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Abstract1

We present graph heavy light decomposed networks (GraphHLDNs), novel neural2

network architectures allowing reasoning about long-range relationships on graphs3

reducible to trees. By decomposing the trees into a set of interconnected chains in4

a way similar to the heavy-light decomposition algorithm, we rewire a tree with n5

vertices so that its depth is in order of O(log2 n) after building a binary-tree-shaped6

neural network over each chain. This enables faster propagation and aggregation7

of information over the whole graph while being able to reason about long-range8

sequences of nodes and considering their ordering. We show that in this way the9

method is partially addressing the previous need for message-passing architectures10

for step-by-step supervision to execute certain algorithms out-of-distribution. Our11

method is also applicable to real-world datasets, achieving results competitive with12

other state-of-the-art architectures targeted at learning long-range dependencies or13

using positional encodings on several molecular datasets.14

1 Introduction15

In most graph neural network architectures where in each layer nodes aggregate information from16

their neighbours, the range in which the information can travel is limited by the number of propagation17

layers. This hinders the ability of such architectures to reason about long-range dependencies, patterns18

and metrics such as orderings of vertices, their distances, or attributes of paths between two or more19

nodes.20

Furthermore, even if the network manages to learn and recognize such patterns on smaller graphs21

for example by using a step-by-step supervision signal as in [1], the networks have poor ability to22

generalize such patterns out-of distribution to graphs of larger scales and sizes [1, 2].23

Several recent works tried to tackle long-range reasoning. Approaches include addition of various24

positional encodings [3–5], hierarchical networks that make connections between distant nodes [6]25

or inclusion of modules that dynamically change the number of propagation layers based on the26

task or graph size [2]. These methods however have their limitations: For example, hierarchical27

networks merge multiple nodes together which leads to loss of information about their original28

edge connections. On the other hand, modules dynamically changing propagation layers usually29

require linear number of steps depending on the graph diameter leading to over-smoothing and30

diminishing/exploding gradient problem on large graphs.31

In this work, we propose a novel architecture that allows better reasoning over long-range distances32

on trees and graphs reducible to trees. This is done by reducing the graph to a tree, decomposing33

the tree into a set of chains, similarly to the heavy-light decomposition algorithm (introduced by34

Sleator and Tarjan [7]) and connecting different chains through binary-tree-shaped neural networks.35

This design allows the network to reason not only about neighbouring relationships, but also about36

larger units such as paths. We show that in this way our model is able to learn, execute and strongly37

generalize without step-by-step supervision signal new types of long-range patterns and algorithms38

that were not possible before, such as finding the shortest path, the lowest common ancestor or39

minimum vertex cover. Further we show that GraphHLDN has strong utility on real-world datasets40
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Figure 1: On the left is an example of input tree rooted with edges separated into heavy and light
edges. On the right each heavy chain was transformed into a binary tree. Binary trees were then
connected along light edges. To compute the graph level feature we use encode, process, decode
method, when first all inputs are encoded. In the process phase, the nodes are evaluated bottom-up
layer by layer. In binary tree internal nodes (yellow) binary merging MLP ϕ is used.

and is competitive or even outperforms best models on molecular datasets such as AQSOL [4], ESOL41

[8] or Peptides-struct [9].42

2 Methodology43

The key step in our method is the generation of the heavy-light decomposed (HLD) tree. This consists44

of three main sub-steps: first selecting light edges splitting the tree into chains, then creation of binary45

trees over each chain and finally connecting those trees along the light edges. Firstly, after rooting the46

tree, the edges are split into heavy and light ones in a similar way as in the heavy light decomposition47

algorithm: i.e. so that each vertex has at most one heavy child and from each vertex the path to the48

root contains at most O(log n)1 light edges. After creating the binary trees, we connect them along49

the light edges. The binary tree root of each chain connected with a light edge in the original tree will50

be connected with the light edge parent in the original tree as displayed in Figure 1. Please see the51

Appendix A, for formal details about how the tree is generated.52

To process the input tree we closely follow the setup with encode-process-decode[10] architecture53

as used in [1] and [11], where GraphHLDN is at the heart of the processing phase. To describe the54

progression of information through the GraphHLDN we split the nodes into two categories – merging55

nodes (new ones in GraphHLDN tree colored yellow in Figure 1) and the original nodes. To compute56

graph-level output we traverse through the graph in layers determined by depths of the individual57

vertices from deepest vertices to the root. In layers we combine aggregated information from deeper58

layers to obtain aggregated information at the higher level. In each merging node, the representation59

of two of its children xl and xr is combined using trainable multi-layer perceptron (MLP) ϕ as60

ϕ(xl, xr). 2 In some of the original nodes we need to process light children as well. In order to do61

this we take a representation of each light-children. Then we process them through separate MLP62

ϕ2, and afterwards combine them using sum aggregation. Then MLP ϕ3 is used which combines the63

representation of the original node xp and element-wise sum xc obtained from its light-edge children64

as ϕ3(xp, xc). Using these rules layer by layer from bottom up, the network gradually aggregates the65

information to the root.66

When the goal is to compute node-level targets, we can send the information downwards traversing67

in top down approach where in each layer we combine representation of each node from bottom-up68

approach and representation of its parent from top down approach. These aggregation (bottom-up)69

1n denotes number of vertices in tree
2We can also note that each merging node merges two parts of a heavy chain along some edge in the original

tree. Therefore in this merging process we can besides encoded children representation include also the edge
representation of this edge.
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Table 1: Results comparing MPNN with GraphHLDN on synthetic tasks. Each task has exact
solution, so average test accuracy is reported in and out of distribution.

Task description
GraphHLDN MPNN

n ≤ 100 n ≤ 10000 n ≤ 100 n ≤ 10000

Predict nodes on shortest path 100% 99.95% 71.13% 81.89%
Find LCA of 2 nodes with given root 99.5% 91.4% 32.16% 20.68%
Predict nodes in MVC 4 99.37% 99.55% 91.27% 91.02%

and spreading (top-down) passes of information can be combined multiple times in order to allow70

more general functions to be learned.71

Choice of this method is beneficial for two reasons. Firstly it is very similar to segment trees which72

are often used with heavy light decomposition for answering queries about trees in O(log2 n) time.73

This allows it to do the computation using O(log2 n) message passing iterations resolving vanishing74

gradient problem and also improving generalisation out of distribution because multiplying the75

number of nodes results in only constant increase in number of iterations. Secondly, this structure76

allows preservation of ordering information of vertices along the path in the process, as the learnable77

merging function has left and right vertex as separate and distinguishable inputs. Note that in all78

layers we use the same perceptron for merging. This means that merging function should work on79

all different sizes of segments (it should be able to merge vertex representing one node with vertex80

representing 1024 nodes).81

Associativity consistency loss (ACL). One of the features which we expect from merging node is82

therefore associativity. We enforce this by adding ACL which is computed by taking random triplets83

of nodes from tree with their representations a, b, c and then enforcing that |BN(ϕ(ϕ(a, b), c)) −84

BN(ϕ(a, ϕ(b, c)))| is minimal. Batch normalisation function BN is used in order to normalize among85

the features. To make the effect of the normalization stronger, instead of creating just one heavy-light86

tree from a defined root, we choose multiple random roots with different corresponding HLD trees87

and during testing we average output of each such tree.88

3 Evaluation89

We evaluate the proposed architecture on both synthetic algorithmic datasets and molecular bench-90

marks. In algorithmic datasets the input graphs consist of uniformly randomly selected trees3 with91

the training and validation datasets having up to 100 nodes and test sets having up to 10000 nodes to92

test out-of-distribution generalization to larger graphs. The evaluation focuses on node classification93

tasks: prediction of nodes on the shortest path between two marked nodes, finding the lowest common94

ancestor for two randomly selected nodes and a randomly marked root, prediction of nodes in the95

minimum vertex cover. We use a GraphHLDN network with hidden embeddings having size 6496

and three-layer multi-layer perceptrons with LeakyReLUs. For comparison we train a 30 iteration97

message passing neural network (MPNN) having sum aggregation and the same hidden embedding98

size and multi-layer perceptrons on full graphs instead of spanning trees.99

We compare the performance of GraphHLDN on Peptides-Struct, AQSOL and ESOL bench-100

marking datasets with previously reported baseline results from [4] [9] and [12]. The only difference101

is that in the case of Peptides-Struct we use hidden embeddings of size 128. For each graph in102

the datasets, we select a random spanning tree of the graph. In the case that the graph has multiple103

components we randomly select just one. We then create 30 randomly chosen transformed HLD trees104

from the selected spanning trees and during testing report how the averaged prediction on all 30 trees105

compares with the targets.106

Discussion and conclusions. As can be seen from the table 1, GraphHLDN is able to learn the107

algorithmic patterns from synthetic tasks and generalizes out of training distribution to graphs with108

3As all synthetic datasets consists of trees, we do not need to erase any edges in this case.
4Weighted Minimum vertex cover; if there are conflicts we prefer solutions where selected nodes are as close

to root of HLD as possible, this leads to unique solutions. Weights are integers between 1 and 5.
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Table 2: Results comparing test MAE on AQSOL dataset. The suffix LapPE denotes the use of
Laplacian Eigenvectors as node positional encodings with dimension 4.

Model L #Params Test MAE ± s.d.
RingGNN 2 123k 3.769 ± 1.012
GIN 16 514k 1.962 ± 0.058
MoNet 16 507k 1.501 ± 0.056
GAT 16 540k 1.403 ± 0.008
GCN 16 511k 1.333 ± 0.013
GatedGCN 16 507k 1.308 ± 0.013
3WLGNN 3 525k 1.108 ± 0.036
GatedGCN-LapPE 16 507k 0.996 ± 0.008
GraphHLDN N/A 87k 0.882 ± 0.012

Table 3: Results comparing test MAE on Peptides-struct dataset.

Model L #Params Test MAE ± s.d.
GINE 5 547k 0.354 ± 0.0045
GCN 5 508k 0.349 ± 0.0013
GatedGCN 5 509k 0.342 ± 0.0013
GatedGCN+RWSE 5 506k 0.335 ± 0.0006
SAN+LapPE 4 493k 0.268 ± 0.0043
SAN+RWSE 4 500k 0.254 ± 0.0012
Transformer+LapPE 4 488k 0.252 ± 0.0016
GraphHLDN N/A 351k 0.288 ± 0.0032

hundred times more nodes. This is despite the fact that no step-by-step supervision signal was used to109

learn intermediate algorithmic steps as required by previous works that could only generalize to much110

smaller graphs. For most tasks, the precision is near perfect in the case of GraphHLDN, suggesting111

that the network learns the actual algorithm behind the dataset target rather than some kind of its112

approximation.113

Due to the tree-shaped structure of GraphHLDN, the nodes in each layer need to aggregate and114

summarize information from nearly twice as many nodes from a deeper layer. This introduces115

the bottleneck causing over-squashing of exponentially growing information into fixed-size vectors116

which was shown to negatively impact the performance of graph neural networks [13] on graphs117

with negatively curved edges [14]. However, as can be seen in the tables 2, 3 and 4, our empirical118

evaluation showsthat GraphHLDN is not only applicable to synthetic tasks but it can also be practically119

useful on molecular datasets. GraphHLDN outperforms all models reported in [4] on AQSOL dataset120

while using a significantly smaller number of parameters. Similarly on ESOL it almost matches the121

performance of D-MPNN and in the case of the Peptides-struct dataset focused on long-range122

dependencies, GraphHLDN is competitive with transformer-based architectures.123

It is also notable that this performance is achieved despite ignoring certain edges not included in124

the spanning trees when the input graphs aren’t trees. We hope that our work will inspire further125

research in extending the capabilities of GraphHLDN to other graph topologies and further enhancing126

or combining capabilities of classical message-passing with GraphHLDN.127

Table 4: Results comparing test RMSE on ESOL dataset.

Model L #Params Test RMSE ± s.d.
Fingerprint + MLP 5 401k 0.922 ± 0.017
GIN 5 626k 0.665 ± 0.026
GAT 5 671k 0.654 ± 0.028
D-MPNN 5 100k 0.635 ± 0.027
GraphHLDN N/A 87k 0.639 ± 0.019
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A Algorithm for the construction of GraphHLDN tree163

In this appendix, we formally describe the algorithm for the construction of the tree structure used by164

GraphHLDNs. As mentioned earlier, GraphHLDN can be applied to any graph-structured data that165

are easily reducible to trees. This can be either in the form of direct mapping from a particular graph166

to a tree, or by choosing a subset of edges from a graph that form a spanning tree of the original167

graph. For example, as we have shown in the evaluation, in many molecular datasets the difference168

between the average number of edges and average number of vertices is small (typically less than 3)5,169

and so we are able to achieve competitive results even despite not utilizing the full graph.170

The algorithm for the construction of the tree used by GraphHLDN consists of the following three171

steps:172

1. For an input graph G = (V,E) that is not a tree, choose a random spanning tree T from G.173

In this work, this is done by a DFS-traversal from a uniformly randomly selected root vertex174

v ∈ V . The traversal always selects uniformly randomly the next vertex to explore from the175

available options. In the rare case that the graph has more than one component we just focus on176

the component with the largest number of vertices.177

2. From tree T , the algorithm selects uniformly randomly the root r ∈ V and roots the tree in this178

node. To get better results, we can select multiple such roots, compute the result of GraphHLDN179

for each and then average the results to get the final value.180

3. We perform the Heavy Light Decomposition algorithm (HLD) [7] to split the tree into a set of181

chains. The nodes inside of a single chain are connected by so-called heavy edges. The remaining182

edges are called light edges and connect the nodes between different chains as illustrated in183

Figure 1. This split achieves the property that for any node v ∈ V , the path between v and root184

r contains O(log n) light edges and therefore O(log n) different chains.185

The HLD algorithm consists of these two steps:186

(a) For each vertex v ∈ V count the number of nodes in the subtree rooted in node v of the187

rooted tree T . For node v, this is denoted as subtree_size(v).188

(b) For each vertex v ∈ V that is not a leaf and thus has at least one descendant, select a vertex189

u from its direct descendants for which the subtree_size(u) is the largest. Let edge (u, v)190

be a heavy edge.191

(c) All other edges that are not heavy edges are light ones.192

Each light edge (u, v) where v is closer to the root r, connects a subtree rooted in u to the193

remaining graph with at least the same number of vertices. Therefore it can be easily proven194

that there are at most O(log n) light edges on any path to the root.195

4. Now we transform the rooted tree T with marked heavy and light edges into the final tree used196

by GraphHLDN as shown on the right side of Figure 1. For every chain of nodes connected by197

heavy edges, we construct a binary tree whose leafs represent the original nodes of the chain.198

The binary tree is constructed similarly to Quick Sort algorithm:199

(a) If chain c has just one node v1, the resulting binary tree will also have just one node200

corresponding to the original node v1201

(b) Otherwise, for a chain c having nodes c = v1, v2, ..., vn sorted in this order based on how202

far they are from the root r, we select uniformly randomly a node va where we split the203

chain in two halves – cleft = v1, .., va and cright = va+1, .., vn.204

(c) We create a new merging node m and make its left and right child nodes the roots of a205

binary trees recursively constructed by this process for chains cleft and cright.206

Since the Quick Sort algorithm can be performed in asymptotically O(log n) layers, the newly207

created binary tree has also asymptotic height O(log n). After all chains are converted to binary208

trees, the light edges (u, v) connecting two different chains in the original tree, will now be209

replaced by a new edge. This edge (u, v), where v is closer to the root, connects the new node210

corresponding to v with the root of the binary tree where u belongs.211

Since, there are O(log n) chains on any path to the root and each chain was converted to a binary tree212

that also has depth in order of O(log n), the depth of the final tree is O(log2 n).213

5indicating that we need to remove at less than 4 edges to obtain a tree
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As described in Section 2, in the case of predicting a global property of the graph, we traverse the214

graph upward combining information from children into parent nodes. If we want to instead compute215

node-level targets, we first also traverse the graph in the same way upward and then go downward216

back to the leafs combining representation of each node with its parent. The upward and downward217

passes can be performed multiple times to learn more general functions.218

A.1 Benefits of this design219

This design is beneficial for two main reasons outlined in the methodology – scalability and preserva-220

tion of ordering information.221

Scalability. Compared to classical message-passing architectures, on many algorithmic reasoning222

tasks, our model is able to achieve much better out-of distribution generalization to graphs with223

larger number of vertices than what it was trained on.6 This is because in classical message passing,224

we need as many layers as the length of the path between two nodes between which we want to225

propagate the information. If the model learns a property of a certain path, it is difficult to generalize226

this model to longer paths. This is can be attributed to a small error introduced by every layer, which227

grows exponentially with the execution of more layers and so we quickly encounter the problem228

of exploding errors or even exploding gradient harming the predictions. However, in our model if229

we multiply the length of the paths, the number of layers needed to be executed increases just by a230

constant so the errors do not compound exponentially.231

Preservation of ordering. The second main advantage is that our model preserves the ordering232

information of vertices along the path. Compared to other hierarchical methods where aggregation233

of information from multiple nodes happens, our model can distinguish between the information234

aggregated from the left and right sons. In this way, the model can reason about whether certain235

features or properties of the path are ordered in a particular way, instead of aggregating them all236

together. This enables scalable reasoning about new types of long-range patterns that were not237

possible to model before.238

6In other words: We achieve very good results by evaluating the model on much larger graphs than it was
trained on.
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