A Pseudocode

In this section, we list the detailed algorithms for pruning (Section[3), growing (Section|[5), circuit
flows computation (Definition , and mini-batch Expectation Maximization (Section E])

Algorithm[2|shows how to prune & percentage edges from PC C following heuristic .

Algorithm 2: Prune(C, h, k)

Input :anon-deterministic PC C, heuristic h deciding which edge to prune, i can be EFLOW,
ERAND, or EPARAM, percentage of edges to prune k

Output :a PC C’ after pruned

1 old2new < mapping from input PC n € C to pruned PC

2 s(n, c) + compute a score for each edge (n, c) based on heuristic h

3 f(n,c) « false

4 f(n,c) + trueif s(n, c) ranks the last k

5 // visit children before parents

¢ foreachn € C do

7 if n is a leaf then

8

9

| old2new[n] < n
else if n is a sum then

10 | old2new[n] < @([old2new(c) for ¢ € in(n) and if f(n,c)])
11 else n is a product
12 | old2new[n] + @([old2new(c) for c € in(n)])

13 return old2new|n,] where n, is the root of C

Algorithm [3]shows show a feedforward implementation of growing operation.

Algorithm 3: Grow(C, 0?)

Input :a PC C, Gaussian noisy variance o2

Output :a PC C’ after growing operation

1 0ld2new < a dictionary mapping input PC units n € C to units of the growed PC
2 foreachn € Cdo // visit children before parents

3 if n is an input unit then old2new([n] < (n, deepcopy(n))

4 else

5 chs_1, chs_2 < [old2new[][0] for ¢ in in(n)], [o1d2new[c|[1] for ¢ in in(n)]
6

7

8

9

if n is a product unit then o1d2new[n] < (Q)(chs_1), ®(chs_2))
else if n is a sum unit then

ny,n2 < @P([chs_1, chs_2]), P([chs_1, chs_2])

0,,,, < normalize([6),,,0,]) x €) €~ N(1,02)foriin[1,2]
10 old2new[n| + (ny,ns9)
11 return old2new(r][0] // r is the root unit of C
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Algorithm 4 computes the circuit flows of a sample « given PC C with parameters 6 though one
forward pass (line 1) and one backward pass (line 2-8).

Algorithm 4: CircuitFlow(C,0,x)
Input :a PC C with parameters 6; sample x
Output : circuit flow flow[n, ] for each edge (n, ¢) and flow[n] for each node n
Vn € C, p[n] < pn(x) computed as in Equation I}
For root .., flow[n] + 1
for n € C in backward order do
flow([n] <= 3= cour(n) flowlg]
if n is a sum node then
‘ Ve € in(n), flow[n, c] « Hc‘n%ﬂow[n]
else
| Ve € in(n),flow[n, ] « flow[n]
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Algorithm[5]shows the pipeline of mini-batches Expectation Maximization algorithm given PC C,
dataset D, batch size B and learning rate c.

Algorithm 5: StochasticEM(C,D;B,«)

Input :a PC C; dataset D; batch size B; learning rate
Output : parameters 0 estimated from D
# < random initialization
For root .., flow[n] + 1
while not converged or early stopped do
D’ <+ B random samples from D
flow <= % . CircuitFlow(C, 0, x)
for sum unit n and its child c do

05" < flow[n, ] /flow[n]

Oen < BT 4 (1= )b,

|n
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B Proofs

In this section, we provide detailed proofs of Theorem|I] (Section [B.T)) and Theorem 2] (Section [B.2)).

B.1 Pruning One Edge over One Example

Lemma 1 (Pruning One Edge Log-Likelihood Lower Bound). For a PC C and a sample x, the loss
of log-likelihood by pruning away edge (n, c) is
1- Hc\n
< —log(1-F, .
1= 0y +Oepm P () —ch(x)) < ~log(1=Fu.c(w))

ALL({z}.C. {(n.0)}) = log (

Proof. For notation simplicit, denote the probability of units m (resp. n) in the original (resp. pruned)
PC given sample & as p,, () (resp. pl, (). As a slight extension of Definition[d] we define F}, (; m)
as the flow of unit n w.r.t. the PC rooted at m.

The proof proceeds by induction over the PC’s root unit. That is, we first consider pruning (n, ¢) w.r.t.
the PC rooted at n. Then, in the induction step, we prove that if the lemma holds for PC rooted at m,
then it also holds for PC rooted at any parent unit of m. Instead of directly proving the statement in
Lemmal ] we first prove that for any root node m, the following holds:

1 Fuelzym) 0
1—6 Fp(z;m) 1-0)°

P(@) = Plo(@) = Fo(@im) - pra(a) - ( @
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Base case: pruning an edge of the root unit. That is, the root unit of the PC is n. In this case, we have

Pn ( pn Z 00 "In * pc Z c’|n pc( )

c¢’€in(n) c¢’€in(n)\c

= ec\n -pc(J}) + Z ac’\n 'pc(m) - Z c \n pf( ) 4)

c’€in(n)\c c’€in(n)\c

where Hp‘ denotes the normalized parameter corresponding to edge (n, ¢) in the pruned PC. Specifi-

cally, we have

emln Qm‘n
Vm €in(n)\c, 6., = _ .
| ZC’Gin(n)\c 9(:’\77, 1-— 9p|n

For notation simplicity, denote ¢ := 6,,,. Plug in the above definition into Equation we have

1
pn(w) - p{n(w) = Gc\n : pc(m) + Z 90’|n pc(m) - m Z 00’|n pc(m)
c’€in(n)\c c’€in(n)\c
0
= ac\n : pc(w) - 179 Z 0(:’|n : pc(x)

N c¢’€in(n)\c
0
= Hc\n : pc(x) - m(pn(m) - Hc\npc(m))
1

= 1-9 '9c|n 'Pc(w) - 1-0 Pn(fﬂ)
(@ 1 Fpc(z;n) 0

T 1-0 (@) Fo(z;n) 1-6 (@)

1 Fplw; 0
= Fy(z:n) - pn(z) - (1_0 Fv(gjn’;) _ 1_9), (6)

where (a) follows from the fact that F,(x;n) = 1 and F, .(x;n) = Ocjnpe(T)/pn().

Inductive case #1: suppose Equation ¥/ holds for mn. If product unit d is a parent of m, we show that
Equation 4] also holds for d:

pa(@) —py(@) = [[ pw(@) - ] pu(@)

n’€in(d) n’€in(d)
= (pm(@) v () [ »ul@)
n’€in(d)\m

(@ . 1 Fn,c(a:;m)i 0
2 Futaim) o) () AL et

® b (@:d) - pa(x) - ( 1 Fp(x;d) 9 )

1—0 Fp(a;d) 1—6

where () is the inductive step that applies Equation 6} (b) follows from the fact that (note that d is a
product unit) F},(x;m) = F, (x;d) and F,, .(z;m) = F,, (x; d).

Inductive case #2: for sum unit d, suppose EquationE]holds for m, where m € A iff m € in(d) and
m is an ancester of n and c¢. Assume all other children of d are not ancestoer of n, we show that

16



Equation [4]also holds for d:

pa(x) — ply(x) = Opmja - (Pm () — P, ())

b s e

1 Fpelzym) 0
1—6 Fp(x;m)  1-0

1 F,.(x;d 0
~ bt Falasm) -pn(a) - (2 =) - )

Zm'ei“(d) Hm/‘dpm/(w) . () - 1 Fn,c(x;d) o 0
Oy P () bm 1-0 Fo(zd) 1-6

= F,(z;d) - ( > qudpm/(w)) : (1 i gP;ZC((gZ;dC;) 1 ﬁ 9)

m’€in(d)
1 Fielz;d) 0

= F,(x;d) - . : - .

(@;d) - pa(@) (1—9 Fr(x;d) 1—9)

= om\d Fo(x;d) -

Therefore, following Equation E|for root 7, we have

pr(x) — pp(2) _ 1 . .
(@) =179 ne(x;7) 1 aFn(ac,r)
pr(x) _ 0 oy L :
& (@) 1+ T an(sc,r) T Fp.c(z;r)

Therefore, we have
ALL({zx},C,{(n,c)}) = logp,(z) —log p).(z)

1 1- ar\n
= — 1 _
|D| ; 08 (1—00|n—|—90n Fn(:c;r)—ch(x;r))

where (a) follows from the fact that F,, .(x) < F,(x). O

Theorem|]follows directly from Lemma|[I|by noting that for any dataset D, ALL(D,C, {(n,c)}) =

B ALL{z}.C, {(n, 0)}).

B.2 Pruning Multiple Edges

Proof. Similar to the proof of Lemmal[I] we prove Theorem [2]by induction. Different from Lemma [T]
we induce a slightly different objective:

1 F, C(:B; m) 0c|n
pm(@) —plu(x) < Y Fu(xm) ~pm<w)~< ’ - . (D
(n,c)eENdes(m) 1- 90|n Fn(w; m) 1= ac‘n

where des(n) is the set of descendent units of n.

Base case: the base case follows directly from the proof of Lemmal|T, and lead to the conclusion in
Equation|[6]
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Inductive case #1: suppose for all children of a product unit d, Equation [7 holds, we show that
Equation L] also holds for d:

pa() H pm(@) = [ Pl

mein(d) mein(d)

= I pu@ - II (pm<m>—<pm<w>—p;1<w>>)
meéin(d) mein(d)

<Y (m@-r@) I pw@
mein(d) m’€in(d)\m

(a) 1 Fn,c(w; m) ac\n
S Z Z Fn(wad)pd(m) <1_90n Fn(a:,m) - 1_ec\n

méein(d) (n,c)eENdes(m)

1 Facl®d) O
< o _ , _
< Z Fn(w7 d) pd(w) (1 _ Qc‘n Fn(az, d) 1-— ac\n ’

(n,c)e€ENdes(d)

where (a) uses the definition that pa(2) = [,,,cin(q) P (2)-

Inductive case #2: suppose for all children of a sum unit d, Equation 7|holds, we show that Equation|7]
also holds for d:

pa@ = ph@) = > b (@ @)+ > G (pn(@) — (@)

mein(d)N(d,m)gE mein(d)N(d,m)e€

DY b (pal@) —p@)

mein(d)N(d,m)gE

1 Foc(x;m Ocin
Y O Fa(@im) pm(@) <1 — O F;(Er'm; S 1- 9cn)’

méein(d)N(d,m)e€

where (a) follows from the base case of the induction. Next, we focus on the first term of the above
equation:

S i (pal@) — pul@)

mein(d)N(d,m)gE

< ¥ > O (pn(@) (@)

mein(d)N(d,m)ZE (n,c)eENdes(m)

1 Faelz;m) Ocin
< . . . . 2 -
< E E Omia - Fn(@;m) - pp () <1 —Oc)n, Frn(x;m) L—0cn

mein(d)N(d,m)&ZE (n,c)EENdes(m)
1 F, c(il); d) 90|n
< Fn ;d : ' - - )
= Z (3 d) - pa(®) <1 — O, Folz;d) 1—-6,
(n,c)e€Ndes(d)

where the derivation of the last inequality follows from the corresponding steps in the proof of
Lemmalll

Therefore, from Equation |7} we can conclude that
ALL(D,C,E) o] Z log(1— > Fpela)).
(n,c)e€

Finally, we prove the approximation step in Equation E Lete(-) = > . 00ee Fne(r) €(0,1). We
have,

RHS = — ) " log(1 — €(x) ZZ )SZie(az)k

xeD xcD k=1 xeD k=1

_21—6 :1i626(w): Z ZF"’C(:B):]_ie Fn,c(D

€
xzeD xzeD (n,c)e€ z€D (n,c)e€




C Experiments Details

Hardware specifications All experiments are performed on a server with 32 CPUs, 126G Memory,
and NVIDIA RTX A5000 GPUs with 26G Memory. In all experiments, we only use a single GPU on
the server.

C.1 Datasets

For MNIST-family datasets, we split 5% of training set as validation set for early stopping. For Penn
Tree Bank dataset, we follow the setting in Mikolov et al. [29] to split a training, validation, and test
set. TableBllists the all the dataset statistics.

Table 3: Dataset statistics including number of variables (#vars), number of categories for each
variable (#cat), and number of samples for training, validation and test set (#train, #valid, #test).

Dataset \ n (#vars) k (#cat) #train #valid ftest
MNIST 28x28 256 57000 3000 10000
EMNIST(MNIST) 28x28 256 57000 3000 10000
EMNIST (Letters) 28x28 256 118560 6240 20800
EMNIST(Balanced) 28x28 256 107160 5640 18800
EMNIST(ByClass) 28x28 256 663035 34897 116323
FashionMNIST 28x28 256 57000 3000 10000
Penn Tree Bank \ 288 50 42068 3370 3761

C.2 Learning Hidden Chow-Liu Trees

HCLT structures. Adopting hidden chow liu tree (HCLT) PC architecture as in Liu and Van den
Broeck [23]], we reimplement the learning process to speed it up and use a different training pipeline
and hyper-parameters tuning.

EM parameter learning We adopt the EM parameter learning algorithm introduced in Choi et al.
[4], which computes the EM update target parameters using circuit flows. We use a stochastic
mini-batches EM algorithm. Denoting 6" as the EM update target computed from a mini-batch of
samples, and we update the targeting parameter with a learning rate a: ! <— ™" + (1 — «)6?.
« is piecewise-linearly annealed from [1.0, 0.1], [0.1,0.01], [0.01,0.001], and each piece is trained T°
epochs.

Hyper-parameters searching. For all the experiments, the hyper-parameters are searched from

* h € {8,16,32,64,128,256}, the hidden size of HCLT structures;
~ € {0.0001,0.001,0.01, 0.1, 1.0}, Laplace smoothing factor;
B € {128,256,512,1024}, batch-size in mini-batches EM algorithm;

* « piecewise-linearly annealed from [1.0,0.1], [0.1,0.01], [0.01, 0.001], where each piece is
called one mini-batch EM phase. Usually the algorithm will start to overfit as validation set
and stop at the third phase;

e T = 100, number of epochs for each mini-batch EM phase.

The PC size is quadratically growing with hidden size h, thus it is inefficient to do a grid search
among the entire hyper-parameters space. What we do is to fist do a grid search when i = 8 or
h = 16 to find the best Laplace smoothing factor v and batch-size B for each dataset, and then
fix v and B to train a PC with larger hidden size h € {32,64,128,256}. The best tuned B is in
{256,512}, which is different for different hidden size h, and the best tuned - is 0.01.
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C.3 Details of Section

Sparse PC (ours). Given an HCLT learned in Section as initial PC, we use the structure
learning process proposed in Section[5} Specifically, starts from initial HCLT, for each iteration, we
(1) prune 75% of the PC parameters, and (2) grow PC size with Gaussian variance e, (3) finetuing PC
using mini-batches EM parameter learning with learning rate o«. We prune and grow PC iteratively
until the validation set likelihood is overfitted . The hyper-parameters are searched from

* €€ {0.1,0.3,0.5}, Gaussian variance in growing operation;
* «, piecewise-linearly annealed from [0.1,0.01], [0.01,0.001];

e T = 50, number of epochs for each mini-batch EM phase;
« for v and B, we use the tuned best number from Section|[C.2.

HCLT. The HLCT experiments in Table|l|are performed following the original paper (Code https:
//github.com/UCLA-StarAI/Tractable-PC-Regularization), which is different from the
leaning pipeline we use as our inital PC (Section[C.2).

SPN. We reimplement the SPN architecture ourselves following Peharz et al. [34]] and train it with
the same mini-batch pipeline as HCLT.

IDF. We run all experiments with the code in the GitHub repo provided by the authors. We adopt
an IDF model with the following hyperparameters: 8 flow layers per level; 2 levels; densenets with
depth 6 and 512 channels; base learning rate 0.001; learning rate decay 0.999. The algorithm adopts
an CPU-based entropy coder rANS.

BitSwap. We train all models using the following author-provided script: https://github.com/
fhkingma/bitswap/blob/master/model/mnist_train.

BB-ANS. All experiments are performed using the following official code https://github.com/
bits-back/bits-back.

McBits. All experiments are performed using the following official code https://github.com/
ryoungj/mcbits.

C.4 Details of Section

For all experiments in Section|6.2, we use the best tuned y and B from Section|C.2|and hidden size h
ranging from {16, 32, 64, 128}. For experiments “What is the Smallest PC for the Same Likelihood?”,
the hyper-parameters are searched from

* k € {0.05,0.1,0.3}, percentage of parameters to prune each iteration;
* «, piecewise-linearly annealed from [0.3,0.1], [0.1,0.01], [0.01, 0.001];
e T = 50, number of epochs for each mini-batch EM phase;

For experiments “What is the Best PC Given the Same Size?”, we use the same setting as in

Section[C.3.
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