?",
for Pose we add "What is the motion of the body and joints relative to the actions?" and "Which joints
are moving in the video?".

Average video and sentence length. There is an average of 23 words per sentence in our QA and
average word count for each answer is 42. The average video length is 10 seconds in our dataset.
We have 1262229 nouns, 551172 verbs, 40415 actions and 722807 objects in our QA showing the
overall dynamics of dataset which is illustrated in WordCloud of the Figure 5}

Importance of cropping. When person-centric cropping is not applied to the videos in an ADL
dataset, the resulting dense-level captions often include a significant amount of irrelevant information
about the background scene. This extraneous information is not directly connected to the subject
or the actions being performed, and its presence can introduce noise into the training data. If left
unchecked, this noise can have a detrimental effect on the learning process, as the model may
erroneously focus on the background details rather than the key elements of the ADL. By failing
to isolate the relevant information, the model’s attention is diverted away from the crucial aspects
of the task at hand, namely the individual performing the actions, the actions themselves, and the
interactions between the person and objects in the scene. This dilution of focus can lead to suboptimal
performance and hinder the model’s ability to accurately understand and classify ADLs. In contrast,
by employing person-centric cropping, the irrelevant background information is effectively eliminated
from the videos. This targeted approach ensures that the dense-level captions concentrate solely on
the elements that are directly related to the subject and their actions. By maintaining this persistent
focus on the relevant information, the training data becomes more coherent and informative, enabling
the model to better capture the essential characteristics of the ADLs. In Fig[6] we illustrate an
example why person centric cropping is important.

E Additional Implementation Details

We deployed a 4-bit quantized version of CogVLM-17B for annotating frame-level captions.
On an A5000 GPU, the inference uses 11GB of memory.The two prompts that are used to get the
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frame-level descriptions for the ADL-X are — "Give a detailed description of the actions happening
and describe the image, include motions and the objects interacted by the person” and "Summarize
the content of the image in details explaining all events happening”. CogVLM uses Vicuna v1.5
7b [47] as their large language model and EVA2-CLIP-E [[/0] as their VIT encoder, the input image
dimensions are 224 x 224, the average time to annotate a video is 80 seconds at 0.5fps.

The image depicts two individuals in a

room where the person on the left is The image depicts two individuals in a
pointing towards the person on right, she room with computer monitors on F desk.
is wearing yellow top and blue jeans, the The person on the left, wearing a

yellow top and blue jeans, appears to
be gesturing or pointing towards the
person on the right. The person on the
right, dressed in a white t-shirt and
black shorts, seems to be observing or
listening. The setting appears to be an
office or a classroom.

person on the right is dressed in white t-
shirt and black shorts, there are many
chairs and desks in the scene with
computer monitors .In the distance we can
see a white board with writing on them,
there seems to be a desk behind the
board.There is also a jacket on the chair
hanging , the floor has some wires on
them.

Figure 6: Left: uncropped videos and frame level annotations from CogVLM; Right: person
centric cropping and CogVLM captions. The irrelevant information (marked red) adds noise to the
annotations.

LLAVIDAL details. To generate object cues, we perform frame-level object detection using BLIP2
and localization using OWLv2. BLIP2 [45]] uses a ViT-L and a FlanT5 [71] architecture for detection,
while OWLv2 [50] uses an OWL-ViT-L which is a CLIP based model for extracting localization
features of the detected objects. In case of PoseCLIP, the Pose Encoder, Hyperformer, is pretrained
on NTURGBD for 140 epochs for action recognition, and then is aligned with the CLIP Text Encoder
for an additional 100 epochs. LLAVIDAL uses a Vicuna-vl1.1 (7B) as the LLM which is frozen
during instruction tuning.

F Improving Actions: Pose Cues vs Object Cues

In this section, we compare the performances of the model using object features with that using
pose features. The model with object features have demonstrated substantial improvements in action
recognition tasks, particularly for actions intrinsically linked to specific objects. In Figure [7] we
observe that object features significantly enhance the accuracy of actions such as "sit down" (+17.4),
"eating at table" (+16.6), and "watch TV" (+11.3). These actions inherently involve interaction with
well-defined objects, making the presence and identification of these objects critical for accurate
action recognition. For instance, the action of "sitting down" is typically associated with the presence
of chairs or sofas, while "eating at a table" involves utensils, dishes, and tables. By integrating
object features, the model can better contextualize and identify these actions, leading to marked
performance improvements. Moreover, object features can capture contextual cues that are pivotal
in understanding the environment where the action occurs, such as a dining table for eating or a
television set for watching TV. This contextual awareness allows the model to distinguish between
visually similar actions by recognizing the objects involved. However, it’s worth noting that actions
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Improvement from Object Tokens and Pose Tokens vs. VideoChatGPT

Object Tokens Improvement

P Pose Tokens Improvement
drinking from glass

using tablet

boiling water

using a stove
cutting bread
inserting tea bag
pouring coffee grains
pouring from can
pouring water
pouring from kettle
eat snack

laying down

cutting food

pour from bottle
leaving

cleaning up
drinking from can
cleaning dishes
drinking from bottle

Action Label

entering

taking pills
using telephone
using laptop
stirring

watch tv

eating at table
getting up

read book

sit down
drinking from cup
walk

-20 -10 0 10 20
Improvement

Figure 7: Improvement of actions with object tokens vs pose tokens vs video only method

less dependent on specific objects, or those characterized by general movements, may not benefit as
much from object features.

Pose features have shown notable improvements in recognizing actions that are characterized by
specific body movements and postures. Figure [7 highlights significant performance gains in actions
such as "stirring" (+9.5), "taking pills" (+15.2), "drinking from bottle" (+13.7), "drinking from can"
(+15.1), and "drinking from glass" (+11.4). These actions are inherently defined by distinctive and
repetitive movements, which pose features effectively capture. For example, the act of "stirring"
involves a specific hand motion, while "taking pills" is characterized by the motion of bringing a pill
to the mouth. Pose features excel in these scenarios by accurately modeling the dynamic and often
subtle movements of the human body, providing the model with a more granular understanding of the
action being performed. By focusing on the posture and movement patterns, pose features enable
the recognition system to distinguish between actions that may occur in similar contexts but involve
different movements. This capability is particularly beneficial for fine-grained action differentiation,
such as distinguishing between "drinking from a bottle" and "drinking from a can", where the object
interaction is minimal but the hand movements differ. However, actions with less distinctive poses or
more object interaction, such as "cleaning dishes" and "cutting food," did not perform as well with
pose features. This analysis substantiates that both pose and object features are complimentary to
each other.
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FAAAAAAAAAAAA{Input snippet kAAAAAAAAAAAA{

Q. Is the person going to fall?

é@ The person falls. x
Yes, the person is in a
precarious position, as they
are sitting on the edge of
the chair which could
potentially cause them to
fal

m The person has fallen. X<

™ Yes,the person in the video
ﬁ is seen falling off the chair.

p——— tnput snippet b——«—]

Q. Is the person going to fall?

g Yes, the person is

q.» walking down a hallway,

and it appears he might be
about to fall.

@ No,the person is walking.
x

Yes,the person in the
video is walking down a

)
hallway in a hospital < ‘iThe person has fallen down.><

Figure 8: The input snippet is the input video and the grey part is omitted out, here the model needs

to detect the greyed action.

Q. Pick the correct action that is being performed in the video
among the options?

a) Reading book b) Using tablet

¢) Walking d) Using telephone

. A\l
E@ Using tablet X & Using tablet X

h Using tablet X @

Walking J

Q. Pick the correct action that is being performed in the video
among the options?

a) Pouring from can b) Using tablet

¢) Drinking from glass d) Leaving

) A\l
@ pouring from can X & Drinking from glass x
- Ay

pouring from can x @ Leaving /

Figure 9: Evaluation of ADLMCQ-Action recognition task on Charades Dataset

Q.what action is most likely to be performed given the action "wash
cutting-board and "get cutting-board from table with hand" were
performed?'choose from the following options

b) put bread | tomato on table
with hand
d) clean hand

a) work-on milk

c) Get cutting board,other
person with hand
e) Close wrapping f) Put cutting-board on table

with han

4 Get cutting-board, other }[ Get cutting-board, other
. person with hand X ‘B person with hand X

A Get cutting-board, other @ Put cutting board
B person with hand X on table with hand

Q .what action is most Tikely to be performed given the action "close

fridge" and "put meat in fridge with hand"?choose from the following

options

a) Put plate | fork on table b) Get fork from plate with hand
with hand

c) Eat cereal with hand d) Put meat in sandwich with
hand

e) Get plate from table with f) put water-pot on table with

hand hand
. Put meat in sandwich M put meat in sandwich
é@ with hand X = with hand
Put meat in sandwich Get plate from table
m with hand x with hand v

Figure 10: Evaluation of ADLMCQ-Action forecasting task on Lemma Dataset

G Additional Qualitative Evaluation

In this section, we provide qualitative evaluation of LLAVIDAL and other state-of-the-art LLVMs
for the tasks of ADLMCQ-Action Recognition and ADLMCQ-Action Forecasting, illustrated in
Figures[9)and[T0] In Figure[IT] we demonstrate the performance of LLAVIDAL for Video Description

Generation on the Charades dataset.

One of the applications of LLAVIDAL is to monitor cognitive decline in geriatric patients through
the action forecasting capabilities of our model. In this effort we have qualitatively evaluated the
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model on videos of falls on long term care by the IMPL SFU [[72]]. The subjects in these videos are
suffering from dementia, seizure, diabetes like dieseases and the dataset contains 175 such falls. We
slice the input video before the event of fall and prompt LLAVIDAL and other LLVM'’s to predict
whether the person will fall or not. As illustrated in Figure 8] our model outperforms the other
LLVMs by predicting the fall correctly and by giving proper explanation of why the fall would occur
highlighting its reasoning capabilities. While other models predict that the person "has fallen down"
and hallucinates the reasoning of the fall as well.

Ql. Describe the video in detail. Q2. Does he drink water ?

Al) The video shows a young boy sitting at a table, writing on a piece of
paper. He appears to be focused on his task, and his handwriting 1is neat
and precise. The boy is wearing a casual outfit, with a t-shirt and jeans.
The room he 1is in is well-Tit, with natural Tight coming in from a window
in the background. The table he is sitting at is made of wood and has a
smooth surface. The boy's writing appears to be in a foreign language, and
he seems to be taking his time to ensure that every word is written
correctly. overall, the video captures a peaceful and focused moment of a
young boy engaging in a creative activity.

A2) Yes,he takes a sip of water from a glass and then continues to write
on the paper.

Al) In the video, we see a young boy sitting at a table in a room. He is
wearing a black and white striped shirt. The table is white and has a
black and white striped tablecloth on it. There is a white chair in the
room, and a black and white striped rug is on the floor. The boy is
writing something on a piece of paper. The room is cluttered with
various items such as a black and white striped pillow, a white plastic
bag, a white bottle, and a black and white striped book. The boy is
sitting on a chair, and there is a white box in the room. The video Tlasts
for 30 seconds, and the boy 1is sitting at the table for the entire
duration.

A2) Yes, the young boy in the video is seen drinking water at the table.

A\ Al) The video shows a young boy sitting on a table and writing on a piece of
;i paper.He is wearing a black shirt and appears to be focused on his work.

A2) No,the boy does not drink water.

Al) The video shows a young boy sitting on the floor in a room, wearing a
shirt and dark pants. He is writing on a piece of paper, which is placed on a
table or a desk. The room appears to be a bedroom, with a white wall . The

@ boy is focused on his writing task, and the room is filled with various items
such as clothes, books, and other objects. The overall atmosphere of the
scene is calm and peaceful, with the boy engrossed in his writing.

A2) Yes,the boy is drinking water from a glass sitting on a floor

Figure 11: Qualitative evaluation of video description on Charades Dataset. Text marked in red are
incorrect. Text marked in green are correct.
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H LLM Prompts Used

In the following sections, we demonstrate the prompts used:

H.1 Dense Captioning using GPT-3.5 Turbo

{"role'":"'system''}: "You will play two roles: a human asking questions
related to describing a video and an intelligent chatbot designed for video
description and dense captioning. Your task is to generate a detailed and
descriptive paragraph based on the provided fragmented information about a
video."

"##TASK": "Users will provide fragmented descriptions of a video, and
you will generate ONE conversation-like question and answer related

to describing the video in detail.The question should ask to describe

the video content in detail.The answer should be a paraphrased and
well-structured paragraph based on the provided description, with a minimum
of 150 words and a maximum of 300 words.When the provided information is
short, aim for a 150-word description, and when the provided information is
more detailed, aim for very long descriptions up to 300-word description."

"##INSTRUCTIONS': "The question must be like a human conversation and
focused on describing the video in detail.The answer must be a paraphrased
version of the provided information, very detailed and descriptive, and
within the specified word count.Combine the information from different
sections of the video into a single coherent summary, ignoring any
repetitions.Compare the information across all fragments of video and
remove or ignore any inconsistent information and do not say the summary
comes from different fragments of the video.Give more emphasis on the
actions, the objects, and the colors of the background and the objects.Give
the sequence of actions happening in the video and the objects the person
interacts with."

"o

{"role":"user"}: "The fragmented video description is: {mega_caption}. Please
generate the response in the form of a Python dictionary string with keys
"Q" for question and "A" for answer. Each corresponding value should be
the question and answer text respectively. For example, your response
should look like this: {"Q": "Your question here...", "A": "Your answer
here..."}. Emphasize that the answer should focus on describing the video
content following the given instructions."

H.2 QA generation using GPT-3.5 Turbo: Prompt 1

{"'role':"system"'}: "You play two roles: a human asking questions related
to summarizing a video and an intelligent chatbot designed for video
summarization and dense captioning. Your task is video summarization. As
an AI assistant, assume that you have watched the video and generated the
provided caption as the summary of the video. Your task is to play the
role of a human who asks three questions related to summarizing the video
and then play the role of an AI assistant that provides paraphrased answers
based on the video content and the provided caption."

"##TASK"': "Users will provide a caption of the video alongside dense
caption describing detected objects in that scene, and you will generate

a set of three conversation-like questions related to summarizing the video.
The questions and answers can be very similar, but they should all focus on
summarizing the video content. The answers should be paraphrased versions
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of the provided caption and the dense caption with the object detections.
You have information about the video based on the provided caption and
have summarized the events in it. You also have the dense caption with
the object and scene details. Generate THREE different questions asking
to summarize the video and provide detailed answers to each based on the
caption and the dense caption."

"##INSTRUCTIONS': "The questions must be like a human conversation and
focused on summarizing the video. The answers must be paraphrased versions
of the provided caption and the dense caption, and they should be detailed
and descriptive."

"SAMPLE QUESTIONS:"

"- Can you provide a summary of the video?"

"- What are the main events in the video?"

"- Could you briefly describe the video content?"

{"'role":"user'}: "The video caption is: {caption}. The additional dense
caption is: {mega_caption}. Generate three different questions on
summarizing the video, and provide answers that are paraphrased versions of
the given caption and the dense caption. Please attempt to form question
and answer pairs based on the two sets of text. Please generate the
response in the form of a Python list of dictionary string with keys "Q"

for question and "A" for answer. Each corresponding value should be the
question and answer text respectively. For example, your response should

look like this: [{"Q": "Your first question here...", "A": "Your first
answer here..."}, {"Q": "Your first question here...", "A": "Your first
answer here..."}, {"Q": "Your first question here...", "A": "Your first
answer here..."}]. Emphasize that the questions and answers can be very

similar, but they should all focus on summarizing the video content."

H.3 QA generation using GPT-3.5 Turbo: Prompt 2

{"role'":"system'}:  "You play two roles: a human asking questions related to
a video and an intelligent chatbot designed for video summarization and
dense captioning. Your task is extracting diverse video information. As
an AI assistant, assume that you have watched the video and generated the
provided caption as the summary of the video. Your task is to play the
role of a human who asks three questions related to summarizing the video
and then play the role of an AI assistant that provides paraphrased answers
based on the video content and the provided caption."

"##TASK"': "Users will provide a caption of the video alongside dense
caption describing detected objects,setting and details in that scene,

and you will generate a set of three conversation-like questions related
to the video. The questions and answers can be very similar, but they
should all focus on the details of the video content. The answers should
be paraphrased versions of the provided caption and the dense caption with
the object and scene details. You have information about the video based
on the provided caption and have summarized the actions in it. You also
have the dense caption with the scene details. Generate THREE different
questions asking the details of the video and provide detailed answers to
each based on the caption and the dense caption and one question should

be about what actions are happening which should come from captions of the
video."
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"##HINSTRUCTIONS': "The questions must be like a human conversation and
focused on finding the intricate and unique details of the video. The
answers must be paraphrased versions of the provided caption and the dense
caption, and they should be detailed and descriptive. " "---"

"SAMPLE QUESTIONS:"

"- What are the actions occuring sequentially in the video?"

"- What are the colors of the outfits of the person in the video?"

"- What are the objects in the scene?"

"- What is the person doing?"

{''role"":""user"}: "The video caption is: {caption}. The additional dense
caption is: {mega_caption} Generate three different questions on the
details of the video, and provide answers that are paraphrased versions of
the given caption and the dense caption. Please attempt to form question
and answer pairs based on the two sets of text. Please generate the
response in the form of a Python list of dictionary string with keys "Q"
for question and "A" for answer. Each corresponding value should be the
question and answer text respectively. For example, your response should

look like this: [{"Q": "Your first question here...", "A": "Your first
answer here..."}, {"Q": "Your first question here...", "A": "Your first
answer here..."}, {"Q": "Your first question here...", "A": "Your first
answer here..."}]. Emphasize that the questions and answers can be very

similar, but they should all focus on the various details of the video
content and understanding what actions are happening. Include at least
one question about the sequence of actions happening in the video."

H.4 Pose Description Generation Prompt using GPT-3.5 Turbo

I have the coordinates that track the position of human joints throughout

a video. I want to obtain the motion of each of these joints over time,
using only these human joint coordinates. Here are the joint coordinates
across observations: {pose_str}. I want to know the general motion of
these joints AND the amount of this motion (if the joint moved a lot, or
only a small amount over the frames). Respond with a single sentence

that INDEPENDENTLY describes the motion directions and amount for each
joint over the entire video. Please start your reply for each joint with
the name of the joint. What can you tell me about the motion and motion
magnitudes of these joints? Describe the concrete direction of the motion
of the joints, do not just say they move in many directions, but only
describe how it moves and not its numerical coordinates. Do not forget to
list the motion and amount of motion in two separate sentences. Begin each
description with the name of the joint followed by a colon. Also include a
sentence that captures the structure of the human body, such as the posture
and position of the joints relative to one another

Here the pose_str, is of the following format:

In observation O, the right knee is at (104, 201) and the left knee is at
(106, 197) and the right hand is at (87, 162) and the left hand is at (134,
49) and the head is at (112, 40). 1In observation 1, the right knee is at
(82, 208) and the left knee is at (87, 204) and the right hand is at (66,
167) and the left hand is at (122, 63) and the head is at (91, 38).....

H.5 Prompt to obtain Relevant Objects using GPT-3.5 Turbo

I have a video where the action "{action_labell}" is being performed by a
human. I have detected all of the objects in the scene of this video,
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the objects I found are: {found_objects}. I only want the objects that
are relevant to the action "{action_labell}". From the list of detected
objects, return only the objects that are relevant to the action being
performed. It is crucial that the objects you return are contained in the
list of objects I have given you, DO NOT create new objects or modify the
names of the existing objects. O0Order the objects by their relevance to the
action. IT IS OKAY TO NOT RETURN ANY OBJECTS IF NONE ARE RELEVANT, In this
case respond with the string "None". The relevant objects are (return the
objects separated by a comma) (never explain your decision).

I Limitations

While our approach works well with videos spanning a few seconds, it struggles with long videos.
LLAVIDAL’s preprocessing pipeline samples 100 frames per video. This sampling rate misses out
key information in case of long videos, where there is a larger number of frames. To this end, for the
task of generating Video Descriptions, we split the long videos in Toyota Smarthome Untrimmed into
clips of 20 seconds each and generate descriptions for each clip. These clip-level descriptions are
summarized using GPT3.5 Turbo to obtain a video-level description. However, this summarization
step loses valuable information and hence fails to provide an accurate summary of the long video.
Future work should explore an effective sampling strategy for long video understanding. Another
limitation of LLAVIDAL is its diminished efficacy when both Pose and object cues are integrated
within the LLVM framework. We beileve that modality progressive training could potentially address
this suboptimal performance which will be explored in future work.

J Licensing and Intended Use

This paper introduces a large-scale dataset, ADL-X, comprising 100K untrimmed RGB video-
instruction pairs, 3D poses, language descriptions, and action-conditioned object trajectories. The
raw videos in ADL-X comprise content from NTURGB+D [49]], for which the original authors
retain distribution rights for the clipped action videos. The scripts utilized to curate the dataset
are open-sourced, facilitating the regeneration of the dataset. We will also provide comprehensive
features, including image features extracted using CLIP, pose features derived from PoseCLIP, and
object features obtained through ObjectLM. We plan to release ADL-X via an academic website
for research, academic, and commercial use. The dataset is protected under the CC-BY license of
Creative Commons, which allows users to distribute, remix, adapt, and build upon the material in any
medium or format, as long as the creator is attributed. The license allows ADL-X for commercial
use. As the authors of this manuscript and collectors of this dataset, we reserve the right to distribute
the data. Additionally, we provide the code, data, and instructions needed to reproduce the main
experimental baseline results, and the statistics pertinent to the dataset. We specify all the training
details (e.g., data splits, hyperparameters, model-specific implementation details, compute resources
used, etc.). Furthermore, we release the code and model weights of our proposed Large LAnguage
VIsion model for Daily Activities of Living (LLAVIDAL), along with the features and instruction
QA pairs for the combination videos. The ADL-X dataset focuses on ADL and does not contain any
personal data that can resemble evidence, reveal identification, or show offensive content.

The ADL-X dataset can be used by multiple domain experts to advance research and development in
various applications related to ADL. Its potential applications include, but are not limited to, assistive
technologies, healthcare monitoring systems [73]], smart homes [74]], robotics for assisted living, and
instructional videos for ADL training and support. The dataset can also contribute to the development
of Al-driven solutions that aim to improve the quality of life for individuals with disabilities, older
adults, and those in need of daily assistance. While we believe that the ADL-X dataset has the
potential to make a positive impact on society by enabling the development of technologies that
support and enhance the lives of individuals, we acknowledge that, as with any technology, there is a
possibility that the dataset or the ideas it presents could be misused or adapted for harmful purposes.
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However, as authors, we strongly oppose any detrimental usage of this dataset, regardless of whether
it is by an individual or an organization, under profit or non-profit motivations. We pledge not to
support any endeavors that could cause harm to individuals or society in relation to our data or the
ideas presented herein. Our intention is to foster research and innovation in the field of ADL analysis
and support, ultimately contributing to the development of technologies that improve the quality of
life for those who need assistance with daily activities. We encourage all users of the ADL-X dataset
to adhere to the highest ethical standards and to prioritize the well-being of individuals and society in
their research and development efforts.
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