
A Basic Facts about Matrix Norms436

In this section, we list some basic facts about matrix norms that will be helpful in comprehending the437

subsequent proofs.438

A.1 Matrix norms induced by vector norms439

Suppose a vector norm ∥·∥α on Rn and a vector norm ∥·∥β on Rm are given. Any matrix M ∈ Rm×n440

induces a linear operator from Rn to Rm with respect to the standard basis, and one defines the441

corresponding induced norm or operator norm by442

∥M∥α,β = sup

{∥Mv∥β
∥v∥α

, v ∈ Rn, v ̸= 0

}
.

If the p-norm for vectors (1 ≤ p ≤ ∞) is used for both spaces Rn and Rm, then the corresponding443

operator norm is444

∥M∥p = sup
v ̸=0

∥Mv∥p
∥v∥p

.

The matrix 1-norm and ∞-norm can be computed by445

∥M∥1 = max
1≤j

m∑

i=1

|Mij | ,

that is, the maximum absolute column sum of the matrix M ;446

∥M∥∞ = max
1≤m

n∑

j=1

|Mij | ,

that is, the maximum absolute row sum of the matrix M .447

Remark In the special case of p = 2, the induced matrix norm ∥ · ∥2 is called the spectral norm,448

and is equal to the largest singular value of the matrix.449

For square matrices, we note that the name “spectral norm" does not imply the quantity is directly450

related to the spectrum of a matrix, unless the matrix is symmetric.451

Example We give the following example of a stochastic matrix P , whose spectral radius is 1, but
its spectral norm is greater than 1.

P =

[
0.9 0.1
0.25 0.75

]
∥P∥2 ≈ 1.0188

A.2 Matrix (p, q)-norms452

The Frobenius norm of a matrix M ∈ Rm×n is defined as453

∥M∥F =

√√√√
n∑

j=1

m∑

i=1

|Mij |2 ,

and it belongs to a family of entry-wise matrix norms: for 1 ≤ p, q ≤ ∞, the matrix (p, q)-norm is454

defined as455

∥M∥p,q =




n∑

j=1

(
m∑

i=1

|Mij |p
)q/p




1/q

.

The special case p = q = 2 is the Frobenius norm ∥ · ∥F , and p = q = ∞ yields the max norm456

∥ · ∥max.457
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A.3 Equivalence of norms458

For any two matrix norms ∥ · ∥α and ∥ · ∥β , we have that for all matrices M ∈ Rm×n,459

r∥M∥α ≤ ∥M∥β ≤ s∥M∥α
for some positive numbers r and s. In particular, the following inequality holds for the 2-norm ∥ · ∥2460

and the ∞-norm ∥ · ∥∞:461

1√
n
∥M∥∞ ≤ ∥M∥2 ≤ √

m∥M∥∞ .

B Proof of Proposition 1462

It is straightforward to check that ∥X −1γX∥F satisfies the two axioms of a node similarity measure:463

1. ∥X − 1γX∥F = 0 ⇐⇒ X = 1γX ⇐⇒ Xi = γX for all node i.464

2. Let γX = 1⊤X
N and γY = 1⊤Y

N , then γX + γY = 1⊤(X+Y )
N = γX+Y . So465

µ(X + Y ) = ∥(X + Y )− 1(γX + γY )∥F = ∥X − 1γX + Y − 1γY ∥F
≤ ∥X − 1γX∥F + ∥Y − 1γY ∥F
= µ(X) + µ(Y ) .

C Proof of Lemma 1466

According to the formulation (6):467

X
(t+1)
·i =

∑

jt+1=i, (jt,...,j0)∈[d]t+1

(
t∏

k=0

W
(k)
jk+1jk

)
D

(t)
jt+1

P (t)...D
(0)
j1

P (0)X
(0)
j0

,

we thus obtain that468

∥X(t+1)
·i ∥∞ =

∥∥∥∥∥∥
∑

jt+1=i ,(jt,...,j0)∈[d]t+1

(
t∏

k=0

W
(k)
jk+1jk

)
D

(t)
jt+1

P (t)...D
(0)
j1

P (0)X
(0)
j0

∥∥∥∥∥∥
∞

≤
∑

jt+1=i ,(jt,...,j0)∈[d]t+1

(
t∏

k=0

∣∣∣W (k)
jk+1jk

∣∣∣
)∥∥∥D(t)

jt+1
P (t)...D

(0)
j1

P (0)
∥∥∥
∞

∥∥∥X(0)
j0

∥∥∥
∞

≤
∑

jt+1=i ,(jt,...,j0)∈[d]t+1

(
t∏

k=0

∣∣∣W (k)
jk+1jk

∣∣∣
)∥∥∥X(0)

j0

∥∥∥
∞

≤ C0


 ∑

jt+1=i ,(jt,...,j0)∈[d]t+1

(
t∏

k=0

∣∣∣W (k)
jk+1jk

∣∣∣
)


= C0∥(|W (0)|...|W (t)|)·i∥1 ,

where C0 equals the maximal entry in |X(0)|.469

The assumption A3 implies that there exists C ′ > 0 such that for all t ∈ N≥0 and i ∈ [d],

∥(|W (0)|...|W (t)|)·i∥1 ≤ C ′N .

Hence there exists C ′′ > 0 such that for all t ∈ N≥0 and i ∈ [d], we have

∥X(t)
·i ∥∞ ≤ C ′′ ,

proving the existence of C > 0 such that ∥X(t)∥max ≤ C for all t ∈ N≥0.470
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D Proof of Lemma 2471

Lemma 2 is a direct corollary of Lemma 1 and the assumption that Ψ(·, ·) assigns bounded attention472

scores to bounded inputs.473

E Proof of Lemma 3474

E.1 Auxiliary results475

We make use of the following sufficient condition for the ergodicity of the infinite products of476

row-stochastic matrices.477

Lemma 7 (Corollary 5.1 [2]). Consider a sequence of row-stochastic matrices {S(t)}∞t=0. Let at478

and bt be the smallest and largest entries in S(t), respectively. If
∑∞

t=0
at

bt
= ∞, then {S(t)}∞t=0 is479

ergodic.480

In order to make use of the above result, we first show that long products of P (t)’s from PG,ϵ will
eventually become strictly positive. For t0 ≤ t1, we denote

P (t1:t0) = P (t1) . . . P (t0) .

Lemma 8. Under the assumption A1, there exist T ∈ N and c > 0 such that for all t0 ≥ 0,481

c ≤ P
(t0+T :t0)
ij ≤ 1 ,∀1 ≤ i, j ≤ N .

482

Proof. Fix any T ∈ N≥0. Since ∥P (t)∥∞ ≤ 1 for any P (t) ∈ PG,ϵ, it follows that ∥P (t0+T :t0)∥∞ ≤483

1 and hence P
(t0+T :t0)
ij ≤ 1, for all 1 ≤ i, j ≤ N .484

To show the lower bound, without loss of generality, we will show that there exist T ∈ N and c > 0485

such that486

P
(T :0)
ij ≥ c ,∀1 ≤ i, j ≤ N .

Since each P (t) has the same connectivity pattern as the original graph G, it follows from the487

assumption A1 that there exists T ∈ N such that P (T :0) is a positive matrix, following a similar488

argument as the one for Proposition 1.7 in [4]: For each pair of nodes i, j, since we assume that the489

graph G is connected, there exists r(i, j) such that P (r(i,j):0)
ij > 0. on the other hand, since we also490

assume each node has a self-loop, P (t:0)
ii > 0 for all t ≥ 0 and hence for t ≥ r(i, j),491

P
(t:0)
ij ≥ P

(t−r(i,j))
ii P

(r(i,j):0)
ij > 0 .

For t ≥ t(i) := max
j∈G

r(i, j), we have P
(t:0)
ij > 0 for all node j in G. Finally, if t ≥ T := max

i∈G
t(i),492

then P
(t:0)
ij > 0 for all pairs of nodes i, j in G. Notice that P (T :0)

ij is a weighted sum of walks of493

length T between nodes i and j, and hence P
(T :0)
ij > 0 if and only if there exists a walk of length494

T between nodes i and j. Since for all t ∈ N≥0, P (t)
ij ≥ ϵ if (i, j) ∈ E(G), we conclude that495

P
(T :0)
ij ≥ ϵT := c.496

E.2 Proof of Lemma 3497

Given the sequence {P (t)}∞t=0, we use T ∈ N from Lemma 8 and define498

P̄ (k) := P ((k+1)T :kT ) .

Then {P (t)}∞t=0 is ergodic if and only if {P̄ (k)}∞k=0 is ergodic. Notice that by Lemma 8, for all499

k ∈ N≥0, there exists c > 0 such that c ≤ P̄
(k)
ij ≤ 1 ,∀1 ≤ i, j ≤ N . Then Lemma 3 is a direct500

consequence of Lemma 7.501
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F Proof of Lemma 5502

F.1 Notations and auxiliary results503

Consider a sequence {D(t)P (t)}∞t=0 in MG,ϵ. For t0 ≤ t1, define504

Qt0,t1 := D(t1)P (t1)...D(t0)P (t0)

and505

δt = ∥D(t) − IN∥∞ ,

where IN denotes the N ×N identity matrix. It is also useful to define506

Q̂t0,t1 :=P (t1)Qt0,t1−1

:=P (t1)D(t1−1)P (t1−1)...D(t0)P (t0).

We start by proving the following key lemma, which states that long products of matrices in MG,ϵ507

eventually become a contraction in ∞-norm.508

Lemma 9. There exist 0 < c < 1 and T ∈ N such that for all t0 ≤ t1,509

∥Q̂t0,t1+T ∥∞ ≤ (1− cδt1)∥Q̂t0,t1∥∞ .

510

Proof. First observe that for every T ≥ 0,511

∥Q̂t0,t1+T ∥∞ ≤ ∥P (t1+T )D(t1+T−1)P (t1+T−1)...D(t1+1)P (t1+1)D(t1)∥∞∥Q̂t0,t1∥∞
≤ ∥P (t1+T )P (t1+T−1)...P (t1+1)D(t1)∥∞∥Q̂t0,t1∥∞ ,

where the second inequality is based on the following element-wise inequality:512

P (t1+T )P (t1+T−1)...D(t1+1)P (t1+1) ≤ew P (t1+T )P (t1+T−1)...P (t1+1) .

By Lemma 8, there exist T ∈ N and 0 < c < 1 such that513

(P (t1+T )...P (t1+1))ij ≥ c, ∀1 ≤ i, j ≤ N .

Since the matrix product P (t1+T )P (t1+T−1)...P (t1+1) is row-stochastic, multiplying it with the514

diagonal matrix D(t1) from right decreases the row sums by at least c(1 − D
(t1)
min) = cδt1 , where515

D
(t1)
min here denotes the smallest diagonal entry of the diagonal matrix D(t1). Hence,516

∥P (t1+T )P (t1+T−1)...P (t1+1)D(t1)∥∞ ≤ 1− cδt1 .

517

F.2 Proof of Lemma 4518

Now define βk :=
∏k

t=0(1 − cδt) and let β := lim
k→∞

βk. Note that β is well-defined because the519

partial product is non-increasing and bounded from below. Then we present the following result,520

which is stated as Lemma 4 in the main paper and from which the ergodicity of any sequence in521

MG,ϵ is an immediate result.522

Lemma 4. Let βk :=
∏k

t=0(1− cδt) and β := lim
k→∞

βk.523

1. If β = 0, then lim
k→∞

Q0,k = 0 ;524

2. If β > 0, then lim
k→∞

BQ0,k = 0 .525

Proof. We will prove the two cases separately.526
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[Case β = 0] We will show that β = 0 implies lim
k→∞

∥Q̂0,k∥∞ = 0, and as a result,527

lim
k→∞

∥Q0,k∥∞ = 0. For 0 ≤ j ≤ T − 1, let us define528

βj :=

∞∏

k=0

(1− δj+kT ) .

Then by Lemma 9, we get that529

lim
k→∞

∥Q̂0,kT ∥∞ ≤ βj∥Q̂0,j∥∞ .

By construction, β = ΠT−1
j=0 β

j . Hence, if β = 0 then βj0 = 0 for some 0 ≤ j0 ≤ T − 1, which530

yields lim
k→∞

∥Q̂0,k∥∞ = 0. Consequently, lim
k→∞

∥Q0,k∥∞ = 0 implies that lim
k→∞

Q0,k = 0.531

[Case β > 0] First observe that if β > 0, then ∀0 < η < 1, there exist m ∈ N≥0 such that532

∞∏

t=m

(1− cδt) > 1− η . (8)

Using 1− x ≤ e−x for all x ∈ R, we deduce533

∞∏

t=m

e−cδt > 1− η .

It also follows from (8) that 1 − cδt > 1 − η, or equivalently δt <
η
c for t ≥ m. Choosing η < c

2534

thus ensures that δt < 1
2 for t ≥ m. Putting this together with the fact that, there exists2 b > 0 such535

that 1− x ≥ e−bx for all x ∈ [0, 1
2 ], we obtain536

∞∏

t=m

(1− δt) ≥
∞∏

t=m

e−bδt > (1− η)
b
c := 1− η′ . (9)

Define the product of row-stochastic matrices P (M :m) := P (M) . . . P (m). It is easy to verify the537

following element-wise inequality:538

(
M∏

t=m

(1− cδt)

)
P (M :m) ≤ew Qm,M ≤ew P (M :m) ,

which together with (9) leads to539

(1− η′)P (M :m) ≤ew Qm,M ≤ew P (M :m) . (10)

Therefore,540

∥BQm,M∥∞ = ∥B(Qm,M − P (M :m)) +BP (M :m)∥∞
≤ ∥B(Qm,M − P (M :m))∥∞ + ∥BP (M :m)∥∞
= ∥B(Qm,M − P (M :m))∥∞
≤ ∥B∥∞∥Qm,M − P (M :m)∥∞
≤ η′∥B∥∞
≤ η′

√
N ,

where the last inequality is due to the fact that ∥B∥2 = 1. By definition, Q0,M = Qm,MQ0,m−1,541

and hence542

∥BQ0,M∥∞ ≤ ∥BQm,M∥∞∥Q0,m−1∥∞ ≤ ∥BQm,M∥∞ ≤ η′
√
N . (11)

2Choose, e.g., b = 2 log 2.
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The above inequality (11) holds when taking M → ∞. Then taking η → 0 implies η′ → 0 and543

together with (11), we conclude that544

lim
M→∞

∥BQ0,M∥∞ = 0 ,

and therefore,545

lim
M→∞

BQ0,M = 0 .

546

F.3 Proof of Lemma 5547

Notice that both cases β = 0 and β > 0 in Lemma 4 imply the ergodicity of {D(t)P (t)}∞t=0. Hence548

the statement is a direct corollary of Lemma 4.549

G Proof of Lemma 6550

In order to show that JSR(M̃G,ϵ) < 1, we start by making the following observation.551

Lemma 10. A sequence {M (n)}∞n=0 is ergodic if and only if
∏t

n=0 M̃
(n) converges to the zero552

matrix.553

Proof. For any t ∈ N≥0, it follows from the third property of the orthogonal projection B (see, Page554

6 of the main paper) that555

B

t∏

n=0

M (n) =

t∏

n=0

M̃ (n)B .

Hence556

{M (n)}∞n=0 is ergodic ⇐⇒ lim
t→∞

B
t∏

n=0

M (n) = 0

⇐⇒ lim
t→∞

t∏

n=0

M̃ (n)B = 0

⇐⇒ lim
t→∞

t∏

n=0

M̃ (n) = 0 .

557

Next, we utilize the following result, as a means to ensure a joint spectral radius strictly less than 1558

for a bounded set of matrices.559

Lemma 11 (Proposition 3.2 in [6]). For any bounded set of matrices M, JSR(M) < 1 if and only560

if for any sequence {M (n)}∞n=0 in M,
∏t

n=0 M
(n) converges to the zero matrix.561

Here, “bounded" means that there exists an upper bound on the norms of the matrices in the set. Note562

that MG,ϵ is bounded because ∥DP∥∞ ≤ 1, DP ∈ MG,ϵ. To show that M̃G,ϵ is also bounded, let563

M̃ ∈ M̃G,ϵ, then by definition, we have564

M̃B = BM,M ∈ MG,ϵ ⇒ M̃ = BMBT ,

since BBT = IN−1. As a result,565

∥M̃∥2 = ∥BMBT ∥2 ≤ ∥M∥2 ≤
√
N ,

where the first inequality is due to ∥B∥2 = ∥B⊤∥2 = 1, and the second ineuality follows from566

∥M∥∞ ≤ 1.567

Combining Lemma 5, Lemma 10 and Lemma 11, we conclude that JSR(M̃G,ϵ) < 1.568
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H Proof of Theorem 1569

Recall the formulation of X(t+1)
·i in (6):570

X
(t+1)
·i = σ(P (t)(X(t)W (t))·i) =

∑

jt+1=i, (jt,...,j0)∈[d]t+1

(
t∏

k=0

W
(k)
jk+1jk

)
D

(t)
jt+1

P (t)...D
(0)
j1

P (0)X
(0)
j0

.

Then it follows that571

∥BX
(t+1)
·i ∥2 =

∥∥∥∥∥∥
∑

jt+1=i, (jt,...,j0)∈[d]t+1

(
t∏

k=0

W
(k)
jk+1jk

)
BD

(t)
jt+1

P (t)...D
(0)
j1

P (0)X
(0)
j0

∥∥∥∥∥∥
2

≤
∑

jt+1=i, (jt,...,j0)∈[d]t+1

(
t∏

k=0

∣∣∣W (k)
jk+1jk

∣∣∣
)∥∥∥BD

(t)
jt+1

P (t)...D
(0)
j1

P (0)X
(0)
j0

∥∥∥
2

=
∑

jt+1=i, (jt,...,j0)∈[d]t+1

(
t∏

k=0

∣∣∣W (k)
jk+1jk

∣∣∣
)∥∥∥D̃(t)

jt+1
P̃ (t)...D̃

(0)
j1

P̃ (0)BX
(0)
j0

∥∥∥
2

≤
∑

jt+1=i, (jt,...,j0)∈[d]t+1

(
t∏

k=0

∣∣∣W (k)
jk+1jk

∣∣∣
)
Cqt+1

∥∥∥BX
(0)
j0

∥∥∥
2

≤ C ′qt+1


 ∑

jt+1=i, (jt,...,j0)∈[d]t+1

(
t∏

k=0

∣∣∣W (k)
jk+1jk

∣∣∣
)


= C ′qt+1∥(|W (0)|...|W (t)|)·i∥1 ,
where C ′ = Cmax

j∈[d]
∥BX

(0)
j ∥2 and ∥ · ∥1 denotes the 1-norm. Specifically, the first inequality follows572

from the triangle inequality, and the second inequality is due to the property of the joint spectral573

radius in (7), where JSR(M̃G,ϵ) < q < 1.574

Since ∥Bx∥2 = ∥x∥2 if x⊤1 = 0 for x ∈ RN , we also have that if X⊤1 = 0 for X ∈ RN×d, then

∥BX∥F = ∥X∥F ,

using which we obtain that575

µ(X(t+1)) = ∥X(t+1) − 1γX(t+1)∥F = ∥BX(t+1)∥F =

√√√√
d∑

i=1

∥BX
(t+1)
·i ∥22

≤ C ′qt+1

√√√√
d∑

i=1

∥(|W (0)|...|W (t)|)·i∥21

≤ C ′qt+1

√√√√
(

d∑

i=1

∥|(W (0)|...|W (t)|)·i∥1
)2

= C ′qt+1∥|(W (0)|...|W (t)|∥1,1 ,

where ∥ · ∥1,1 denotes the matrix (1, 1)-norm (recall from Section A.2 that for a matrix M ∈ Rm×n,
we have ∥M∥1,1 =

∑m
i=1

∑n
j=1 |Mij |). The assumption A3 implies that there exists C ′′ such that

for all t ∈ N≥0,
∥(|W (0)|...|W (t)|)∥1,1 ≤ C ′′d2 .

Thus we conclude that there exists C1 such that for all t ∈ N≥0,

µ(X(t)) ≤ C1q
t .
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I Proof of Proposition 2576

Since D−1
degA is similar to D

−1/2
deg AD

−1/2
deg , they have the same spectrum. For D−1

degA, the smallest577

nonzero entry has value 1/dmax, where dmax is the maximum node degree in G. On the other hand,578

it follows from the definition of PG,ϵ that579

ϵdmax ≤ 1 .

Therefore, ϵ ≤ 1/dmax and thus D−1
degA ∈ PG,ϵ.580

We proceed by proving the following result.581

Lemma 12. For any M in M, the spectral radius of M denoted by ρ(M), satisfies582

ρ(M) ≤ JSR(M) .

583

Proof. Gelfand’s formula states that ρ(M) = lim
k→∞

∥Mk∥ 1
k , where the quantity is independent of the584

norm used [3]. Then comparing with the definition of the joint spectral radius, we can immediately585

conclude the statement.586

Let B(D−1
degA) = P̃B. By definition, P̃ ∈ M̃G,ϵ since D−1

degA ∈ PG,ϵ as shown before the lemma.587

Moreover, the spectrum of P̃ is the spectrum of D−1
degA after reducing the multiplicity of eigenvalue 1588

by one. Under the assumption A1, the eigenvalue 1 of D−1
degA has multiplicity 1, and hence ρ(P̃ ) = λ,589

where λ is the second largest eigenvalue of D−1
degA. Putting this together with Lemma 12, we conclude590

that591

λ ≤ JSR(M̃G,ϵ)

as desired.592

J Numerical Experiments593

Here we provide more details on the numerical experiments presented in Section 5. All models were594

implemented with PyTorch [5] and PyTorch Geometric [1] .595

Datasets We used torch_geometric.datasets.planetoid provided in PyTorch Geometric596

for all the three datasets: Cora, CiteSeer, and PubMed with their default training and test splits.597

Model details598

• For GAT, we consider the architecture proposed in Veličković et al. [7] with each attentional599

layer sharing the parameter a in LeakyReLU(a⊤[W⊤Xi||W⊤Xj ]), a ∈ R2d′
to compute the600

attention scores.601

• For GCN, we consider the standard random walk graph convolution D−1
degA. That is, the update602

rule of each graph convolutional layer can be written as603

X ′ = D−1
degAXW ,

where X and X ′ are the input and output node representations, respectively, and W is the shared604

learnable weight matrix in the layer.605

Compute We trained all of our models on a Telsa V100 GPU.606

Training details In all experiments, we used the Adam optimizer using a learning rate of 0.00001607

and 0.0005 weight decay and trained for 1000 epoch.608
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