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ABSTRACT

In this paper, we leverage existing statistical methods to better understand feature
learning from data. We tackle this by modifying the model-free variable selection
method, Feature Ordering by Conditional Independence (FOCI), which is intro-
duced in Azadkia & Chatterjee (2021). While FOCI is based on a non-parametric
coefficient of conditional dependence, we introduce its parametric, differentiable
approximation. With this approximate coefficient of correlation, we present a new
algorithm called difFOCI, which is applicable to a wider range of machine learning
problems thanks to its differentiable nature and learnable parameters. We present
difFOCI in three contexts: (1) as a variable selection method with baseline compar-
isons to FOCI, (2) as a trainable model parametrized with a neural network, and
(3) as a generic, widely applicable neural network regularizer, one that improves
feature learning with better management of spurious correlations. We evaluate
difFOCI on increasingly complex problems ranging from basic variable selection
in toy examples to saliency map comparisons in convolutional networks. We then
show how difFOCI can be incorporated in the context of fairness to facilitate
classifications without relying on sensitive data.

1 INTRODUCTION

Feature learning is crucial in machine learning (ML), enabling models to learn meaningful repre-
sentations of the data. It can improve performance, reduce dimensionality, increase interpretability,
and provide flexibility for adapting to new data distributions and tasks (Bengio et al., 2012; 2013).
However, increasing model transparency (Arrieta et al., 2020; Räuker et al., 2023), improving disen-
tanglement and understanding architectural biases (Bouchacourt et al., 2021; Roth et al., 2022), as well
as learning invariances to improve robustness (Arjovsky et al., 2019) have proven to be challenging.

In this paper, we propose a new feature-learning approach that relies on ranks, notion seldom
explored in the literature but thoroughly studied in statistics. The importance of ranks is evident,
from independence tests (Bergsma & Dassios, 2014; Blum et al., 1961; Csörgő, 1985; Deb & Sen,
2023; Drton et al., 2020) and sensitivity analysis (Gamboa et al., 2018), to multivariate analysis (Sen
& Puri, 1971) and measuring deviation (Rosenblatt, 1975). However, most of these methods are
nonparametric and, therefore, not easily extendable to feature learning with neural networks (NNs).
While there are a handful of feature learning works that rely on rank notions (Kuo & Hsu, 2017;
Wojtas & Chen, 2020; Fan et al., 2023; Li et al., 2023b), these works do so indirectly and through
reliance on two NNs; one that optimizes for a non-rank-based feature-learning objective and another
that learns how to rank those learned features according to some similarity measure.

To fill this gap, we propose difFOCI, a parametric relaxation of the nonparametric, rank-based
measures of correlation (Chatterjee, 2020; Azadkia & Chatterjee, 2021), which generalizes the
measure proposed by Dette et al. (2013), roots of the idea can be related to the Rényi correlation
(Bickel et al., 1993; Rényi, 1959). To the best of our knowledge, difFOCI is the first parametric
framework that directly optimizes a rank-based objective, making it directly applicable to numerous
applications in machine learning, including end-to-end trainable neural networks. We demonstrate
that difFOCI yields strong results in various areas, including (i) feature selection, (ii) domain shift
and spurious correlation, and (iii) fairness experiments.

∗Correspondence to krunolp@meta.com. † Joint last author.
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Organization of the paper. In Section 2, we introduce the notation and technical background. In
Section 3, we outline the main results of this paper, explaining the proposed metric, and establishing
its theoretical properties. We analyze it in toy examples that demonstrate solid performance. In
Section 4, we extend difFOCI, showcasing its strengths in three examples. In Section 5, we highlight
its wide applicability to real-world data, showing it achieves state-of-the-art performance on feature
selection and dimensionality reduction, and competitive performance in domain shift and fairness
literature. Finally, in Section 6, we conclude with a few remarks on the potential future applications.

2 PRELIMINARIES AND TECHNICAL BACKGROUND

2.1 NOTATION AND PRELIMINARY DEFINITIONS

We let Id denote the d× d identity matrix and [n] = {1, . . . , n}. We let S(A) = π1(A), ..., πn!(A)
be the set of all permutations of a set A, with |A| = n. For a matrix X, we denote the set of
all permutations its columns by S(X) and by πj

i (X), we represent the i-th element of the j-th
permutation. We denote its p-th through q-th column as Xp:q, with p > q, p, q ∈ N. We define the
Hadamard product between a vector α ∈ Rp and a matrix X ∈ Rn,p as (α⊙X)i,j := αiXi,j . We
represent the scaled Softmax function with σβ(x), where σβ(x)i = eβxi/

∑d
j=1 e

βxj , for x ∈ Rd,
β ∈ R+. Finally, we use c(x, p) to denote zeroing out any xi with |xi| ≤ p, for x ∈ Rd and p ∈ R.

2.2 CHATERJEE’S COEFFICIENT

We present the novel rank-based estimator developed by Chatterjee (2020), which is the first of two
foundational works necessary for our approach. Consider a random vector (X,Y ) on a probability
space (Ω,F ,P), with Y being non-constant and governed by the law µ. The estimator approximates
the following rank-based measure (Dette et al., 2013):

ξ(X,Y ) :=

∫
Var

(
E
(
1{Y≥t} | X

))
dµ(t)∫

Var
(
1{Y≥t}

)
dµ(t)

. (1)

Chatterjee (2020) establishes a straightforward estimator for (1) that has simple asymptotic
theory, enjoys several consistency results and exhibits several natural properties; (i) normal-
ization: ξ(X,Y ) ∈ [0, 1], (ii) independence: ξ(X,Y ) = 0 ⇐⇒ Y ⊥⊥ X , (iii) complete
dependence: ξ(X,Y ) = 1 ⇐⇒ Y a measurable function of X a.s., and (iv) scale invariance:
ξ(aX, Y ) = ξ(X,Y ), a ∈ R∗. To estimate ξ, consider i.i.d. pairs (Xi, Yi)

n
i=1 ∼ (X,Y ), with n ≥ 2.

Rearrange the data as
(
X(1), Y(1)

)
, . . . ,

(
X(n), Y(n)

)
, such that X(1) ≤ · · · ≤ X(n), breaking ties

uniformly at random. Define ri as the rank of Y(i), i.e., the number of j for which Y(j) ≤ Y(i), and
li as the number of j such that Y(j) ≥ Y(i). The estimator is then defined as:

ξn(X,Y ) := 1−
n
∑n−1

i=1 |ri+1 − ri|
2
∑n

i=1 li (n− li)
. (2)

Furthermore, Chatterjee (2020) establishes the following consistency result for ξn:
Theorem 1. (Chatterjee, 2020) If Y is not almost surely a constant, then as n → ∞, ξn(X,Y )
converges almost surely to the deterministic limit ξ(X,Y ).

In simulations by Chatterjee (2020), this estimator demonstrates greater efficacy than most
signal-detection tests. Its applications span diverse areas: approximate unlearning (Mehta et al.,
2022), topology (Deb et al., 2020), black carbon concentration estimation (Tang et al., 2023),
sensitivity analysis (Gamboa et al., 2022), and causal discovery (Li et al., 2023a). Extensive further
research has been conducted: its limiting variance under independence (Han & Huang, 2022),
permutation testing (Kim et al., 2022), bootstrapping (Lin & Han, 2024), rate efficiency (Lin & Han,
2023), minimax optimality (Auddy et al., 2023) and kernel extension (Huang et al., 2022); Bickel
(2022) analyzed it for independence testing, showing it might have no power or prove misleading1.

1This does not impact us, however, as we do not utilize it for independence testing.
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2.3 EXTENDING THE COEFFICIENT FOR ESTIMATING CONDITIONAL DEPENDENCE

In a subsequent study, Azadkia & Chatterjee (2021) extend the coefficient (1) ξ to a measure
T (Y,Z | X), capturing the strength of the conditional dependence between Y and Z, given X. T
can be interpreted as a non-linear extension of the partial R2 statistic (Draper & Smith, 1998), and
reads as follows:

T = T (Y,Z | X) :=

∫
E(Var(P(Y ≥ t | Z,X) | X))dµ(t)∫

E
(
Var

(
1{Y≥t} | X

))
dµ(t)

,

where Y denotes a random variable governed by µ, and X = (X1, . . . , Xp) and Z = (Z1, . . . , Zq)
are random vectors, defined within the same probability space, with i.i.d. copies (Xi,Zi, Yi)

n
i=1 ∼

(X,Z, Y ), n ≥ 2. Here, q ≥ 1 and p ≥ 0, with p = 0 indicating X has no components.

The statistic T generalizes the univariate measure in (1). To construct its estimator, for each index
i, define N(i) as the index j where Xj is the closest to Xi, and M(i) as the index j where the pair
(Xj ,Zj) is closest to (Xi,Zi) in Rp+q w.r.t. the Euclidean metric and resolving ties randomly. The
estimate of T is given by:

Tn = Tn(Y,Z | X) :=

∑n
i=1

(
min

{
ri, rM(i)

}
−min

{
ri, rN(i)

})∑n
i=1

(
ri −min

{
ri, rN(i)

}) . (3)

with M(i) denoting the index j such that Zj is the nearest neighbor of Zi, p ≥ 1 and ri, li as defined
in Sec. 2.22. The authors establish the same four natural properties for T as for the estimator in (1) -
normalization, independence, complete dependence, and scale invariance:

Theorem 2. (Azadkia & Chatterjee, 2021) Suppose that Y is not almost surely equal to a measurable
function of X. Then T is well-defined and 0 ≤ T ≤ 1. Moreover, T = 0 iff Y and Z are conditionally
independent given X, and T = 1 iff Y is almost surely equal to a measurable function of Z given X.

The authors further demonstrate that Tn is indeed a consistent estimator of T :

Theorem 3. (Azadkia & Chatterjee, 2021) Suppose that Y is not almost surely equal to a measurable
function of X. Then as n→∞, Tn → T almost surely.

2.4 FOCI: A NEW PARADIGM FOR FEATURE SELECTION

Azadkia & Chatterjee (2021) utilize the estimator Tn to propose a novel, model-independent,
step-wise feature selection method. The method, termed FOCI: Feature Ordering by Conditional
Independence, is free from tuning parameters and demonstrates provable consistency. FOCI is
outlined in Alg. 1, where we observe its iterative nature: variables are chosen one by one until the
estimator’s value drops below zero.

Algorithm 1 FOCI

Input: n i.i.d. copies of (Y,X), with the set of predictors X = (Xj)j∈[p] and response Y

j1 ← argmaxj∈[p] Tn(Y,Xj)

if Tn(Y,Xj1) ≤ 0 then
Ŝ = ∅

else
while Tn (Y,Xj | Xj1 , . . . , Xjk) > 0 do

jk+1 ← argmax[p]\{j1,...,jk} Tn (Y,Xj | Xj1 , . . . , Xjk)

Ŝ = {j1, ..., jk′}
Output: Set Ŝ of chosen predictors’ indices

2The expression for p = 0 is given in Appendix A.1.
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FOCI performs well on both simulated and real-world datasets. In a toy example with Y = X1X2 +
sin(X1X3), where Xi ∼ N(0, σ2 Ip), σ2 = 1, and i ∈ [2000], p = 100, FOCI selects the correct
subset 70 percent of the time. In contrast, popular scikit-learn feature selection algorithms (Pedregosa
et al., 2011), explained in Sec. 5, almost never identify the correct subset (difFOCI, proposed in
the next section, consistently selects the correct subset while preserving the same relative feature
importance as FOCI during its correct runs). When applied to real-world datasets, FOCI matches the
performance of established methods while requiring up to four times fewer features.

2.5 EXTENDING T TO MACHINE AND DEEP LEARNING

From a statistical point of view, both ξn and Tn exhibit several strengths: well-established theoretical
properties, are non-parametric, have no tunable parameters nor any distributional assumptions.
Furthermore, a simple application of Tn results in a strong feature-selection baseline. However, the
non-smooth nature of the objectives in (2) and (3) renders them non-differentiable, and therefore not
applicable to most ML applications3.

In the following section, we make these objectives differentiable using straightforward, well-known
tricks in the ML community. This allows us to extend them to various ML and deep learning
applications (as showcased in Sec. 5). Moreover, it also allows to account for interactions between
all features simultaneously (rather than in a step-wise fashion as in FOCI). Although FOCI could
account for this in principle, as can be seen from Alg. 1, this would increase FOCI’s complexity from
O(p2) to potentially O(2p) thus preventing its practical use.

3 MAIN RESULTS

We now propose an alternative formulation to the estimator Tn in (3), the objective of FOCI. As we
will show later, this variation allows for the retention of FOCI’s strengths as well as the improvement
of its shortcomings.

3.1 DIFFOCI: TOWARDS A DIFFERENTIABLE VERSION OF FOCI

The initial step involves making the objective Tn(Y,Z|X) differentiable w.r.t inputs Z. Implementing
this can be accomplished using straightforward techniques. We employ the following approach:

1. Compute the pairwise distance matrix M ∈ Rn,n where Mi,j = ∥Xi −Xj∥.
2. Calculate Sβ ∈ Rn,n such that Sβ = σβ(−(M+ λ In))

4.

3. Instead of indexing rN(i) = r[N(i)], utilize r⊤Sβi,· .

Similarly, for Uβ := σβ(−(M̂ + λ In)), and M̂i,j = ∥(Xi,Zi) − (Xj ,Zj)∥. This allows us to
present difFOCI, a differentiable version of the estimator in (3):

Tn,β = Tn,β(Y,Z|X) :=

∑n
i=1(min{ri, r⊤Uβi,·}} −min{ri, r⊤Sβi,·}})∑n

i=1(ri −min{ri, r⊤Sβi,·}})
. (4)

Using the following theorem, we establish that our new estimator (4) enjoys the same limiting
theoretical properties as the estimator in (3):

Theorem 4. Let β ∈ R+. Suppose that Y is not almost surely equal to a measurable function of X.
Then, limn→∞ limβ→∞ Tn,β = T almost surely.

The proof’s core argument (given in Appendix B) is based on demonstrating that the quantities
r⊤Uβi,· and r⊤Sβi,· converge to rM(i) and rN(i) respectively as the inverse temperature parameter
β approaches infinity. Once this convergence is established, the remainder of the proof follows easily
from Theorems 5 and 6 in Azadkia & Chatterjee (2021), outlined in Appendix A.

3Even if applicable, FOCI is often not well-suited for deep learning applications, as shown in Sec. 5.2.
4Throughout the experiments, we use λ = max(1e10,maxi,j Mi,j + ϵ).

4



Published as a conference paper at ICLR 2025

0.1 0.0 0.1
1.0

0.5

0.0

0.5

1.0

0.1 0.0 0.1
1.0

0.5

0.0

0.5

1.0

1 0 1
1.0

0.5

0.0

0.5

1.0

1 0 1
1.0

0.5

0.0

0.5

1.0

(a) Generating functions of functional process

0 10
0.0

0.1

0.2

0.3

Selection Criterion

Param. norms

1 0 1
1.0

0.5

0.0

0.5

1.0
| 1| = 0.27

2 0 2
1.0

0.5

0.0

0.5

1.0
| 2| = 0.23

2 0 2
1.0

0.5

0.0

0.5

1.0
| 3| = 0.18

2 0 2
1.0

0.5

0.0

0.5

1.0
| 4| = 0.06

1 0 1
1.0

0.5

0.0

0.5

1.0
| 5| = 0.01

(b) First plot: norms of θ. Remaining plots: features with 5 largest param. norms (only first 3 selected).

Figure 1: Synthetic dataset experiment, detailed in Sec. 3.2. Out of 240 total features, our vec-(dF1)
selects three informative, yet diverse features (corresponding to norms 0.27, 0.23, and 0.18).

Making the estimator differentiable allows us to use Tn,β in various ways. Considering the predictors
X, response variable Y and potentially available sensitive attributes XS or group affiliations XG,
parameterization fθ, we highlight three ways to use Tn,β :

(dF1) Tn,β(Y, fθ(X)): as a maximization objective, learning features that preserve ranks in the
same fashion as the response

(dF2) ℓ(Y, Ŷ ) + λTn,β(XG, fθ(X)): as a regularizer, penalizing the outputs (or learned features)
fθ(X) for being dependent on the protected groups XG, where ℓ denotes the standard loss
used in machine learning

(dF3) Tn,β(Y, fθ(X)|XS): as a conditioning objective, allowing to learn features that contain
information about the response only after conditioning out the sensitive information XS

For instance, (dF1) can be utilized for feature selection or dimensionality reduction techniques. (dF2)
can be employed to prevent the network from relying on spurious correlations when group attributes
are available. (dF3) can be applied in fairness scenarios where we aim to avoid predictions based on
certain personal information.

The remaining task is to select the parameterization fθ(·). In the following sections, we will focus on
two options: (i) vec - a dot product parameterization fθ(X) = θ ⊙X, or (ii) NN - a neural network
parameterization, fθ(·)5,6. Algorithm 2 provides a general outline for using the Tn,β with a chosen
parameterization, and specific instances of the algorithm are given in Appendix G.

Algorithm 2 Differentiable FOCI (difFOCI)

Input: predictor Z ∈ Rn,p, response Y ∈ Rn, and optional X ∈ {∅, S,G}, for sensitive S ∈ Rn,d

or group info. G ∈ Rn,d, d ≥ 1
Input: parameterization fθ ∈ {vec,NN}, objective choice Tn,β ∈ {(dF1), (dF2), (dF3)}
Initialize θ
for t = 1, ..., niter do
L ← Tn,β(Y, fθt(Z)|X) // Applying difFOCI
Update θt+1 ← Optim(L, θt) // Parameter update

Output: parameterization fθ

We proceed by testing whether difFOCI performs well at FOCI’s main application - feature selection.
We begin with a simulated dataset, followed by three experiments with increasing complexity.

5For example, with vec-(dF1) we denote using (dF1) with vector parameterization.
6We also tried vec-NN parameterization fθ(X) = θ2 ⊙ fθ1(X), with θ = {θ1, θ2} but it did not show any

improvements over the NN parameterization.
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3.2 PRELIMINARY SYNTHETIC STUDY

To evaluate the feature selection performance of difFOCI, we utilize vec-(dF1) to obtain the objective
Tn,β(Y, θ ⊙X). Unlike FOCI, which returns a binary vector indicating whether a feature is selected
or rejected, difFOCI’s version vec-(dF1) yields a real-valued vector with components (θi)i∈[p]

representing the predictive informativeness of each corresponding feature (which allows taking into
account feature variability). To perform feature selection, we need to choose a cutoff parameter υ
and select the features with |θi| ≥ υ.

Alg. 2 therefore requires the following hyperparameters: softmax temperature β, cutoff value υ,
and optimization parameters (e.g., learning rate γ, weight decay λ, minibatch size b, etc.). Our
experimental analyses show that β = 5 and υ = 0.1 yield consistently good performance, so we
set these as fixed7. As a result, our algorithm simplifies solely to the hyperparameters used in
conventional optimization methods, which are in Appendix G for all experiments.

Environment. As an initial example, we consider a data-generation process ideal for FOCI: from
a large pool of features, a handful is sufficient for strong performance with n ∼ p. The functional
process is illustrated in Fig. 1a, crafted to generate a diverse set of features: informative ones, such as
straight lines, sinusoids, or parabolas, and functions individually uninformative, yet informative in
multidimensional contexts, e.g., ellipses, rotated parabolas, and more involved curves. This process
includes 60 functions, each noised four times, resulting in p = 240 features with n = 100 points.
Ideally, a feature selection method should pinpoint a small but diverse set of features8.

Baselines. For comparative analysis, we employ various feature selection techniques from the
scikit-learn library (Pedregosa et al., 2011). These include: GenericUnivariateSelect (GUS) for
univariate feature selection, SelectPercentile (S.Per.), retaining only the top user-specified percentile of
features, and statistical test-based methods: SelectFpr (FPR), SelectFdr (FDR), and SelectFwe (FWE)
addressing false positive rate, false discovery rate, and family-wise error, respectively. Additionally,
we employ SelectKBest (K.B) to select the best 25%, 50%, or 75% of features based on the ANOVA F-
value test (Girden, 1992). We also benchmark against dimensionality reduction techniques including
Linear Discriminant Analysis (LDA, Fisher (1936)), Principal Component Analysis (PCA, Wold
et al. (1987)), and Uniform Manifold Approximation and Projection (UMAP, McInnes et al. (2018)),
retaining 25%, 50%, and 75% of the features/principal components.

Throughout this and Sec. 4, we measure the performance by looking at the test error using Support
Vector Regression (SVR, C = 1.0, ϵ = 0.2) (Vapnik, 1963; 1964; Smola & Schölkopf, 2004). For
SelectKBest, PCA, and UMAP, instead of reporting for 25, 50, and 75% of features/components
separately, we only provide the results yielding the lowest mean-squared test error.

7A further discussion on this can be found in Appendix J
8The exact data-generating process is given in Appendix D.1

Table 1: Feature selection benchmark results in terms of test MSE. Our algorithms consistently yield
the most accurate predictions while selecting one of the smallest feature subsets (as seen in (1a)).
With µ̂y , we denote predicting the overall mean and with Full, regressing to the whole dataset.

GUS S.Per. FPR FDR FWE K.B. 2 K.B. 50 K.B. 75 FOCI vec-(dF1) NN-(dF1)
# Feat. Select. 1 24 112 95 53 2* 50* 100* 6 2 N/A
Test MSE 0.086 0.028 0.027 0.028 0.030 0.084 0.030 0.028 0.030 0.016 ± 0.02 0.012 ± 0.01

(a) Results from simulated data study, detailed in Sec. 3.2. Both (dF1) versions successfully inherit FOCI’s
strengths: they select a small number of features while exhibiting solid performance.

µ̂y Full GUS S.Per. FPR FDR FWE K.B. UMAP PCA FOCI vec-(dF1) NN-(dF1)
Exp 1. 1.38 0.22 0.93 0.94 0.53 0.54 0.68 0.54 1.14 1.02 0.21 0.02 ± 0.00 0.08 ± 0.01
Exp 2. 0.49 0.58 0.53 0.58 0.58 0.59 0.58 0.58 0.55 0.52 0.53 0.24 ± 0.00 0.02 ± 0.01
Exp 3. 0.35 0.31 0.32 0.32 0.34 0.34 0.33 0.33 0.33 0.34 0.30 0.23 ± 0.00 0.18 ± 0.01

(b) Results from three toy experiments, described in Sec. 4, show that both versions of (dF1) enhance FOCI’s
strengths. In Experiments 2 and 3, they are the only methods that outperform regressing to the mean µ̂y .
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Table 2: Feat. selection and dim. reduction benchmarks in terms of logistic test loss. Reported are
the mean and std. across five random seeds. Our algorithms yield competitive predictions.

GUS S.Per. FPR FDR FWE K.B. UMAP LDA PCA FOCI vec-(dF1) NN-(dF1)
Spambase 10.70 6.05 2.92 2.92 2.92 3.39 2.97 3.20 3.12 3.04 2.56 ± 0.13 2.57 ± 0.19
Toxicity 14.41 12.98 17.30 12.98 18.02 10.09 12.98 15.86 10.00 16.30 11.61 ± 0.80 9.61 ± 1.50
QSAR 2.88 3.16 3.16 3.76 2.92 3.52 2.32 2.16 2.16 3.44 2.54 ± 0.07 2.11 ± 0.11
Breast Cancer 4.66 1.69 0.42 0.42 0.42 0.00 2.48 1.42 1.24 0.62 0.00 ± 0.00 0.00 ± 0.00
Religious 0.84 0.56 0.65 0.57 0.56 0.48 6.63 1.61 0.60 0.53 0.48 ± 0.03 0.56 ± 0.04

Results. Our approach selects a small, diverse, and informative set of features, resulting in good
performance and showcasing successful inheritance of FOCI’s main strengths (see Table 1a). The
norms of the selection parameter θ are shown in Fig. 1b, demonstrating the evident relationship
between the predictive informativeness of the features and the corresponding parameter norms.

We have discussed the recent advances and methodologies necessary to introduce difFOCI, as well
as provided experimental analysis on a synthetic examples. We now proceed to more challenging
examples, and ultimately to real-world datasets.

4 FROM FEATURE SELECTION TO FEATURE LEARNING

With a high-level understanding of difFOCI in place, we continue to assess its performance. We
begin by highlighting two key observations we encountered during our preliminary experiments. We
consider the following toy example: Y = sin(X1)+2 sin(X2)+3 sin(X3)+ϵ, where ϵi ∼ N(0, σ2

ϵ ),
i ∈ [n], and X ∼ N(0, σ2

x Ip), with n = 2000, p = 10, σx = σϵ = 0.1.

Observation 1.(†) The objectives (2) and (3) consistently capture the correct feature func-
tional forms. Specifically, the values (i) Tn

(
Y,

[∑2
i=1 sin(π

j
i (X1:3), sin(π

j
3(X1:3))

])
, j ∈ [3],

(ii) Tn(Y, sin(X1:3)), and (iii) Tn(Y,
∑3

i=1 sin(Xi)) are all significantly greater than (i)

Tn

(
Y,

[∑2
i=1 π

j
i (X1:3), π

j
3(X1:3)

])
, (ii) Tn(Y,X1:3), and (iii) Tn(Y,

∑3
i=1 Xi) (as illustrated in

Figure 2a in the Appendix). Therefore, a more complex parameterization (than fθ(X) = θ ⊙X)
might learn a nonlinear transformation of the features, maintaining ranks in a manner more consistent
with the true functional forms.

Observation 2.(‡) The objectives (2) and (3) consistently prefer correct, lower-dimensional bases of
the features. Specifically, Tn(Y,

∑3
i=1 sin(Xi)) remains consistently greater than Tn(Y, sin(X1:3)).

Therefore, a more elaborate parameterization could learn an appropriate, possibly lower dimensional,
basis transformation.

Motivated by these observations, we propose NN parameterizations to further explore the capabilities
of difFOCI. We begin with simple one-hidden-layer Multi-layer Perceptrons (MLPs) as fθ
parameterizations. We set the output dimension to match the input, as this performed well across
all experiments, though treating it as a hyperparameter might further enhance performance.

4.1 INITIAL ASSESSMENTS OF (DF1)

We now evaluate both vec-(dF1) and NN-(dF1) across three progressively challenging examples. We
note that across all examples, FOCI selects the correct subset of the features more than 95 percent of
the time. We set p = 10 throughout the experiments, and both σϵ = σx = 0.1. Full experimental
details are given in Appendix F.

Toy example 1: difFOCI successfully accounts for feature variability. Here, we test whether
vec-(dF1) and NN-(dF1) on the following example, previously introduced in Sec. 3: Y =
sin(X1) + 2 sin(X2) + 3 sin(X3) + ϵ, where ϵi ∼ N(0, σ2

ϵ ), i ∈ [n], and X ∼ N(0, σ2
x Ip), with

n = 2000. In Table 1b, we observe that vec-(dF1) and NN-(dF1) successfully pinpoint the correct fea-
ture subset and account for feature variability, resulting in improved performance to that of FOCI. We
expand on this in Appendix, Fig. 2b for vec-(dF1), where we can observe the correct proportionality
of the coefficients in the regression equation and the learned parameters θ1, θ2 and θ3.9.

9Note that this is already an improvement to FOCI, as it cannot take into account feature variability.
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Toy example 2: difFOCI can learn appropriate basis transformations. The goal of this toy
example is to examine whether NN-(dF1) effectively learns basis transformations. Data are generated
as follows: Y = sin(X1 + 2X2 + 3X3) + ϵ, where ϵi ∼ N(0, σ2

ϵ ), i ∈ [n], and X ∼ N(0, σ2
x Ip),

with n = 2000. We affirmatively demonstrate its efficacy by examining the test loss after fitting the
SVR - the substantially lower test error can be observed in Table 1b.

Toy example 3: difFOCI simultaneously addresses mutual interactions, basis, and nonlinear
transformations. Our final example seeks to explore the full capabilities of (dF1) with NN param-
eterization, examining whether it can simultaneously discern complex, interrelated relationships
as well as multiple transformations, encompassing both nonlinear and basis transformations. The
data generation process is as follows: Y = sin((X1X2)

2 + (X2X3)
2 + (X1X3)

2) + ϵ, where
ϵi ∼ N(0, σ2

ϵ ), i ∈ [n], and X ∼ N(0, σ2
x Ip), with n = 5000. As evidenced in Table 1b (using

a two-hidden-layer MLP10), we successfully learn effective transformations that result in strong
performance.

Summary. Throughout the experiments, both vec-(dF1) and NN-(dF1) yield strong performance,
as seen in Table 1b. The two penultimate examples emphasize the potential capabilities of difFOCI;
not only can it correctly identify the relevant subsets, but it also learns useful transformation, yielding
the only method that outperforms random guessing (see µ̂y column in Table 1b).

5 EXPERIMENTS

Having examined (dF1) on synthetic problems and toy datasets, we now proceed to real-world
datasets. We attempt to demonstrate the flexibility of difFOCI and highlight the promising potential
of all three objectives: (dF1)-(dF3). Our aim in this section is not solely to outperform existing
benchmarks, but rather to showcase difFOCI’s broad applicability, inspire further investigation into
these applications, and explorations of new areas where the method can be applied.

5.1 REAL-WORLD DATA

In this section, we compare vec-(dF1) and NN-(dF1) to feature selection and dimensionality reduction
methods using real-world datasets.

Environments. We evaluate our methods on five UCI datasets (Dua & Graff, 2017): Breast Cancer
Wisconsin (Street et al., 1993), involving benign/malignant cancer prediction; Toxicity (Gul et al.,
2021), aimed at determining the toxicity of molecules affecting circadian rhythms; Spambase
(Hopkins et al., 1999), classifying emails as spam or not; QSAR (Ballabio et al., 2019), a set
containing molecular fingerprints used for chemical toxicity classification, and Religious (Sah
& Fokoué, 2019), aimed at identifying the source of religious books texts. We perform Logistic
Regression (Cox, 1958) with default scikit-learn (Pedregosa et al., 2011) parameters (tol =1e−4,
C = 1.0). Dataset information is provided in Appendix C.

difFOCI is competitive in feature selection and dimensionality reduction. As seen in Table 2
difFOCI achieves solid performance in the experiments. For NN-(dF1), we use two-hidden-layer
MLPs. The findings, which employ logistic loss, demonstrate that taking into account feature
variability and using parameterization are crucial for improved performance compared to FOCI.

5.2 DOMAIN SHIFT/SPURIOUS CORRELATIONS

Here, we investigate an application of difFOCI to deep learning in the form of NN-(dF2). The
data consists of triplets (Y,X,XG), denoting the predictor, response variables, and group attributes,
respectively. In this context, difFOCI can be employed as a regularizer to enforce the learning
of uncorrelated features with respect to spurious attributes, thereby mitigating relying on spurious
correlations and shortcuts in the model (Kenney, 1982).

10For this example, we found one-hidden-layer MLP not to be expressive enough.
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Table 4: Worst group accuracy across several datasets. difFOCI obtains competitive performance.

Dataset difFOCI+ERM difFOCI+DRO ERM DRO JTT Mixup IRM

MultiNLI 77.6± 0.1 77.5± 0.2 66.9± 0.5 77.0± 0.1 69.6± 0.1 69.5± 0.4 66.5± 1.0
CivilComments 66.32± 0.2 70.3± 0.2 64.1± 1.1 70.2± 0.8 64.0± 1.1 65.1± 0.9 63.2± 0.5
CelebA 89.32± 0.4 89.8± 0.9 65.0± 2.5 88.8± 0.6 70.3± 0.5 57.6± 0.5 63.1± 1.7
NICO++ 47.10± 0.7 46.3± 0.2 39.3± 2.0 38.3± 1.2 40.0± 0.0 43.1± 0.7 40.0± 0.0
MetaShift 83.10± 0.5 91.7± 0.2 80.9± 0.3 86.2± 0.6 82.6± 0.6 80.9± 0.8 84.0± 0.4
CheXpert 54.42± 3.2 75.3± 0.3 50.1± 3.5 73.9± 0.4 61.5± 4.3 40.2± 4.1 35.1± 1.2

Table 3: Average and worst group accuracies for
the Waterbirds dataset. We compare to the ERM
and DRO, where e.s. stands for early-stopping
and l2 for Ridge regularization. We can see that
difFOCI performs comparably to state-of-the-art
spurious correlation methods.

Average acc. Worst group acc.
Train Test Train Test

ERM 100 97.3 100 60.0
ERM (e.s. + strong l2) 97.6 95.7 35.7 21.3
ERM + FOCI 99.9 77.8 1.1 0.0
ERM + NN-(dF2) 99.9 93.7 92.0 85.7
DRO 100.0 97.4 100.0 76.9
DRO (e.s. + strong l2) 99.1 96.6 74.2 86.0
DRO + FOCI 99.5 74.5 6.1 3.9
DRO + NN-(dF2) 80.1 93.5 99.2 87.2

Environment. We use Waterbirds dataset
(Sagawa et al., 2019), which combines bird pho-
tographs from the Caltech-UCSD Birds-200-
2011 dataset (Wah et al., 2011) with image back-
grounds from the Places dataset (Zhou et al.,
2017). The labels Y = {waterbirds, landbirds}
are placed against G = {water, land} back-
grounds, with waterbirds (landbirds) more fre-
quently appearing against a water (land) back-
ground (exact details given in Table 7, Appx.
E). Due to this spurious correlation, (Sagawa
et al., 2019; Idrissi et al., 2022; Bell et al., 2024)
observed that NNs (i.e., ResNet-50 (He et al.,
2016), pre-trained on ImageNet (Deng et al.,
2009)) tend to rely on the background to infer
the label, rather than solely focusing on birds.

Preventing reliance on spurious correlations. We investigate the potential benefits of employing
NN-(dF2) as a regularization technique, which penalizes the reliance of extracted features fFEθ

on
the spurious attribute XG (i.e., the background) via Tn,β(XG, fFEθ

(X) | XG). From Tables 3-4, we
can see that NN-(dF2) (applied to both ERM and DRO) compares competitively to state-of-the-art
methods. The exact algorithm is given in 4. Experimental details, reported average accuracy and
further examples are in Appendix G.

difFOCI increases worst group accuracy while maintaining solid performance. We can observe
in Table 3 that NN-(dF2) successfully prevents the network from relying on the spuriously correlated
background while improving worst group accuracy for both ERM and DRO. Apart from Waterbirds
dataset, we also tested difFOCI on 5 additional datasets: two text datasets: MultiNLI (Williams et al.,
2017), CivilComments (Borkan et al., 2019), and four image datasets: NICO++ (Zhang et al., 2023),
CelebA (Liang & Zou, 2022), MetaShift (Liang & Zou, 2022) and CheXpert (Irvin et al., 2019). Full
experimental details (including average accuracy performance) can be found in Appendix G. We
experimented with various architectures: in addition to the ResNet-50, we used BERT and ViT-B with
pretraining strategies like DINO and CLIP. Furthermore, we compared to Just Train Twice (Liu et al.,
2021), Mixup (Zhang, 2017), and Invariant Risk Minimization (Arjovsky et al., 2019) as baselines.
As shown in Table 5, difFOCI demonstrates competitive performance in terms of both average and
worst-group accuracy.

5.3 FAIRNESS STUDY

Finally, we explore NN-(dF3). This section, while not the primary focus of our contribution, offers
a complementary illustration of the difFOCI objective’s versatility through a heuristic example.
We found that this form (dF3) preserves the performance of the chosen parameterization while
significantly reducing its predictivity of the sensitive attribute.

Environments. We utilize classification datasets with interpretable features and sensitive attributes:
(i) Student dataset (Cortez & Silva, 2008), aimed at predicting if a student’s performance surpasses
a specific threshold (sex as the sensitive); (ii) Bank Marketing dataset (Moro et al., 2014) with
predicting if a customer subscribes to a bank product (marital status as the sensitive); and two ACS
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Table 5: NN-(dF3) allows preserving predictivity of y while significantly reducing predictivity of Xs.

Dataset Features Train acc: y Val. Acc: y Test acc: y Train acc: Xs Val. Acc: Xs Test acc: Xs

Bank marketing Stand. data 91.32± 2.3 93.27± 1.2 90.05± 2.0 89.09± 1.2 72.26± 1.5 70.93± 0.9
(dF3) features 90.81± 1.8 92.13± 2.6 89.35± 1.1 63.12± 2.8 62.24± 0.7 63.81± 2.1

Student data Stand. data 88.35± 1.7 79.63± 0.9 75.67± 1.3 95.68± 2.1 72.16± 2.4 71.21± 1.5
(dF3) features 80.18± 2.9 72.16± 1.6 72.73± 1.7 59.47± 1.1 58.95± 1.0 48.89± 1.1

ASCI Income Stand. data 83.49± 2.4 85.10± 2.1 81.30± 2.7 68.97± 1.6 67.67± 2.6 66.00± 0.7
(dF3) features 82.80± 0.8 81.99± 1.5 82.95± 0.9 56.58± 1.2 55.01± 2.0 52.73± 2.0

datasets (Ding et al., 2021), (iii) Employment and (iv) Income, for predicting individual’s employment
status and whether their income exceeds a threshold, with sex and race as sensitive attributes in both
datasets. Exact experimental details are provided in Appendix I.

Findings. Leveraging the conditional dependence expression in (3), our method flexibly incor-
porates sensitive features to facilitate fairer classification without exploiting sensitive data. Using
NN-(dF3), we optimize Tn,β(Y, fθ(X) | Xs) to learn features that are informative about Y , offering
an optimization that heuristically seems to favor solutions less predictive of Xs. Specifically, we train
two NNs to predict y: the first NN was trained on X (without Xs), while the second NN was trained
on features fθ(X) obtained using (dF3). We then used the final layers of both NNs to predict the
sensitive Xs. As can be observed from Table 5, difFOCI (dF3) significantly reduces the predictability
of Xs (sometimes to chance level) without significantly impacting accuracy on y - in some cases
even slightly improves it.

Despite conditioning out sensitive information, difFOCI delivers solid performance. From
Table 5, we see that vec-(dF3) demonstrates strong performance by effectively debiasing the network
(as it cannot predict the sensitive Xs well), while keeping informativeness regarding y. In Appendix
I, we conduct another experiment with similar findings showcasing the promising potential of (dF3).

6 CONCLUSION

In this paper, we discussed two recent advancements in rank-based measures of correlation, critically
examining the proposed estimators, including the FOCI algorithm and its barriers to adoption in
machine learning. Leveraging these advancements, we introduced three enhanced and more adaptable
versions of FOCI. We conducted several studies to showcase the retention of FOCI’s strengths and the
improvement of its weaknesses. We evaluated difFOCI’s capabilities from toy examples, where our
method was the sole one exceeding random guessing, to comprehensive real-world datasets involving
feature selection and spurious correlations, where it demonstrated state-of-the-art performance.
Finally, we proposed a direct application of our algorithm in fairness research, showcasing that
difFOCI successfully debiases neural networks on several datasets.
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behind: Fine-grained robustness in coarse-grained classification problems. Advances in Neural
Information Processing Systems, 33:19339–19352, 2020.

14



Published as a conference paper at ICLR 2025

W Nick Street, William H Wolberg, and Olvi L Mangasarian. Nuclear feature extraction for breast
tumor diagnosis. In Biomedical image processing and biomedical visualization, volume 1905, pp.
861–870. SPIE, 1993.

Minmeng Tang, Tri Dev Acharya, and Deb A Niemeier. Black carbon concentration estimation with
mobile-based measurements in a complex urban environment. ISPRS International Journal of
Geo-Information, 12(7):290, 2023.

Vladimir Vapnik. Estimation of dependences based on empirical data. Springer Science & Business
Media, 2006.

Vladimir N Vapnik. Pattern recognition using generalized portrait method. Automation and remote
control, 24(6):774–780, 1963.

Vladimir N Vapnik. A note on one class of perceptrons. Automat. Rem. Control, 25:821–837, 1964.

Catherine Wah, Steve Branson, Peter Welinder, Pietro Perona, and Serge Belongie. The caltech-ucsd
birds-200-2011 dataset, 2011.

Adina Williams, Nikita Nangia, and Samuel R Bowman. A broad-coverage challenge corpus for
sentence understanding through inference. arXiv preprint arXiv:1704.05426, 2017.

Maksymilian Wojtas and Ke Chen. Feature importance ranking for deep learning. Advances in neural
information processing systems, 33:5105–5114, 2020.

Svante Wold, Kim Esbensen, and Paul Geladi. Principal component analysis. Chemometrics and
intelligent laboratory systems, 2(1-3):37–52, 1987.

Yuzhe Yang, Haoran Zhang, Dina Katabi, and Marzyeh Ghassemi. Change is hard: A closer look at
subpopulation shift. arXiv preprint arXiv:2302.12254, 2023.

Hongyi Zhang. mixup: Beyond empirical risk minimization. arXiv preprint arXiv:1710.09412, 2017.

Xingxuan Zhang, Yue He, Renzhe Xu, Han Yu, Zheyan Shen, and Peng Cui. Nico++: Towards
better benchmarking for domain generalization. In Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, pp. 16036–16047, 2023.

Bolei Zhou, Agata Lapedriza, Aditya Khosla, Aude Oliva, and Antonio Torralba. Places: A 10
million image database for scene recognition. IEEE transactions on pattern analysis and machine
intelligence, 40(6):1452–1464, 2017.

15



Published as a conference paper at ICLR 2025

APPENDIX

The organization of the appendix is as follows:

• Section A provides foundational material necessary for understanding proof methodology.

• Section B presents the technical results that support the conclusions drawn in our work,
particularly in relation to Theorem 4.

• Section C gives further insights into the Toy Experiment 1.

• Section D offers details regarding the feature selection datasets, which include both the
synthetic dataset and the UCI datasets.

• Section E contains information about the Waterbirds dataset utilized for feature learning.

• Section F includes additional comments on the fairness experiments, which involve two
UCI datasets and American Community Survey (ACS) data, made available through the
Folktables package.

• Section G elaborates on the experimental analyses and the configuration of hyperparameters.

• Section H gives three concrete examples of the pseudocodes required for Alg. 2.

• Section I provides experimental details regarding experiments in Section 5.3.

• Section J gives empirical evidence for the choice of fixing the parameter β = 0.2 by
analyzing the performance of difFOCI for different values of β.

• Section K presents experimental evaluation of robustness to domain shift for feature selec-
tion using difFOCI (dF1).

A ADDITIONAL TECHNICAL BACKGROUND

A.1 AUXILIARY RESULTS REQUIRED FOR THE PROOF OF THM. 4

In this section, we provide the required results for the proof of Theorem 4. We begin by providing
the full forms of the estimator, including the case p = 0.

If p ≥ 1, the estimate of T reads as follows:

Tn = Tn(Y,Z | X) :=

∑n
i=1

(
min

{
ri, rM(i)

}
−min

{
ri, rN(i)

})∑n
i=1

(
ri −min

{
ri, rN(i)

}) . (5)

And if p = 0, we obtain:

Tn = Tn(Y,Z) :=

∑n
i=1

(
nmin

{
ri, rM(i)

}
− l2i

)∑n
i=1 li (n− li)

, (6)

with M(i) denoting the index j such that Zj is the nearest neighbor of Zi, and ri, li as defined in
Sec. 2.2.

We then proceed by defining:

1. Pn(Y,X) := 1
n2

∑n
i=1(ri −min{ri, rN(i)}), and

2. Qn(Y,Z|X) := 1
n2

∑n
i=1(min{ri, rM(i)} −min{ri, rN(i)}).

These two quantities are important for the following theorems:
Theorem 5. (Azadkia & Chatterjee, 2021) Suppose that p ≥ 1. As n → ∞, the statistics
Qn(Y,Z | X) and Pn(Y,X) converge almost surely to deterministic limits. Call these limits a and b,
respectively. Then

1. 0 ≤ a ≤ b.
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2. Y is conditionally independent of Z given X if and only if a = 0.

3. Y is conditionally a function of Z given X if and only if a = b.

4. Y is not a function of X if and only if b > 0.

Explicitly, the values of a and b are given by

a =

∫
E(Var(P(Y ≥ t | Z,X) | X))dµ(t)

and

b =

∫
E
(
Var

(
1{Y≥t} | X

))
dµ(t)

=

∫
E(P(Y ≥ t | X)(1− P(Y ≥ t | X)))dµ(t).

Next, suppose that p = 0. Define Qn(Y,Z) :=
1
n2

∑n
i=1

(
min

{
ri, rM(i)

}
− L2

i

n

)
and Pn(Y ) :=

1
n3

∑n
i=1 Li (n− Li), where Li is the number of j such that Yj ≥ Yi.. Then, one can show the

following:
Theorem 6. (Azadkia & Chatterjee, 2021) As n→∞, Qn(Y,Z) and Pn(Y ) converge almost surely
to deterministic limits c and d, satisfying the following properties:

1. 0 ≤ c ≤ d.

2. Y is independent of Z if and only if c = 0.

3. Y is a function of Z if and only if c = d.

4. d > 0 if and only if Y is not a constant.

Explicitly,

c =

∫
Var(P(Y ≥ t | Z))dµ(t),

and

d =

∫
Var

(
1{Y≥t}

)
dµ(t) =

∫
P(Y ≥ t)(1− P(Y ≥ t))dµ(t).

The two aforementioned theorems serve as the key ingredients to Theorems 2 and 3, as well as the
proof of Thm. 4, which is given in Sec. B.

A.2 WORST-GROUP-ACCURACY (WGA) METHODS

Below, we mention the two most-popular methods appearing in the literature on WGA maximization:

ERM. Empirical Risk Minimization (ERM), proposed by Vapnik (2006), chooses the predictor
minimizing the empirical risk 1

n

∑n
i=1 ℓ (f (xi) , yi). ERM does not use attribute (group) labels.

Group DRO. Group Distributionally Robust Optimization (gDRO) as proposed by Sagawa et al.
(2019) aims to minimize the maximum loss across different groups. The objective is formulated as:

sup
q∈∆|G|

|G|∑
g=1

qg
ng

ng∑
i=1

ℓ (f (xi) , yi) ,
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where G = Y ×A represents the set of all groups, ∆|G| denotes the |G|-dimensional simplex, and
ng is the number of examples belonging to group g ∈ G within the dataset. As a result, gDRO
incorporates attribute labels. Specifically, gDRO assigns a dynamic weight qg to the minimization of
the empirical loss for each group, which is proportional to its current error rate.

Other methods. The body of literature on robust, worst-group optimization is rapidly expanding,
making it infeasible to compare all available methods thoroughly. Additional examples of robust
learners that do not utilize attribute information (like ERM) include Learning from Failure (Nam
et al., 2020), the Too-Good-to-be-True prior (Dagaev et al., 2023), Spectral Decoupling (Pezeshki
et al., 2021), Just-Train-Twice (Liu et al., 2021), and the George clustering algorithm (Sohoni et al.,
2020). Conversely, methods that incorporate attribute information (like gDRO and difFOCI) include
Conditional Value at Risk (Duchi et al., 2019), Predict then Interpolate (Bao et al., 2021), Invariant
Risk Minimization (Arjovsky et al., 2019), and a wide range of domain-generalization algorithms
(Gulrajani & Lopez-Paz, 2020).

B PROOF OF THEOREM 4.

In this section, we re-state Theorem 4 and prove it.

Theorem 4. Let β ∈ R+. Suppose that Y is not almost surely equal to a measurable function of X.
Then, limn→∞ limβ→∞ Tn,β = T almost surely.

Proof. Let Y be a random variable and X = (X1, . . . , Xp) and Z = (Z1, . . . , Zq) be random
vectors, defined on the same probability space. Here q ≥ 1 and p ≥ 0. The value p = 0 means that
X does not have any components. By µ, we denote the law of Y .

Recall that we denote with ri the rank of Y(i), i.e., the number of j for which Y(j) ≤ Y(i), and with
li the number of j such that Y(j) ≥ Y(i). For each index i, N(i) is the index j where Xj is the
closest to Xi, and M(i) is the index j where the pair (Xj ,Zj) is closest to (Xi,Zi) in Rp+q w.r.t.
the Euclidean metric and resolving ties randomly.

The two quantities Qn(Y,Z | X) and Pn(Y,X) and their respective limits a and b (see Theorems 5
and 6) are key to proving Theorems 2 and 3. In order to prove that Tn,β converges to the same limit
as Tn, we have to introduce the following two quantities:

1. Pn,β(Y,X) := 1
n2

∑n
i=1

(
ri −min{ri, r⊤Sβi,·}

)
, and

2. Qn,β(Y,Z|X) := 1
n2

∑n
i=1

(
min{ri, r⊤Uβi,·}} −min{ri, r⊤Sβi,·}}

)
,

with Sβ = σβ(−(M+ λ In)), Uβ = σβ(−(M̂+ λ In)), and M̂i,j = ∥(Xi,Zi)− (Xj ,Zj)∥, with
σβ the softmax function as defined in Sec. 3.1.

Now, define γi := |ri − rM(i)| and δi := |ri − rN(i)|. Let ϵ = min(γ1, . . . , γn, δ1, . . . , δn).
Then, by the continuity properties of σβ(·) and setting λ = max(1e10,maxi,j Mi,j + ϵ), we
have limβ→∞ Sβi,· = limβ→∞ σβ(−(M + λ In))i,· = 1{i = argmaxj∈[n]\i−∥Mi,·∥} =

1{i = argminj∈[n]\i ∥Xi − Xj∥} = N(i). One can similarly show that limβ→∞ Uβi,· =

limβ→∞ σβ(−(M̂ + λ In))i,· = M(i). Therefore, we can choose n > N∗ = max(N1, N2),
such that ∀n > N1,maxi |rN(i) − r⊤Sβi,· | < ϵ, and ∀n > N2,maxi |rM(i) − r⊤Uβi,· | < ϵ. Then,
we can easily show that Qn,β(Y,Z|X) converges to the limit c, with c = limn→∞ Qn(Y,Z|X):
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|Qn,β(Y,Z|X)− c| = | 1
n2

n∑
i=1

(min{ri, r⊤Uβi,·}} −min{ri, r⊤Sβi,·}})− c|

≤ | 1
n2

n∑
i=1

(min{ri, rM(i)}} −min{ri, rN(i))− c|+ 2nϵ

n2

≤ |Qn(Y,Z|X)− c|+ 2nϵ

n2
,

where both terms go to zero as we take n to infinity (for the first term, see Thm. 5). One can also
straightforwardly show that Pn,β(Y,X) converges to the same limit b as Pn(Y,X).

Finally, we can closely follow Sec. 10 in Azadkia & Chatterjee (2021) to conclude; For case p ≥ 1,
we recall the quantities a and b from the statement of Theorem 5, and notice that T = a/b. By
Theorem 5, Qn → a and Sn → b in probability. Thus, Tn → a/b = T in probability. This proves
Theorem 4 when p ≥ 1. Finally, for case p = 0, here T = c/d, where c and d are the quantities
from Theorem 6. Note that Tn = Qn/Sn, where Qn = Qn(Y,Z) and Sn = Sn(Y ). By Theorem 6,
Qn → c and Sn → d in probability. Thus, Tn → c/d = T in probability. This proves Theorem 4
when p = 0.

C CONTINUATION OF TOY EXPERIMENT 1.

We present a plot for the two observations discussed in Section 5, as well as Toy Example 1. The left
plot shows that the differences between the three observations are all statistically significant, while
the right plot highlights two key strengths of our method: it quickly stabilizes, and the parameter
norms reflect the variability of the features.
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Figure 2: Left: Mean and std. across 50 random inits. All expressions yield values significantly
greater than zero. Right: Development of the first five parameters in Toy Exp 1.

D EXPERIMENTAL ENVIRONMENTS

In the following, we provide details on the environments used in our experiments in Section 5. We
list the number of features, samples, and classes in each UCI environment in Table 6.

Spambase Toxicity QSAR Breast Cancer Religious
n 4601 171 8992 569 8265
p 57 1203 1024 30 590
# classes 2 2 2 2 8

Table 6: Feature Selection Dataset details
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D.1 SYNTHETIC ENVIRONMENT

Here, we briefly describe how we generate the synthetic environment depicted in Fig. 1, the synthetic
dataset that is created using trigonometric transformations and permutations of parameters.

Let x be a linearly spaced vector defined as x = linspace(−6, 6, 100). Define the parameters a, b, and
c as: a = linspace(0.1, 2, 4), b = linspace(0.1, 2, 15), and c = linspace(−1, 1, 4), where linspace(a,
b, n) represents n uniformly spaced points in the interval [a, b]. Features are then generated using the
formula:

f(x)a,b,c = a · sin(b · x+ c) (7)

where a, b, and c are elements from the Cartesian product of the parameter sets a, b, and c. The
features are stored in a matrix X where each column represents a feature vector. For each feature
vector, transformations are applied as follows: Xnew = (−1)i+1 ·X[:, i · 15 + j] for i ∈ {0, 1} and
j ∈ {0, . . . , 14}. Additional transformations are applied based on a permutation of parameters c, a,
and b. The transformed features are: Xfinal = −1 ·Xnew[:, i · 15 + j] for selected indices i and all j.
The final dataset X is obtained by concatenating all transformed features and adding Gaussian noise:
X = X +N (0, 0.1) four times, yielding n = 100 and p = 4 ∗ 15 ∗ 4 = 240. The predictor variable
is calculated as y = sin(x) - we do not add further noise here as the features already contain noise.

D.2 UCI DATASETS - FEATURE SELECTION

Below, we briefly describe the five UCI datasets (Dua & Graff, 2017) used in our feature selection
comparison.

D.2.1 SPAMBASE

The ”Spambase” dataset (Hopkins et al., 1999) is designed for classifying emails as spam or non-spam.
It consists of 4,601 email instances with 57 features, characterized by both integer and real values.
The dataset is multivariate and is often used in computer science, with classification as the primary
task.

The dataset includes diverse types of spam, such as product ads, money schemes and chain letters.
The goal is to identify whether an email is spam, with some non-spam indicators like the word
”george” or area code ”650” reflecting personalized filters.

D.2.2 TOXICITY

The ”Toxicity” dataset (Gul et al., 2021) contains data on 171 small molecules designed for the
functional domains of CRY1, a core clock protein involved in circadian rhythm regulation. Of these
molecules, 56 are toxic, while the rest are non-toxic. The dataset is tabular, with 1,203 molecular
descriptors per instance. The primary task is classifying molecules as toxic or non-toxic.

D.2.3 QSAR

The ”QSAR Oral Toxicity” dataset (Ballabio et al., 2019) consists of 8,992 chemical compounds
represented by 1,024 binary molecular fingerprint attributes. These attributes are used to classify
the chemicals into two categories: very toxic (positive) or not very toxic (negative). The dataset is
multivariate and is often used in physics and chemistry, with classification as the main associated
task.

D.2.4 BREAST CANCER

The ”Breast Cancer Wisconsin (Diagnostic)” dataset (Street et al., 1993) is used for classifying breast
cancer diagnoses based on data from fine needle aspirates (FNA) of breast masses. It consists of 569
instances with 30 real-valued features that describe characteristics of cell nuclei in digitized images.
The dataset is multivariate and is often used in the field of health and medicine, with classification
as the primary task. The features were created through an exhaustive search using the Multisurface
Method-Tree and linear programming techniques to create a decision tree.
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D.2.5 RELIGIOUS

The dataset, ”A Study of Asian Religious and Biblical Texts,” (Sah & Fokoué, 2019) primarily consists
of texts sourced from Project Gutenberg. It includes a collection of key religious and philosophical
texts, such as the Upanishads, Yoga Sutras, Buddha Sutras, Tao Te Ching, and selections from the
Bible (Books of Wisdom, Proverbs, Ecclesiastes, and Ecclesiasticus). The dataset is multivariate and
is analyzed in Social Science contexts, with associated tasks including classification and clustering.

E WATERBIRDS DATASET - FEATURE LEARNING

Group Counts

Dataset Target Water Land Class Counts

Waterbirds Land bird 56 1057 1113
Water bird 3498 184 3682

Table 7: (Sub)group counts for the Waterbirds Dataset

The Waterbirds dataset consists of images of birds that have been digitally cut and pasted onto various
backgrounds. The objective is to classify the specimens as either water birds or land birds. The group
attribute indicates whether the bird is depicted in its natural habitat. The details of class counts are
given in Tab. 7. While performing hyperaparameter search, each experiment is run on one Nvidia
Tesla V100 GPU.
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Bank Marketing Student Performance ACS Employment ACS Income

n 41,188 395 3,236,107 1,664,500
p 20 30 17 10
# classes 2 2 2 2
# Protected attributes Marital Status Sex Race, Sex Race, Sex

Table 8: Number of samples, parameters, classes, and sensitives for each dataset

F FAIRNESS EXPERIMENTS

F.1 UCI DATASETS - FAIRNESS

The UCI datasets (Dua & Graff, 2017) used in our fairness experiments are briefly described below.

F.1.1 BANK MARKETING

The ”Bank Marketing” dataset (Moro et al., 2014) contains data from direct marketing campaigns
(phone calls) conducted by a Portuguese bank. The goal is to classify whether a client will subscribe
to a term deposit (variable ’y’). The dataset is multivariate, with 45,211 instances and 16 features that
are either categorical or integer. The ratio of sensitive marital status is 60-30-10% (married, single,
divorced).

The marketing campaigns often involved multiple contacts with the same client to determine if they
would subscribe to the term deposit. This dataset is used in business applications, with classification
being the main associated task.

F.1.2 STUDENT PERFORMANCE

The ”Student Performance” dataset (Cortez & Silva, 2008) aims to predict the performance of
secondary education (high school) students. It consists of 649 instances and 30 integer features, and
the associated tasks include classification and regression.

The data collected from two Portuguese schools includes student grades, demographic, social, and
school-related information. Two separate datasets cover performance in Mathematics and Portuguese
language. The target variable, G3 (final grade, whether it is ≥ 12 or not), is strongly correlated with
G1 and G2 (grades from earlier periods), making it more challenging but useful to predict G3 without
using G1 and G2, as we do in our experiments. This dataset supports educational performance
modeling in the Social Science domain. The ratio of sensitive sex is 50-50%.

F.2 FOLKTABLES DATASET - FAIRNESS

The two datasets below are taken from the Folktables package (Ding et al., 2021), designed to
provide access to datasets derived from the US Census. It features a range of pre-defined prediction
tasks across various domains, such as income, employment, health, transportation, and housing.
Users can also create new prediction tasks within the US Census data ecosystem. Additionally, the
package facilitates systematic studies on the impact of distribution shifts, allowing each prediction
task to be applied to datasets covering multiple years and all states in the US. We use the Alabama
data from 2018 with the 1 year horizon.

F.2.1 INCOME

The task is to predict whether an individual’s income exceeds $50,000 based on a filtered sample
of the ACS PUMS data. The sample includes individuals aged 16 and older who reported working
at least 1 hour per week over the past year and earning a minimum income of $100. The $50,000
threshold was selected to make this dataset a potential replacement for the UCI Adult dataset (Kohavi
& Becker, 1994), although the original paper provides additional datasets with different income
thresholds, as detailed in their Appendix B. We use the California data from 2018 with the 1 year
horizon. The ratio of sensitive for sex is 50-50% and for race 62%-17%-5% for White, Asian, Black
(other minorities include American Indian,Hawaiian, etc.)
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F.2.2 EMPLOYMENT

The objective of this task is to predict whether an individual is employed, using a filtered sample from
the ACS PUMS data. This sample has been carefully curated to include only those individuals who
are between the ages of 16 and 90. The ratio of sensitive for sex is 50-50% and for race 62%-17%-5%
for White, Asian, Black (other minorities include American Indian,Hawaiian, etc.)

Both tasks contain codes regarding the selected features in Sec. 5.3. The codes are explained below.

DEMOGRAPHIC VARIABLES

1. OCCP:
(a) Person’s occupation
(b) approximately 500 categories (management, business, science, arts, service, sales,

office, construction, maintenance, production, transportation, material moving, etc.)
2. COW:

(a) Class of worker
(b) 10 categories (e.g., employee of a private for-profit company, local government em-

ployee, state government employee, federal government employee, self-employed,
working without pay, etc.)

3. POBP:
(a) Place of birth
(b) approximately 300 categories (countries/states of birth), range of values includes most

countries and individual U.S. states
4. SEX:

(a) range of values: Male and Female
5. MAR:

(a) Person’s marital status
(b) 5 categories (married, widowed, divorced, separated, never married, or under 15 years

old)
6. ANC:

(a) Ancestry
(b) 5 different categories (single, multiple, unclassified, not reported, suppressed informa-

tion)
7. AGEP:

(a) Age, Range of Values: 0-99
8. ESP:

(a) Employment status of parents
(b) 9 different categories (Living with two parents - both in labor force, living with two

parents - father only in labor force, living with father - father in labor force, living with
father - father not in labor force, etc.)

CITIZENSHIP AND MIGRATION

1. CIT:
(a) Citizenship status
(b) 5 categories (Born in the U.S., Born abroad of American parent(s), U.S. citizen by

naturalization, Not a citizen of the U.S., Born in Puerto Rico, Guam, the U.S. Virgin
Islands, or the Northern Marianas)

2. MIG:
(a) Mobility status (whether the person lived at the same location 1 year ago)
(b) 4 categories (N/A if less than 1 year old, Yes - same house, No - outside U.S. and

Puerto Rico, No - different house in U.S. or Puerto Rico)
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EDUCATION

1. SCHL:

(a) Amount of schooling completed
(b) 24 categories (No schooling completed, Nursery school/preschool, Kindergarten, Grade

1, Grade 2,..., Regular high school diploma, GED or alternative credential, Bachelor’s
degree, Master’s degree, etc.)

RACE AND ETHNICITY

1. NAT:

(a) Whether native or foreign born
(b) 2 categories (native or not)

2. RAC1P:

(a) Recorded detailed race code
(b) 9 categories (White alone, Black or African American alone, American Indian alone,

Alaska Native alone, Asian alone, Some Other Race alone, etc.)

3. MIL:

(a) Military service
(b) 5 Categories (Less than 17 years old, Now on active duty, On active duty in the past

but not now, Only on active duty for training, Never served in the military)

DISABILITY AND SENSORY IMPAIRMENTS

1. DIS:

(a) Disability recorded: With or without

2. DEAR:

(a) Hearing difficulty: Yes or No

3. DEYE:

(a) Vision difficulty: Yes or No

4. DREM:

(a) Cognitive difficulty: Yes or No

For further explanation on the codes, we invite the reader to see Appendix B.1 and B.4 in the original
paper (Ding et al., 2021). Below, in Table 9, we can see that conditioning on multiple sensitive
attributes removes additional features, highlighting the potential of the vec-(dF3) method to examine
interactions between several sensitive attributes, as well as several features simultaneously.

Data Race Sex Both
Employment OCCP COW OCCP, COW, POB

Income MAR, ANC MAR, ANC, CIT, MIG MAR, ANC, CIT,
MIG, SCHL, NAT

Table 9: ACS dataset features which were not selected when conditioned on race, sex or both,
represented in first, second and last column, respectively.
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Dataset Year Size N. Classes Modality Architecture

MultiNLI 2017 300k 3 Text BERT
CivilComments 2019 250k 2 Text BERT
CelebA 2015 200k 2 Image ResNet-50 w. ImageNet
NICO++ 2022 90k 60 Image ViT-B w. DINO
MetaShift 2022 3.5k 2 Image VIT-B w. CLIP

Table 10: Dataset Overview for experiments performed in Section 5.2.

Dataset difFOCI+ERM difFOCI+DRO ERM DRO JTT Mixup IRM

MultiNLI 81.9± 0.2 81.8± 0.5 81.4± 0.1 80.2± 0.6 81.2± 0.4 80.7± 0.1 77.7± 0.3
CivilComments 86.3± 0.1 81.9± 0.3 85.7± 0.4 82.3± 0.4 84.3± 0.5 84.9± 0.3 85.4± 0.2
CelebA 94.4± 1.1 92.9± 2.1 94.9± 0.2 93.1± 0.6 92.4± 1.6 95.7± 0.2 94.5± 1.0
NICO++ 85.7± 0.3 85.8± 0.5 84.7± 0.6 83.0± 0.1 85.3± 0.1 84.2± 0.4 84.7± 0.5
MetaShift 92.1± 0.2 91.8± 0.3 91.3± 0.5 89.0± 0.2 90.7± 0.2 91.2± 0.4 91.5± 0.6
CheXpert 87.1± 0.3 81.9± 0.5 86.5± 0.3 77.9± 0.4 75.7± 1.7 82.2± 5.1 90.0± 0.2

Table 11: Average accuracy for benchmark methods on various datasets performed in Section 5.2.
We can see that on almost all datasets, diFFOCI performs competitively.

G EXPERIMENTAL CONFIGURATIONS

For the first two toy examples, we use a one-hidden-layer MLP with a configuration of 10-20-10
neurons. In contrast, the third example employs a two-hidden-layer MLP structured as 10-20-20-10
neurons. For all benchmarks using vec-(dF1) and vec-(dF3), we initialize the parameter θ from a
θ ∼ N(1, σ2 Ip), with σ2 = 0.1. In the case of NN-(dF1), we design a one-layer MLP where the
hidden dimension is double that of the input layer, and the output layer has the same number of
neurons as the input layer. The ReLU function is used as the activation function. All input data
is standardized, and across all benchmarks, we perform a (75-15-10)% train-validation-test split.
For the regression experiments (toy examples), we employ SVR (C = 1.0, ϵ = 0.2) along with
the Adam optimizer (Kingma & Ba, 2017). For classification (UCI, Bank Marketing, Student and
ACS Datasets), we employ Logistic Regression (Cox, 1958). For the Waterbirds dataset, we train
ResNet-50 models pre-trained on ImageNet (Deng et al., 2009) using the SGD optimizer with the
PyTorch (Paszke et al., 2017) implementation of BCEWithLogitsLoss, which combines a Sigmoid
layer and the BCELoss in one single class.

We adjust the learning rate and weight decay from the set{
10−4, 10−3, 10−2, 10−1, 5−4, 5−3, 5−2

}
11. The number of epochs is optimized within the range

{10, 20, 50, 100}, and batch sizes are chosen from {8, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096}.
Notably, we train the Waterbirds dataset for 360 epochs, in line with previous research. As mentioned
earlier, we keep the clipping parameter ν = 0.1 and the softmax temperature parameter β = 5
consistent across all experiments. The value of η for gDRO is set to 0.1. Each combination of
hyperparameters is executed three times to compute the average and standard deviation of the chosen
loss metric. We select the best models (in terms of hyperparameter combinations and epochs) based
on the lowest MSE/logistic loss observed on the validation set, and for Waterbirds, we choose based
on worst-group accuracy. We provide the hyperparameter configurations used to obtain our results in
Table 13. .

Finally, for the experiments on NICO++ (Zhang et al., 2023), MultiNLI (Williams et al., 2017),
CivilComments (Borkan et al., 2019) and CelebA (Liang & Zou, 2022) we follow the experimental
configuration from Yang et al. (2023), who provided a very useful codebase for benchmarking
various methods, which we are thankful for. We briefly describe these datasets below, where the
hyperparameter joint distribution is taken directly from their codebase. For each algorithm, we
perform a thorough hyperparameter tuning process. This involves conducting 16 random searches
over the entire range of hyperparameters. We then use the validation set to identify the optimal
hyperparameters for each algorithm. With these hyperparameters fixed, we repeat the experiments
three times with different random seeds and report the average results along with their standard

11We also experimented with ℓ1 regularization, but it yielded poorer performance.
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Dataset difFOCI+ERM difFOCI+DRO ERM DRO JTT Mixup IRM

MultiNLI 77.6± 0.1 77.5± 0.2 66.9± 0.5 77.0± 0.1 69.6± 0.1 69.5± 0.4 66.5± 1.0
CivilComments 66.32± 0.2 70.3± 0.2 64.1± 1.1 70.2± 0.8 64.0± 1.1 65.1± 0.9 63.2± 0.5
CelebA 89.32± 0.4 89.8± 0.9 65.0± 2.5 88.8± 0.6 70.3± 0.5 57.6± 0.5 63.1± 1.7
NICO++ 47.10± 0.7 46.3± 0.2 39.3± 2.0 38.3± 1.2 40.0± 0.0 43.1± 0.7 40.0± 0.0
MetaShift 83.1± 0.5 91.7± 0.2 80.9± 0.3 86.2± 0.6 82.6± 0.6 80.9± 0.8 84.0± 0.4

Table 12: Worst group accuracy for benchmark methods on various datasets performed in Section 5.2.
We can see that on almost all datasets, diFFOCI performs competitively.

deviations. This approach ensures a fair comparison between algorithms, where each is evaluated
with its best possible hyperparameters, allowing for a reliable assessment of their performance. We
provide brief dataset information below and in Table 10.

CelebA (Liang & Zou, 2022): A binary classification image dataset comprising over 200,000
celebrity face images. The task is to predict hair color (blond vs. non-blond), with gender serving as
a spurious correlation. We employ standard dataset splits from prior work (Idrissi et al., 2022) and
note that the dataset is licensed under the Creative Commons Attribution 4.0 International license.

MetaShift (Liang & Zou, 2022): A dataset creation method leveraging the Visual Genome Project
(Krishna et al., 2017). We use the pre-processed Cat vs. Dog dataset, where the goal is to distinguish
between the two animals. The spurious attribute is the image background, with cats more likely to
appear indoors and dogs outdoors. We utilize the ”unmixed” version generated from the authors’
codebase.

CivilComments (Borkan et al., 2019): A binary classification text dataset aiming to predict whether
an internet comment contains toxic language. The spurious attribute is the presence of references to
eight demographic identities. We adopt the standard splits provided by the WILDS benchmark (Koh
et al., 2021).

MultiNLI (Williams et al., 2017): A text classification dataset with three classes, targeting natural
language inference relationships between premises and hypotheses. The spurious attribute is the
presence of negation in the text, which is highly correlated with the contradiction label. We use
standard train/val/test splits from prior work (Idrissi et al., 2022).

NICO++ (Zhang et al., 2023): a large-scale dataset for domain generalization. Specifically, we focus
on Track 1, which involves common context generalization. Our analysis is based on the training
dataset, comprising 60 classes and 6 shared attributes: autumn, dim, grass, outdoor, rock, and water.
To adapt this dataset for attribute generalization, we identify all pairs of attributes and labels with
fewer than 75 samples and exclude them from our training data, reserving them for validation and
testing purposes. For each attribute-label pair, we allocate 25 samples for validation and 50 samples
for testing, while using the remaining data as training examples.

CheXpert (Irvin et al., 2019): a collection of chest X-ray images from Stanford University Medical
Center, consisting of over 200,000 images. In this study, we use ”No Finding” as the label, where
a positive label indicates that the patient does not have any illness. Following previous research
(Seyyed-Kalantari et al., 2021), we use the intersection of race (White, Black, Other) and gender as
attributes. The dataset is randomly divided into 85
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Dataset Method Batch size l.r. N. epochs w.d. Val. loss Test loss

Synth. Dataset vec-(dF1) full 5e−2 2000 1e−1 0.02 ± 0.01 0.02 ± 0.02

Toy Ex. 1
vec-(dF1) full

5e−3 1000 1e−4 0.01 ± 0.00 0.02 ± 0.00
Toy Ex. 2 10e−1 1000 1e−4 0.24 ± 0.00 0.25 ± 0.00
Toy Ex. 3 5e−2 1000 5e−4 0.23 ± 0.00 0.24 ± 0.00

Toy Ex. 1
NN-(dF1) full

5e−3 1000 1e−2 0.08 ± 0.01 0.08 ± 0.01
Toy Ex. 2 5e−3 1000 1e−2 0.02 ± 0.01 0.02 ± 0.01
Toy Ex. 3 5e−4 1000 1e−2 0.18 ± 0.00 0.18 ± 0.01

Spambase

vec-(dF1)

2048 1e−2 100 1e−5 2.24 ± 0.14 2.56 ± 0.13
Toxicity 4096 5e−2 50 1e−1 9.23 ± 1.96 11.61 ± 0.8
QSAR 512 1e−2 10 5e−2 2.16 ± 0.14 2.54 ± 0.07

Breast Canc. 2048 1e−3 50 1e−4 0.00 ± 0.00 0.00 ± 0.00
Biblical 8 5e−4 50 1e−4 0.36 ± 0.02 0.48 ± 0.03

Spambase

NN-(dF1)

64 1e−4 10 1e−2 8.65 ± 0.91 9.61 ± 1.50
Toxicity 512 5e−4 50 5e−2 1.97 ± 0.13 2.11 ± 0.11
QSAR 512 1e−2 50 1e−1 2.52 ± 0.16 2.57 ± 0.19

Breast Canc. 2048 5e−3 0 1e−6 0.34 ± 0.32 0.00 ± 0.00
Biblical 128 1e−4 20 5e−4 0.69 ± 0.17 0.56 ± 0.04

Student vec-(dF1) 64 1e−1 100 5e−4 8.03 ± 1.07 8.41 ± 0.82
vec-(dF3) 256 5e−2 50 5e−3 7.65 ± 0.56 8.52 ± 0.89

Bank vec-(dF1) 2048 5e−3 50 1e−5 2.61 ± 0.02 2.68 ± 0.04
vec-(dF3) 256 5e−3 50 5e−4 2.59 ± 0.06 2.90 ± 0.07

ACS Empl. vec-(dF1) 64 5e−2 50 5e−3 7.65 ± 0.08 7.81 ± 0.03
vec-(dF3) 256 5e−3 50 1e−5 7.81 ± 0.01 7.97 ± 0.02

ACS Inc. vec-(dF1) 1024 1e−2 10 1e−4 7.65 ± 0.01 7.65 ± 0.01
vec-(dF3) 256 5e−2 100 5e−3 7.90 ± 0.01 7.92 ± 0.01

Table 13: Hyperparameter configurations used throughout the experiments.
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Method Batch size l.r. reg. λ w.d. Val. Acc. Test Acc. Val. WGA Test WGA

ERM 8 1e−5 1e−3 5e−2 91.2 93.7 84.2 85.7
gDRO 32 1e−5 1e−1 1e−5 92.1 93.5 85.7 87.2

Table 14: Hyperparameter configurations for Waterbirds experiment with NN-(dF2) method.

H ALGORITHMIC EXAMPLES

In this section, we give three concrete examples of Alg. 2 used in Sections 5.1-5.3 for completeness:
using the vec-(dF1), NN-(dF2) and vec-(dF3) versions respectively.

Algorithm 3 difFOCI: version vec-(dF1)
Input: Standardized input X ∈ Rn,p, Y ∈ Rn

Input: learning rate γ, weight decay parameter λ, batch size b, cutoff parameter υ, softmax
parameter β
init. θ ∼ N(1, σ2 Ip), with σ2 = 0.1
for t = 1, ..., niter do
L ← −Tn,β(Y, θt ⊙X) // Differentiable objective
θt+1 ← θt − γAdamWDλ,b

(L) // Parameter update
θfinal = c(θniter , υ) // Parameter clipping
Output: parameter θfinal

Alg. 3 is version of difFOCI used in Section 5.1 for feature learning and domain shift experiment.

Algorithm 4 difFOCI: version NN-(dF2)
Input: Standardized input X ∈ Rn,p, Y ∈ Rn, group attribute XG

Input: learning rate γ, weight decay parameter λ, regularization strength η, batch size b, softmax
parameter β, neural network fθ(·) = fLLθ

(fFEθ
(·)), where fLLθ

and fFEθ
denote the last layer

and the feature extractor respectively, BCEWithLogits loss ℓ(·, ·)
init. NN parameters θ
for t = 1, ..., niter do
L1 ← ℓ(Y, fLLθt

(fFEθt
(X))) // Standard BCEWithLogits Loss

L2 ← Tn,β(XG, fFEθt
(X)) // difFOCI regularizer

L ← L1 + ηL2 // Total loss calculation
L∗ ← wgDRO(L) or wERM(L) // Reweighting (in case of DRO)
θt+1 ← θt − γSGDWDλ,b

(L∗) // Parameter update
θfinal = c(θniter , 0.1) // Final parameter clipping
Output: neural network parameters θfinal

Alg. 4 is version of difFOCI used in Section 5.2 for feature learning and domain shift experiment.

Alg. 5 is version of difFOCI used in the fairness Section 5.3.

I FAIRNESS EXPERIMENTS

I.1 EXPERIMENT IN SECTION 5.3

Here, we provide experimental details regarding the experiment in Section 5.3. In this study, we
employed a data splitting approach where the dataset was divided into training, validation, and testing
sets in a ratio of 75For our first network, we implemented a multi-layer perceptron (MLP) with three
hidden layers, each featuring ReLU activations. We employed the BCEWithLogits loss function
from PyTorch, along with the Adam optimizer as our optimization algorithm. The learning rate and
weight decay were set as hyperparameters for the Adam optimizer. To predict sensitive attributes,
we leveraged the last layer of the MLP and trained an additional three-layer MLP on top of it, again
utilizing ReLU activations and the BCEWithLogits loss function from PyTorch. The Adam optimizer
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Algorithm 5 difFOCI: version vec-(dF3)
Input: Standardized input X ∈ Rn,p, Y ∈ Rn, sensitive attribute(s) XS

Input: learning rate γ, weight decay parameter λ, batch size b, softmax parameter β
init. θ ∼ N(1, σ2 Ip), with σ2 = 0.1
for t = 1, ..., niter do
L ← −Tn,β(Y, θt ⊙X | XS) // NN-based differentiable objective
θt+1 ← θt − γAdamWDλ,b

(L) // Parameter update
θfinal = c(θniter , 0.1) // Final parameter clipping
Output: parameter θfinal

GUS S.Per. FPR FDR FWE K.B. UMAP LDA PCA FOCI vec-(dF1) vec-(dF3)
Student 13.30 14.14 11.36 11.64 11.36 10.53 8.87 8.31 8.59 10.25 8.41 ± 0.82 8.52 ± 0.89
Bank 3.45 3.19 3.19 3.19 3.19 3.10 3.32 3.01 3.32 3.01 2.68 ± 0.04 2.90 ± 0.07
Income 10.39 10.39 7.62 7.62 7.62 7.71 7.49 7.86 8.02 7.96 7.65 ± 0.01 7.92 ± 0.01
Employment. 12.09 11.23 8.31 8.31 8.31 8.41 14.60 8.67 9.01 8.43 7.81 ± 0.03 7.97 ± 0.02

Table 15: Fairness experiments and test log-loss. vec-(dF1) achieves best performance by not
conditioning on sensitive attributes, though vec-(dF3) remains competitive even though it conditioning
out the information regarding the sensitive data XS.

was used with learning rate and weight decay parameters, and the hidden dimensions had sizes of 128.
When training using the (dF3)objective of diffoci, we employed a three-hidden-layer neural network,
where all layers were of size 128. Throughout all experiments, the beta parameter was consistently
set to 5.

I.2 ANOTHER STUDY ON FAIRNESS

In this section, we perform similar experiments to Section 5.1, however we use the vec-(dF3) rather
than (dF1). We note that here we just experiment whether, by conditioning on Xs we can still achieve
good performance, which is affirmatively confirmed.

Environments. As in Section 5.3, we use Student dataset (Cortez & Silva, 2008), Bank Marketing
dataset (Moro et al., 2014); and two ACS datasets (Ding et al., 2021), (iii) Employment and (iv)
Income. Again, the performance is measured using Logistic Regression (Cox, 1958).

Despite conditioning out sensitive information, difFOCI delivers solid performance. From
Table 15, we see that vec-(dF3) demonstrates strong performance, regardless of whether we condition
on the sensitive data or not. Both algorithms outperform other methods, and, expectedly, we observe
a slight decrease in performance when conditioning on the sensitive attribute(s). For the Student
dataset, conditioning on sex leads to the exclusion of seven additional features (a total of 11 out of
30), while for the Bank Marketing dataset, conditioning on marital status results in the exclusion of
one additional feature (a total of 1 out of 20).

difFOCI might be useful in intersectional fairness. In both ACS datasets, conditioning on
both sensitives led to the exclusion of previously included features (when conditioning on just one
sensitive), as shown in Table 9, in Appendix E. This reveals that the additional features, excluded
only after considering both sensitives, might contain intertwined relationships with the two sensitives,
providing an interesting avenue for intersectional fairness research (Gohar & Cheng, 2023). We leave
this as future work.

J CHOICE FOR THE REGULARIZATION PARAMETER

In this section, we provide empirical evidence of for our parameter β choice (we fixed it to 5),
highlighting that although we might observe minor improvements by tuning the parameter, the
performance is consistent.

We observe that difFOCI exhibits robust performance across a range of values for the hyperparameter
β. As long as β is set within a reasonable range, avoiding extreme values that either zero out gradients
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β: 1e− 5 1e− 3 1. 5 100 1e5 1e7 Standard

(dF2) ERM Avg. Acc. 97.1± 0.4 97.0± 0.7 94.2± 0.3 93.7± 0.1 94.6± 0.1 97.4± 0.1 97.4± 0.2 97.3± 0.2
WGA 61.0± 0.2 62.3± 0.8 84.8± 0.8 85.7± 0.8 85.7± 0.5 63.9± 0.8 61.2± 1.0 60.0± 0.5

(dF2) DRO Avg. Acc. 97.2± 0.1 97.5± 0.7 93.9± 0.2 93.5± 0.5 93.6± 0.7 97.5± 0.3 97.2± 0.1 97.4± 0.4
WGA 75.7± 1.0 97.2± 0.3 90.0± 0.4 87.2± 0.6 87.0± 0.3 77.1± 0.6 76.9± 0.3 76.9± 0.8

Table 16: Results for various β on Waterbirds dataset. The results for reasonable values of β yield
similar performance, and very large or small values result the performance falling back to the standard
ERM or DRO performance.

β: 1e− 5 1e− 3 1. 5 100 1e5 1e7 Standard

(dF2) ERM Avg. Acc. 91.2± 0.7 91.5± 0.9 92.3± 0.2 92.1± 0.2 91.7± 0.3 91.4± 0.2 91.3± 0.1 91.3± 0.5
WGA 81.1± 0.2 81.2± 0.1 83.3± 0.2 83.1± 0.5 83.1± 0.7 80.6± 0.1 81.3± 0.3 80.9± 0.3

(dF2) DRO Avg. Acc. 88.8± 0.2 90.0± 0.4 91.9± 0.3 91.8± 0.3 91.8± 0.1 88.7± 0.3 88.9± 0.2 89.0± 0.2
WGA 86.1± 0.3 86.2± 0.4 91.5± 0.3 91.7± 0.2 91.9± 0.3 85.8± 0.2 85.9± 0.6 86.2± 0.6

Table 17: Results for various β on MetaShift dataset. The results for reasonable values of β yield
similar performance, and very large or small values result the performance falling back to the standard
ERM or DRO performance.

or result in a uniform distribution from the softmax function, difFOCI consistently delivers robust
results. This is evident in Tables 17 and 16, which present results on the MetaShift and Waterbirds
datasets, respectively. Our experiments show that tuning β leads to only minor performance improve-
ments, which are largely statistically insignificant. Furthermore, setting β to extreme values causes
the estimator T (XG, fθ(X)) to degenerate to a constant, effectively reducing difFOCI to standard
ERM performance.
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Method Train Accuracy Test Accuracy OOD Accuracy Difference
Standard 85.20± 2.0 82.75± 1.9 70.2± 1.6 12.55
difFOCI with 75% feats. 82.66± 1.2 81.7± 2.7 68.95± 0.8 12.22
difFOCI with 50% feats. 80.19± 2.4 79.4± 1.0 67.9± 1.2 11.5
difFOCI with 25% feats. 79.55± 2.1 78.72± 1.1 65.40± 2.8 13.32

Table 18: Difference between standard predictive accuracy using ResNet-50 on CIFAR10 and
CIFAR10.1

Table 19: Difference between standard predictive accuracy using Resnet-50 on various DomainNet
datasets

Dataset Method Train Accuracy Test Accuracy OOD Accuracy Difference

Real vs. Sketch Standard 88.72± 1.7 78.93± 0.6 29.34± 2.1 49.59
difFOCI, clip at 0.1 85.58± 1.3 77.50± 1.3 27.58± 1.5 49.92

Clipart vs. Sketch Standard 89.98± 2.1 61.85± 0.6 39.43± 2.1 22.42
difFOCI, clip at 0.1 88.95± 1.6 61.96± 1.3 40.34± 1.8 21.92

Sketch vs. Quickdraw Standard 66.51± 1.0 53.17± 0.9 7.01± 1.9 46.16
difFOCI, clip at .1 65.54± 1.7 52.97± 0.8 6.98± 1.2 45.99

K DIFFOCI’S ROBUSTNESS TO DOMAIN SHIFT

This section presents experimental results on feature selection using difFOCI’s objective (dF1)
on CIFAR10/10.1 (Recht et al., 2018) and DomainNet datasets (Peng et al., 2019), specifically
examining the Real vs Sketch, Clipart vs Sketch, and Sketch vs Quickdraw domain shifts. The results,
summarized in Tables 18-19 (for CIFAR10 vs CIFAR10.1 and DomainNet respectively) demonstrate
that difFOCI maintains consistent performance across distribution shifts, with the selected features
exhibiting similar performance differences as the full dataset. This consistency highlights difFOCI’s
ability to effectively handle distribution shifts.
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