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A APPENDIX

A.1 PROOF OF THEOREM 1

In order to prove our result, we introduce some additional notation. For any probability measure
µ ∈ P(R), the support of the measure µ is

supp(µ) := {X ∈ R : if X ∈ NX open =⇒ P(NX) > 0} . (4)
Furthermore, for any set A ⊆ R, we use 1A(x) = 1 if x ∈ A and 0 otherwise to denote the
characteristic function of the set A. Furthermore, we use [[·]] to denote the Iverson bracket of an
event: [[A]] = 1 if A is true and 0 otherwise. We will require the use of a Lemma that will aid us in
the main proof

Lemma 1 For any measure µ ∈ P([0, 1]) with finite support: |supp(µ)| < ∞, let µ̂n =
1
n

∑n
i=1 δxi

where xi ∼ µ i.i.d, then we have

|µ(x)− µ̂n(x)| ≤

√
1

2n
log

(
2

δ

)
, (5)

for a fixed x ∈ R with probability 1− δ.

Proof Note that µ(x) = E[µ̂n(x)] and µ̂n(x) ∈ [0, 1]. Thus by a standard concentration inequality
such as Hoeffding’s inequality, we get

P [|µ̂n(x)− µ(x)| ≥ t] ≤ 2 exp
(
−2nt2

)
. (6)

Setting t =
√

1
2n log(2/δ) completes the proof.

Lemma 2 For any measure µ ∈ P([0, 1]) with finite support: |supp(µ)| < ∞, let µ̂n =
1
n

∑n
i=1 δxi

where xi ∼ µ i.i.d, then we have

W1(µ, µ̂n) ≤

√
|supp(µ)|2

2n
log

(
2 · |supp(µ)|

δ

)
, (7)

with probability at least 1− δ.

Proof We first invoke the Kantorovich-Rubenstein dual of the Wasserstein distance (Villani et al.,
2009):

W1(µ, µ̂n) = sup
h:[0,1]→R:|h(x)−h(x′)|≤|x−x′|

(Eµ[h]− Eµ̂n
[h]) (8)

(1)

≤ sup
h:[0,1]→R:|h(x)|≤1

(Eµ[h]− Eµ̂n [h]) (9)

(2)
= sup

A⊆[0,1]

(Eµ[1A]− Eµ̂n [1A]) (10)

(3)
= sup

A⊆[0,1]

 ∑
x∈supp(µ)

[µ(x) · 1A(x)]−
∑

x∈supp(µ)

[µ̂n(x) · 1A(x)]

 (11)

= sup
A⊆[0,1]

 ∑
x∈supp(µ)

[µ(x)− µ̂n(x)] · 1A(x)

 , (12)

where (1) is due to fact that |x− x′| ≤ 1 for x, x′ ∈ [0, 1], (2) is by dual formulation of the Total
Variation, and (3) is by the fact that µ̂n is support on supp(µ) by construction. Consider then the
following boolean variable

Hx = [[|µ(x)− µ̂n(x)| >

√
1

2n
log

(
2 · |supp(µ)|

δ

)
]], (13)
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we then have by Union bound inequality of probability:

P

 ⋃
x∈supp(µ)

Hx

 ≤
∑

x∈supp(µ)

P [Hx] (14)

≤
∑

x∈supp(µ)

δ

|supp(µ)|
(15)

= δ. (16)

Therefore, we have

P

W1(µ, µ̂n) ≥

√
|supp(µ)|2

2n
log

(
2 · |supp(µ)|

δ

) (17)

≥ P

 sup
A⊆[0,1]

 ∑
x∈supp(µ)

[µ(x)− µ̂n(x)] · 1A(x)

 ≥

√
|supp(µ)|2

2n
log

(
2 · |supp(µ)|

δ

) (18)

(1)

≥ P

 ⋃
x∈supp(µ)

Hx

 (19)

≥ δ, (20)

where (1) is due to the union bound argument, completing the proof.

We are now ready to complete the proof:

W1(P(
{
r̂t1

}
),P(

{
r̂t2

}
)) ≤ W1(P(

{
r̂t1

}
),P(

{
rt1

}
)) +W1(P(

{
rt1

}
),P(

{
r̂t2

}
)) (21)

≤ W1(P(
{
r̂t1

}
),P(

{
rt1

}
)) (22)

+W1(P(
{
r̂t2

}
),P(

{
rt2

}
)) +W1(P(

{
rt1

}
),P(

{
rt2

}
)) (23)

≤ 4

√
|supp(µ)|2

2n
log

(
2 · |supp(µ)|

δ

)
+W1(P(

{
rt1

}
),P(

{
rt2

}
)).

(24)

Similarly, we can apply the above argument to get

W1(P(
{
rt1

}
),P(

{
rt2

}
) ≤ 4

√
|supp(µ)|2

2n
log

(
2 · |supp(µ)|

δ

)
+W1(P(

{
r̂t1

}
),P(

{
r̂t2

}
)).

(25)

Merging these two together allows us to complete the proof.

A.2 EVALUATION ON HYPERNERF VRIG DATASET

The HyperNeRF dataset, initially introduced by Park et al. (2021a) and Park et al. (2021b), un-
derwent revisions after Gao et al. (2022) identified certain limitations. These limitations included
frames that transitioned abruptly between multiple camera viewpoints in consecutive time steps, a
scenario challenging to capture from a single camera, as well as scenes portraying quasi-static sce-
narios that do not accurately represent real-world dynamics. In response, Gao et al. (2022) proposed
an enhanced and more demanding version of this dataset, which we employ for our evaluation. This
augmented dataset comprises seven sequences in total, each enriched with keypoint annotations. It
encompasses 7 multi-camera captures and 7 single-camera captures, all featuring 480p resolution
videos. It is noteworthy that all dynamic scenes within this dataset are inward-facing. For our evalu-
ation, we apply masked metrics as introduced in Gao et al. (2022), which utilize covisibility masks.
Results are shown in Table 6 and Fig. 6.
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Broom Chicken Peel-banana
Method mPSNR↑ mSSIM↑ mLPIPS↓ mPSNR↑ mSSIM↑ LPIPS↓ mPSNR↑ mSSIM↑ mLPIPS↓
TiNeuVox 19.633 0.609 0.659 24.103 0.777 0.264 21.558 0.863 0.267
TiNeuVox w/ Reg 20.955 0.774 0.628 26.006 0.949 0.196 22.313 0.891 0.274

3dprinter Tail Toby sit
Method mPSNR↑ mSSIM↑ mLPIPS↓ mPSNR↑ mSSIM↑ mLPIPS↓ mPSNR↑ mSSIM↑ mLPIPS↓
TiNeuVox 19.184 0.780 0.296 22.593 0.822 0.511 18.191 0.783 0.611
TiNeuVox w/ Reg 19.323 0.775 0.318 23.191 0.891 0.438 19.385 0.790 0.536

Table 6: Evaluation of the proposed regularizer over the HyperNeRF vrig dataset.

d = 128 d = 256 d = 512
Method mPSNR↑ mSSIM↑ mLPIPS↓ mPSNR↑ mSSIM↑ LPIPS↓ mPSNR↑ mSSIM↑ mLPIPS↓
TiNeuVox w/ Reg 15.441 0.609 0.415 15.981 0.618 0.401 16.221 0.671 0.399

d = 1024 d = 2048 d = 4096
Method mPSNR↑ mSSIM↑ mLPIPS↓ mPSNR↑ mSSIM↑ mLPIPS↓ mPSNR↑ mSSIM↑ mLPIPS↓
TiNeuVox w/ Reg 17.254 0.677 0.381 17.887 0.712 0.367 18.036 0.777 0.361

Table 7: Ablation over the number of samples used for OT distance computation. Metrics are
calculated over the iPhone dataset. As the number of samples grow, the performance improves,
possible due to the lower error in OT computation as predicted by Theorem 1.

A.3 FAILURE CASES

Since our method relies on an approximate OT distance, there can be instances where a pixel aver-
aging effect occurs, resulting in a subtle blur. Interestingly, this effect can potentially cause a slight
decline in the quality of renderings, especially when the baseline model already performs excep-
tionally well in a given sequence. Additionally, if the baseline model fails to converge completely
in a particular sequence, our regularization technique may not yield substantial improvements in the
results. Fig. 7 shows some examples.
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Figure 5: A qualitative illustration of the effect of the proposed regularization on the HyperNeRF vrig
dataset.
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Figure 6: A qualitative illustration of the effect of the proposed regularization on the HyperNeRF vrig
dataset.
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Figure 7: Example failure cases. Top row: baseline, bottom row: baseline with regularization. Due to
the pixel averaging effect that stems from the OT approximation sometimes degrade or does not improve the
results. We observed cases where the baseline model performs too poorly, leading to our regularization not
having much effect.

18


	Appendix
	Proof of Theorem 1
	Evaluation on HyperNeRF vrig dataset
	Failure cases


