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Abstract

The 3D occupancy estimation task has become an impor-
tant challenge in the area of vision-based autonomous driv-
ing recently. However, most existing camera-based methods
rely on costly 3D voxel labels or LiDAR scans for train-
ing, limiting their practicality and scalability. Moreover,
most methods are tied to a predefined set of classes which
they can detect. In this work we present a novel approach
for open vocabulary occupancy estimation called LangOcc,
that is trained only via camera images, and can detect ar-
bitrary semantics via vision-language alignment. In partic-
ular, we distill the knowledge of the strong vision-language
aligned encoder CLIP into a 3D occupancy model via dif-
ferentiable volume rendering. Our model estimates vision-
language aligned features in a 3D voxel grid using only im-
ages. It is trained in a weakly-supervised manner by ren-
dering our estimations back to 2D space, where features
can easily be aligned with CLIP. This training mechanism
automatically supervises the scene geometry, allowing for
a straight-forward and powerful training method without
any explicit geometry supervision. LangOcc outperforms
LiDAR-supervised competitors in open vocabulary occu-
pancy with a mAP of 22.7 by a large margin (+4.3%), solely
relying on vision-based training. We also achieve a mIoU
score of 11.84 on the Occ3D-nuScenes dataset, surpassing
previous vision-only semantic occupancy estimation meth-
ods (+1.71%), despite not being limited to a specific set of
categories.

1. Introduction
Object detection is a fundamental task in autonomous driv-
ing, enabling vehicles to understand and navigate their sur-
roundings. Traditionally, these tasks have been trained on
predefined sets of classes, limiting their ability to fully com-
prehend complex and dynamic environments. To overcome
this limitation, recent advancements have introduced 3D oc-
cupancy estimation, a popular method that represents scene
geometry using a voxel grid [5, 8, 17, 41, 51]. This ap-
proach allows for geometry-based generic object detection,
enabling autonomous vehicles to perceive any structure in

their environment. However, most existing 3D occupancy
estimation methods rely on expensive 3D ground-truth la-
bels [15, 25, 50]. This requirement poses a significant
challenge, as acquiring accurate 3D labels for large-scale
datasets is both resource-intensive and impractical. More-
over, existing benchmarks usually only reflect a limited
predefined set of classes. Consequently, there is a press-
ing need for novel methods to efficiently train occupancy
models without relying on 3D labels, for example via self-
supervised or camera-only learning. While some efforts
have been made to avoid voxel labels, they either still ne-
cessitate labeled LiDAR point clouds or involve complex
pseudo ground-truth generation techniques [14, 34, 48].
Furthermore, despite the ability to capture any geometry,
the semantic understanding of these methods remains tied
to a predefined set of classes. These limitations hinder the
adaptability and flexibility of autonomous systems in com-
prehending diverse and evolving environments.

In this paper we propose a novel weakly-supervised oc-
cupancy estimation method which aligns geometric esti-
mations with open vocabulary natural language features,
hence allowing representations of any semantics and there-
fore eliminating the need for 2D or 3D semantic labels. To
achieve this, we leverage the power of the popular CLIP
model [37] and distill its representational power into 3D
space through volume rendering. In particular, instead
of predicting the probabilities of predefined classes, our
model estimates vision-language aligned features per voxel.
The model is trained by rendering these features in a dif-
ferentiable manner from the 3D voxel space back to the
2D image space, where they are supervised by features
precomputed by the off-the-shelf vision-language encoder
CLIP [37]. The source code is available under https:
//github.com/boschresearch/langocc.

In summary, our contributions are:
• Open vocabulary occupancy: A novel vision-only ar-

chitecture to model arbitrary geometries and semantics
by aligning the semantic feature space with natural lan-
guage, hence decoupling occupancy representations from
predefined semantic class definitions.

• Weakly-supervised learning: Inspired by NeRF [32],

https://github.com/boschresearch/langocc
https://github.com/boschresearch/langocc


LangOcc trains language features and 3D scene geome-
try jointly and eliminates the need for 3D ground-truth
labels and can be trained with images only. The learn-
ing targets are automatically derived from images using
a pretrained CLIP model, bringing our approach close to
self-supervised learning. The model generalizes to esti-
mate any geometry and semantics without per-scene op-
timization like NeRF-approaches.

• Feature subspace learning: In addition we introduce a
specialised dimensionality reduction strategy to increase
segmentation performance when a set of task-specific
classes is available.

• State-of-the-art performance: LangOcc outperforms
competitors on open vocabulary occupancy estimation by
a large margin, and achieves state-of-the-art results in
camera-only semantic occupancy estimation.

2. Related Work
Three different lines of work are particularly relevant for
our proposed method, namely object detection, occupancy
estimation and open vocabulary perception.

2.1. Camera-based 3D Object Detection

Vision-based 3D object detection is crucial for autonomous
applications and a widely studied field. Most recent ap-
proaches transform extracted 2D image features from a sin-
gle or multiple views into a common 3D space (e.g. a Birds-
Eye-View grid; BEV) where objects boxes are estimated.
One popular approach is to lift 2D image features into 3D
by estimating a depth distribution [12, 13, 35], while other
methods such as [18, 26] project learned 3D queries onto
the image plane to sample features. Methods like [30, 44]
do not explicitly project features to 3D but instead follow
an object-centric approach. All of these methods are typi-
cally trained to detect specific types of objects, and there-
fore do not provide a comprehensive understanding of the
entire scene. This limitation has prompted the exploration
of the more general occupancy estimation paradigm, which
aims to perceive and understand the complete geometry of
the scene.

2.2. Camera-based 3D Occupancy Estimation

Vision-based occupancy prediction, also known as seman-
tic scene completion, involves estimating a dense represen-
tation of the 3D scene in terms of geometry and semantics
from a set of input images [1, 41, 45]. Pioneering works on
3D occupancy estimation extend the well-known concepts
of object detection to 3D space, e.g., by lifting the BEV
into a voxel grid [4, 12, 15, 25, 42]. Following approaches
mostly focus on efficient supervision [29, 31, 46], label effi-
ciency [2, 8, 34] or performance improvements via specific
model designs [16, 27, 38, 50, 52]. As the 3D occupancy
prediction task is inherently complex, most models rely on

3D ground truth data, which can be resource-intensive to
obtain. Consequently, there have been efforts to explore
self-supervised learning approaches for training occupancy
models using only image data [14, 48]. Specifically, vol-
ume rendering supervision (inspired by, e.g., NeRF [32] and
classical volume rendering [19]) has demonstrated great po-
tential as a training mechanism for occupancy estimation
models. It enables the simultaneous supervision of geome-
try and semantics using 2D labels, which are easier to ac-
quire than 3D voxel labels [2, 14, 48]. Despite these ad-
vancements, existing methods are often constrained by a set
of predefined classes or rely on pretrained models to gener-
ate ground truth, lacking a true generic scene representation.

2.3. Open Vocabulary Perception

The goal of open vocabulary perception (or similarly zero-
shot semantic segmentation) is to detect or segment object
classes that were not explicitly seen during training, given a
natural language query. With the help of multi-modal mod-
els like CLIP [37], many approaches have been developed
in this regard. A common method is to extend CLIP to
produce pixel-level features instead of a single image wide
feature. MaskCLIP [53] modifies the last pooling layer of
CLIP, while LERF [20] and CLIP-FO3D [49] extract patch-
wise CLIP embeddings for an image in a sliding-window
fashion. Further, methods like [9, 22, 28] train networks on
pixel-level segmentation datasets and distill CLIP features
simultaneously. OVR [47] trains a generalizable 2D object
detector with language pretraining, while ViLD [10] distills
CLIP knowledge into a 2-stage detector. OWL-ViT [33] di-
rectly attaches a detector to the CLIP image encoder. To en-
able 3D open vocabulary perception, distillation of vision-
language features into NeRFs [20] or Gaussian Splatting
[36, 54] have been explored, however these are only trained
on a per-scene basis. CLIP-FO3D [49] directly distills ex-
tracted vision-language features into a given 3D point cloud
via projection. Recently, there have also been efforts for
open vocabulary occupancy estimation similar to our work.
Most notably, POP-3D [43] trains a model to predict 3D
occupancy and 3D vision-language features given just im-
ages, but requires LiDAR scans during training. Similarly,
OVO [39] aligns voxel predictions with precomputed fea-
ture maps, but lacks geometry supervision and is only de-
signed for small and simple scenes. Finally, OpenOcc [17]
also represent the scene with voxels, but perform scene re-
construction on a per-scene basis like LERF [20].

3. Methodology
3.1. Problem Definition

Given a set of RGB images I = {I1, I2, ..., IN}, the ob-
jective is to estimate the surrounding environment as a 3D
voxel representation V on a defined grid. Each voxel in the



representation is assigned an occupancy probability Vσ ∈
[0, 1]X×Y×Z . Additionally, a vision-language aligned fea-
ture vector is estimated for each voxel Vψ ∈ RX×Y×Z×L

to model the semantics of the scene in a generic manner.
These voxel features can be utilized in various downstream
tasks, such as zero-shot semantic occupancy estimation or
open vocabulary retrieval.

3.2. Model Architecture

The proposed model is outlined in Fig. 1. Initially, the
input images I are transformed into 3D voxel features
Vf using the prominent 2D-to-3D transformation network
BEVStereo [24], similar to previous works. However, note
that any other 2D-to-3D encoder, like [13, 15, 26], could
be used instead. Afterwards, these voxel features are used
to predict the density Vσ and the language aligned fea-
tures Vψ using a 3D CNN decoder and two separate MLP
heads. The entire model is supervised using volume ren-
dering supervision by rendering the estimated 3D features
back to the 2D image space and comparing them with pre-
computed vision-language features (Sec. 3.3). Additionally,
in Sec. 3.4, an optional method to enhance detection perfor-
mance and training efficiency by pretraining a dimensional-
ity reduction encoder on a given vocabulary is presented.

2D-to-3D Encoder Image features are first extracted
from the input images I using a pretrained backbone archi-
tecture. Next, the features of the current frame and a spec-
ified amount of previous frames for temporal propagation,
are projected into 3D space using known camera parame-
ters and depth estimations. The 3D features are then pooled
to a common 3D voxel grid of features Vf ∈ RX×Y×Z×C ,
where X,Y, Z represent the resolution of the grid and C
denotes latent dimension size. This architecture is based on
BEVStereo [24], except that the features are pooled into a
3D voxel grid instead of a 2D Birds-Eye-View grid.

3D Head The voxel features Vf are processed by a 3D
CNN decoder Φf , which computes local interactions to re-
fine the features. Subsequently, for each voxel two separate
MLP heads Φσ and Φψ calculate the density probability σ
and a vision-language feature ψ ∈ RL, where L represents
the feature dimension size. The outputs of Φσ are trans-
formed to probabilities using the sigmoid function denoted
as s(·) Essentially, the scene geometry is represented by the
density probabilities Vσ , which can also be interpreted as
occupancy probabilities, while the semantics of the scene is
represented by the vision-language features Vϕ, which is by
design not tied to any specific set of classes.

Vσ = s(Φσ(Φf (Vf ))) ∈ [0, 1]X×Y×Z (1)

Vψ = Φψ(Φf (Vf )) ∈ RX×Y×Z×L (2)

As will be explained in Sec. 3.3, this separation is re-
quired to enable training via volume rendering, which auto-
matically supervises geometry without any explicit loss.

3.3. Volume Rendering Supervision

To supervise the entire model, we use differentiable vol-
ume rendering, a technique that gained popularity with
the introduction of NeRF [32]. Similar to recent works
[2, 14, 34, 48], instead of overfitting a network on a single
scene, we use volume rendering as a differentiable opera-
tion to bring our predictions from the 3D voxel space back
to the 2D image space, where ground truth labels are much
easier to acquire.

After estimating the volumes Vσ and Vψ , for each cam-
era i in the current frame, a set of 3D rays Di

r is gener-
ated, each originating from the camera origin oi in the di-
rection di(u, v) of a pixel (u, v) of the image into the 3D
voxel grid, using the camera extrinsic and intrinsic parame-
ters. For each ray r, we then sample a number of 3D points
r(t) = o+ td at different distances t along the ray and col-
lect the density probabilities σ(r(t)) and language features
ψ(r(t)) at these points from the predicted volumes using tri-
linear interpolation. We then accumulate the language fea-
tures along each ray to render them to a single feature using
the traditional differentiable rendering formulation [19], as
in NeRF [48]. Specifically, a rendering weight w(r(t)) is
computed for each sampled point on the ray by accumulat-
ing the interpolated density:

w(r(t)) = T (r(t)) (1− exp(−σ(r(t))δt)) , with (3)

T (r(t)) = exp

−
t−1∑
j=1

σ(r(j))δj

 , (4)

where T (r(t)) represents the cumulative transmittance
along the ray up to t and δt is the distance between the cur-
rent and next sample. This weight determines the contri-
bution of each point to the final value based on their es-
timated density. Given this weight, the final rendered 2D
vision-language features can be computed by summing up
the point features multiplied by their rendering weight.

Ψ̂(r) =

N∑
t=1

w(r(t))ψ(r(t)) (5)

Loss Function After rendering the 3D features Vψ into
2D features Ψ̂, a loss can be computed between the esti-
mated features and some 2D ground truth features that we
extract from the same input image using a vision-language
aligned image encoder, such as CLIP [37]. In this work, we
adopt the method proposed in [43] and extract pixel-level
CLIP features using MaskCLIP [53]. For each ray, we fetch
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Figure 1. Architecture of the proposed model. A set of images is first transformed to 3D voxel features via BEVStereo [24] and a 3D
CNN decoder. Next, two separate heads estimate the density probabilities and the generic scene semantics as vision-language features.
The model is trained via differentiable volume rendering, using a loss between rendered estimated features and precomputed 2D features
from MaskCLIP [53]. Optionally, to increase training efficiency and performance at the cost of expressiveness, feature subspace learning
can be applied using a predefined vocabulary.

the target feature Ψ(r) via bi-linear interpolation of the pre-
computed MaskCLIP feature map Iiψ at the pixel coordinate
(u, v). As a loss function, we propose the Cosine Similarity
Guided MSE, which is a combination of the cosine simi-
larity loss and the mean-squared error loss function. We
have found that the MSE loss function has a much easier-to-
optimize loss landscape, while the cosine similarity gives a
better notion of how close the embeddings are in the CLIP
space. Therefore, we optimize the MSE loss weighted by
the cosine distance C for each ray, so that features already
estimated well have less influence, while features with low
cosine similarity to the target have a higher influence on the
final loss:

Llang(Ψ̂,Ψ) = C(Ψ̂,Ψ) ∗ ||Ψ− Ψ̂||2 (6)

C(Ψ̂,Ψ) = (1− Ψ̂ ∗Ψ
||Ψ̂||2 ∗ ||Ψ||2

) (7)

Note that in our implementation of this loss, we do not back-
propagate the cosine distance loss. Essentially, we distill
the knowledge of a strong pretrained 2D vision-language
encoder into a 3D voxel-based model via volume render-
ing, while maintaining the language alignment function-
alities.

Simultaneously, the model is forced to learn correct
scene geometry estimations in order to be able to render the
features from 3D into different cameras correctly. There-
fore, the scene geometry estimation is learned automati-

cally, without any additional loss. It is important to note
that the volume rendering technique is only applied during
training. During inference, the model just takes the 2D im-
ages as input and outputs the scene geometry and 3D vision-
language features.

Temporal Rendering In order to estimate the 3D geome-
try of the scene correctly, the volume rendering supervision
method introduced above requires that the voxels are seen
from multiple rays, as the depth of a ray is otherwise am-
biguous. However, the field of view overlap between dif-
ferent cameras in a multi-view setup is usually very low
(e.g., nuScenes [3]), which aggravates the learning of the
correct densities without any explicit geometry supervision.
To address this, we adopt the temporal rendering approach
of recent works [2, 14, 34] and additionally render 2D fea-
ture maps for a set of temporally adjacent input images
It = {I−t, ..., I−1, I+1, ..., I+t} during training. For each
frame during training, we also generate rays for all temporal
frames in a predefined time horizon, and compute the same
loss as described above. As we show in the experiments,
this temporal rendering approach is crucial for the model to
simultaneously learn geometry and semantics from just the
feature distillation loss. However, rendering temporally ad-
jacent frames introduces errors due to dynamic objects. We
always render our predictions for the current time step, but
compute a loss to ground truth feature maps from adjacent
time steps, where objects might have moved. As previous
work has shown, compensating these errors can lead to bet-



ter performance [2], but requires either ground truth flow
data or an additional training task. As this affects only a
fraction of voxels, we accept the false supervisory signals
from temporal inconsistencies in this work and leave this
problem for future work.

3.4. Feature Subspace Learning

While vision-language features offer strong representa-
tional power for scene semantics, training a model with the
high-dimensional embedding space of vision-language en-
coders like CLIP imposes a significant computational and
memory overhead. Also, not every task necessitates the
full expressiveness of the vision-language encoder. In some
cases, the requirement may be to detect a specific set of
object categories (e.g. the zero-shot occupancy estimation
task). Therefore, we propose a method adopted from [21]
and train an autoencoder to reduce the embedding space
of CLIP to a smaller, task-specific subspace. This offers
a trade-off between open vocabulary expressiveness of the
full embedding space and a more efficient and specialised
lower dimensional space. A lower dimensional subspace
specifically modeled for the task at hand can also increase
segmentation performance as well as training speed.

Prior to training of our proposed model, we train a single
linear transformation U ∈ RL×L′

that maps from the orig-
inal feature space L to the lower dimensional space L′ as
the encoder, and use the transposed transformation UT as
the decoder. Thus, the encoder and decoder share weights,
which forces the matrix U to become orthogonal and re-
duces the overall amount of parameters to prevent over-
fitting. This autoencoder is trained solely on the vision-
language features ti ∈ RL for i ∈ {1, ..., n} of a set of
n text prompts from a predefined vocabulary, computed via
the corresponding text encoder of the vision-language en-
coder. The same loss as in [21] is used to train U .

t′i =
tiU

||tiU ||
t̂i =

t′iU
T

||t′iUT ||
(8)

Lred =
1

n

n∑
i=1

arccos(ti, t̂i). (9)

The dataset consists of just a few text prompts, enabling
the training of U within seconds. By defining a vocabu-
lary before training, we ensure that the lower-dimensional
subspace L̄ can focus on the required information and does
not model unnecessary features. We can freely define the
classes to be detected before the training. Furthermore, we
are not bound to either ground truth classes [3, 41, 42, 45]
or pretrained object detectors [14, 48]. After the autoen-
coder is trained, we can use the encoder U to reduce the
dimensionality of the ground truth vision-language features
L of the images, as the text and vision features are inher-

ently aligned. We then reduce the dimensionality of our lan-
guage head accordingly and train the model as before. This
method thus offers a much more efficient training when de-
tecting certain classes is required, by simply defining a vo-
cabulary of categories of interest, without any overhead. We
also refer to the trained encoder U as the reducer model.

3.5. Inference

At inference, the estimated embeddings can be used in a
versatile way. In this work, we solve the tasks of 3D open
vocabulary retrieval and zero-shot semantic occupancy es-
timation. Results are provided in Sec. 4.

3D Open Vocabulary Retrieval We compute the lan-
guage feature of a given text query using the text encoder,
and then compute the similarity of this query feature with
each voxel embedding via the dot product. The resulting
similarities can be visualized (e.g., by using a heatmap), or
used for binary classification using a threshold.

Zero-shot Semantic Occupancy Estimation Similarly,
we can assign each voxel a category by defining a vocab-
ulary that consists of text prompts describing the objects to
be detected. For each category, we define multiple prompts
that describe this class. Afterwards, for each query prompt,
a feature is computed with the text encoder. Given the out-
puts Vσ and Vψ of our model, we compute the similarity
between each voxel feature with each query feature, and as-
sign every voxel a class based on the query with the highest
similarity to the voxels embedding. We also always define
a free class that models unoccupied voxels, and set a voxel
to free when the estimated density is below a threshold τ .

4. Experiments

4.1. Dataset and Task Description

We conduct all experiments on the nuScenes dataset [3].
For the 3D open vocabulary retrieval, we use the bench-
mark provided by [43]. It consists of 105 samples, each
with an open vocabulary text query and corresponding bi-
nary labels for the LiDAR point cloud, with the goal of re-
trieving all 3D points that are described by the query. The
performance is measured by the mean-average-precision
(mAP) for all points in the scene, and only for points vis-
ible in at least one camera (referred to as mAP (v)). For
zero-shot occupancy estimation, we evaluate on the widely
known Occ3D-nuScenes benchmark [41], which provides
semantic voxel labels for the nuScenes dataset. We use a
predefined vocabulary (see supplementary material) based
on the classes given in the benchmark to assign a label to
each voxel. The performance is measured in geometric IoU
and in mean-IoU over all categories in the benchmark.



4.2. Implementation Details

For all tasks, we use the ResNet50 backbone [11] and an
image resolution of 256 × 704. The density and language
heads Φσ and Φψ each consist of three hidden layers with
a dimension of size 256. We train each network with a
batch size of 4 for 18 epochs. We use a time horizon of
12 (to the future and past) for temporal rendering, and gen-
erate 32, 786 rays per sample, randomly distributed over all
temporal frames in the horizon. Note that temporal render-
ing and thus temporal frames are only used during train-
ing. For each ray, we sample 100 points, and use the ner-
facc [23] package for rendering. Results are provided for
our model using the Full embedding space and the Reduced
space when applying the feature subspace learning strategy.
We use the same vocabulary, based on the Occ3D-nuScenes
classes, to train the reducer U for each experiment. The
reduced dimension size is set to L′ = 128.

4.3. 3D Open Vocabulary Retrieval

We compare our results to POP-3D [43] on the bench-
mark provided by the authors. Their model is based on
TPV-Former [15] and replaces the semantic head with a
vision-language head similar to our model. The authors
train their model using LiDAR scans available in nuScenes,
both for learning geometry and for feature distillation. They
also provide results for directly using MaskCLIP as a base-
line, by projecting the LiDAR sweeps on the MaskCLIP
feature maps. Results of this comparison are provided in
Tab. 1. As is visible, our method outperforms both base-
lines, even though we use just vision-based supervision.
We achieve a mAP score of 21.7 and 22.7 (for all points
and only visible points, respectively) compared to the 17.5
and 18.4 of POP-3D, without using LiDAR data. These re-
sults clearly demonstrate the effectiveness of rendering su-
pervision in distilling vision-language features into 3D. We
account this performance gain mostly to the temporal ren-
dering approach that allows our model to learn from many
overlapping views to enhance both geometry and vision-
language understanding. As expected, using the proposed
feature subspace learning method decreases the open vo-
cabulary performance of LangOcc, as we define a lower
dimensional space on a specific set of classes, which de-
creases detection performance for open vocabulary queries
that were not part of that set. As will be shown later, the Re-
duced version instead increases performance on the seman-
tic occupancy estimation task. We show some qualitative
results in Fig. 2 highlighting the open vocabulary capabili-
ties of LangOcc. Given just images as input, the model es-
timates the 3D geometry and generic semantics around the
vehicle, allowing to segment any object of interest given a
text prompt. The model keeps all the vision-language ca-
pabilities of CLIP even in 3D space, and is also capable of
segmenting small and thin objects like ”metal poles” accu-

Table 1. 3D open vocabulary retrieval results on the bench-
mark provided by [43]. mAP (v) is calculated only on points
visible to one of the cameras. The Mode indicates the modality
used to train the model. L and C refer to LiDAR scans and camera
images, respectively.

Method Mode mAP mAP (v)
MaskCLIP [53] L - 14.9
POP-3D [43] L 17.5 18.4
LangOcc (Full) C 21.7 22.7
LangOcc (Reduced) C 16.6 18.2

rately. Additional qualitative results comparing CLIP fea-
tures and estimated vision-language features are available
in the supplementary material.

4.4. Zero-shot Semantic Occupancy Estimation

We evaluate our approach against other recent vision-only
approaches on the Occ3D-nuScenes dataset [41] and show
the results in Tab. 2. Both competitors use off-the-shelf se-
mantic segmentation models to generate ground truth la-
bels, but are bound to specific classes. Our proposed
method surpasses SelfOcc [14] and OccNeRF [48] on both
geometric IoU and semantic mIoU. LangOcc achieves a ge-
ometric IoU score of at least 51.59, showing that our model
is able to estimate the scene geometry well without any pho-
tometric losses or explicit depth supervision. Both SelfOcc
and OccNeRF explicitly supervise geometry, for example
via multi-view stereo losses and RGB rendering. Seem-
ingly, the density learned via volume rendering of vision-
language features gives sufficient signal and is even bet-
ter suited than using photometric losses to learn geometry.
We hypothesize this is likely due to the high representa-
tional power of CLIP embeddings and because our model is
forced to learn consistent features in 3D over many overlap-
ping views. As a consequence the model gets better geom-
etry supervision compared to usually very ambiguous pho-
tometric losses. We further provide a comparison between
RGB and feature distillation losses for geometry in Sec. 4.5.
Furthermore, both SelfOcc and OccNeRF use class-specific
segmentation networks to estimate the voxel labels, while
LangOcc can theoretically detect any class with the same
model (in the full variation). Even though our model is
trained without any explicit class definition, we outperform
both competitors also in terms of semantic mIoU, highlight-
ing the power of the estimated features. By specifying a
vocabulary for the given task and using the proposed di-
mensionality reduction method (Sec. 3.4), we can further
increase the semantic mIoU score from 10.71 to 11.84. To
conclude, using just a single loss function and a straight-
forward training paradigm, our method achieves state-of-
the-art performance on vision-only Occ3D-nuScenes, while
still being capable of open-vocabulary detection. As men-
tioned above, the reducer U finishes training within a sec-



In
p
u
t

im
a
g
es

S
im

il
a
ri

ty
 

M
a
p

“Traffic light”
FRONT-LEFT FRONT FRONT-RIGHT

BACK-LEFT BACK BACK-RIGHT

“Metal Pole”
FRONT-LEFT FRONT FRONT-RIGHT

BACK-LEFT BACK BACK-RIGHT

“Human being”
FRONT-LEFT FRONT FRONT-RIGHT

BACK-LEFT BACK BACK-RIGHT

scene-0916 scene-0277 scene-0344

Figure 2. Qualitative results showing open vocabulary retrieval on nuScenes [3]. Given a text query, we compute similarities between
the text embedding and each estimated voxel embedding and highlight voxels with a high similarity score. Ego vehicle shown in white.

Table 2. Semantic occupancy estimation results on the Occ3D-
nuScenes benchmark [41] in terms of geometric IoU and se-
mantic mIoU. We compare with recent camera-only methods.
Best and second best performing in bold and italics, respectively.

Method IoU mIoU
SelfOcc [14] 45.01 9.30
OccNeRF [48] - 10.13
LangOcc (Full) 51.59 10.71
LangOcc (Reduced) 51.76 11.84

Table 3. Ablation on the loss function used for Llang .

Loss Function MSE CosSim Cos-guided MSE
IoU 50.29 49.88 51.59
mIoU 9.41 9.89 10.71
mAP (v) 20.1 22.6 22.7

ond and thus does not impose any notable overhead. We
also present results for methods trained with LiDAR or 3D
voxel labels [13, 15, 41] to demonstrate the gap between
LiDAR-supervised and vision-only approaches in Sec. 4.5.
We provide the performance on individual classes and addi-
tional qualitative results in the supplementary material.

4.5. Ablations

Loss function We provide a comparison between using
our proposed Cosine Similarity Guided MSE function and
using either the MSE loss or the Cosine Similarity loss by
training a model with each loss function. As the results
in Tab. 3 show, our loss function leads to increased perfor-
mance on each metric.

Temporal Horizon We ablate the temporal horizon of the
model during training and show the results in Tab. 4. As
expected, using no temporal rendering at all leads to very

Table 4. Ablation on the temporal horizon.

Horizon 0 4 8 12 16 20
IoU 15.78 40.85 49.71 51.59 50.54 49.74
mIoU 2.88 8.46 9.95 10.71 9.46 9.16
mAP (v) 9.8 20.0 22.6 22.7 21.8 20.2

poor results, as the model can hardly learn any 3D geome-
try from the very few overlapping rays. Adding 4 future and
past frames during rendering supervision already improves
all scores significantly, such that LangOcc achieves a better
open vocabulary retrieval performance than POP-3D [43].
The best performance on all tasks was achieved by using a
horizon of 12, which seems to be a good trade-off between
overlap of cameras and view diversity. Adding more tempo-
ral frames led to a decrease in performance. We hypothesize
this is due to the large distance between the camera poses,
so that many sampled points for rendering are not visible
in the current frame and too many temporal inconsistencies
become present.

Reduced Dimension Size Table 5 shows a comparison
between using different subspace dimension sizes for the
reducer U . We use the same vocabulary as in Sec. 4.4 for
all models to train the autoencoder, but modify the target
dimension size (with 512 being the full space). As observ-
able, the open vocabulary performance decreases steadily,
the smaller the subspace gets, as the model loses represen-
tational power and overfits more to the provided vocabu-
lary. However, using the dimensionality reducer can of-
fer improved performance on the zero-shot occupancy es-
timation task. The best performance can be achieved at
L′ = 128, which seems to be the optimal trade-off between
task-specific expressiveness and not overfitting. Decreasing
the dimension size further however, up to 32, still offers in-
creased mIoU performance compared to the original space.



Table 5. Ablation on the subspace dimensionality L′.

L’ 16 32 64 128 256 512
IoU 50.00 50.18 51.02 51.76 51.11 51.59
mIoU 7.52 10.86 11.18 11.84 11.08 10.71
mAP (v) 10.6 11.2 17.1 18.2 19.1 22.7

Only when the subspace dimensionality is decreased to 16,
the performance decreases drastically. Interestingly, the ge-
ometric estimations only differ slightly from the full space
at higher dimensions, while they decline at lower sizes. This
is likely because higher dimensions have more capacity to
encode information about geometry, while the lower dimen-
sions have to focus more on the semantic features from the
vocabulary. Also, feature vectors are more distinct in high
dimensions, such that finding corresponding points in dif-
ferent views is much easier than in lower dimensions, where
many feature vectors are similar.

Geometry Supervision To show that training our pro-
posed model with just the feature distillation loss Llang
leads to state-of-the-art 3D geometry estimations, we di-
rectly compare our approach with using photometric losses
for training, like it is done in [14, 48]. We train our proposed
model with RGB rendering by replacing the language-
feature head Φψ with an RGB head that estimates the ap-
pearance of a voxel in terms of RGB and train with a MSE
loss on the rendered RGB values. As is common in NeRF
approaches, we choose to model the appearance with spher-
ical harmonics [7, 40]. We compare the model on the
geometric IoU score on the Occ3D-nuScenes benchmark.
Training our model with this RGB supervision leads to a
geometric IoU score of 41.10. Our proposed supervision
method leads to a significantly better IoU score of 51.59,
which confirms that the feature distillation loss provides a
better supervision signal for the scene geometry than a pho-
tometric loss in our model architecture. We speculate that
this originates from the rich information of vision-language
features and their independence from the viewing angle that
impose clear constraints on the scene geometry. Photomet-
ric losses on the other hand suffer from ambiguities like
low-texture regions, locally similar pixel colors, different
lighting conditions and dependence on the viewing angle
which makes it difficult to extract a clear geometric signal.

Comparison to LiDAR-based models We provide a
comparison between our camera-only approach and two re-
cent methods using annotated 3D data. OccFlowNet [2]
trains the model using annotated LiDAR point clouds, while
CTF-Occ [41] trains with 3D voxel labels generated from
aggregated point clouds. As is visible in Tab. 6, methods
using annotated 3D data still outperform pure camera-only
methods. However, the data used for training requires ex-

Table 6. Comparing our model with state-of-the-art occupancy
estimation methods using LiDAR or 3D voxel labels on Occ3D-
nuScenes [41]. We compare only on the mIoU, as these works do
not provide results for the geometry. Mode indicates the modality
used during training. 3D, L, C refer to semantic 3D voxel labels,
semantic LiDAR points and camera images, respectively.

Method Mode mIoU
OccFlowNet [2] L 26.14
CTF-Occ [41] 3D 28.53
LangOcc (Full) C 10.71
LangOcc (Reduced) C 11.84

pensive manual labelling and additional sensor data, while
our method is trained with just the camera images.

5. Conclusion

In this paper, we have proposed a novel model that en-
ables a generic open vocabulary scene representation and
a weakly-supervised training mechanism that requires only
images as input. By using differentiable volume render-
ing, we distill the rich knowledge of the vision-language
encoder CLIP into a 3D occupancy estimation model and si-
multaneously learn to estimate scene geometry, without any
explicit geometry supervision. This allows for generic 3D
scene representations which are completely independent of
specific class definitions. Our model requires no per-scene
optimization like prior work [20, 54]. It significantly out-
performs previous attempts for open vocabulary occupancy
without using any LiDAR data. Additionally, we set the
new state-of-the-art performance on vision-only semantic
occupancy estimation on the Occ3D-nuScenes dataset, and
further improve segmentation performance using the pro-
posed feature subspace learning method. We conclude that
by distilling knowledge of strong 2D visual encoders into
3D occupancy estimation models, stronger occupancy es-
timations are possible than with photometric methods like
[14, 48]. Incorporating more generic feature representations
like DINO (which has been shown to encode better geo-
metric features than CLIP [6]) can be a promising future
direction. Also, our work still lacks a mechanism to deal
with dynamic objects, which leads to inconsistent supervi-
sory signals during temporal rendering. In future work, the
explicit modeling of scene dynamics could help to remove
inconsistent signals. Moreover, the benchmark of [43] is
relatively small and covers only common driving scene ob-
jects. To compare future open vocabulary approaches a
larger and more diverse benchmark dataset would be ben-
eficial. Finally and building on the strong performance of
our model, additional research on open vocabulary occu-
pancy is required to further investigate its applicability and
potential performance gains, highly demanded in a variety
of tasks such as autonomous driving.
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