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ABSTRACT

Most of incomplete multi-view clustering (IMVC) methods typically choose to
ignore the missing samples and only utilize observed unpaired samples to construct
bipartite similarity. Moreover, they employ a single quantity of prototypes to extract
the information of all views. To eliminate these drawbacks, we present a simple
yet effective IMVC approach, SIIHPC, in this work. It firstly transforms partial
bipartition learning into original sample form by virtue of reconstruction concept to
split out of observed similarity, and then loosens traditional non-negative constraints
via regularizing samples to more freely characterize the similarity. Subsequently, it
learns to recover the incomplete parts by utilizing the connection built between the
similarity exclusive on respective view and the consensus graph shared for all views.
On this foundation, it further introduces a group of hybrid prototype quantities for
each individual view to flexibly extract the data features belonging to each view
itself. Accordingly, the resulting graphs are with various scales and describe the
overall similarity more comprehensively. It is worth mentioning that these all are
optimized in one unified learning framework, which makes it possible for them
to reciprocally promote. Then, to effectively solve the formulated optimization
problem, we design an ingenious auxiliary function that is with theoretically proven
monotonic-increasing properties. Finally, the clustering results are obtained by
implementing spectral grouping action on the eigenvectors of stacked multi-scale
consensus similarity. Experimental results confirm the effectiveness of SIIHPC.

1 INTRODUCTION

Incomplete multi-view clustering (IMVC), a representative unsupervised learning approach, is
grasping increasing concerns owing to its effectiveness in grouping heterogeneous data containing
missing samples (Lin et al., 2021; Zhang et al., 2021a; Chen et al., 2024a; Tang & Liu, 2022; Gu
et al., 2024). It aims to under no any label information divide all samples into distinct sets such that
samples within the same set have relatively higher similarity while different sets are with significant
differences, thereby discovering the latent pattern relations embedded inside samples (Liu et al., 2020;
Huang et al., 2021; Ma et al., 2024a; Yu et al., 2024a; Pan & Kang, 2021; Li et al., 2025; Chen et al.,
2024b; Yu et al., 2023b). To generate high-quality results for IMVC, recently a series of eye-catching
algorithms have been carefully devised (Zhang et al., 2022; Wang et al., 2021c; Yu et al., 2024d;
Yang et al., 2023a; Chen et al., 2023; Yu et al., 2024c). For instance, Li et al. (2024a) describe the
relationship between existing samples and prototypes through an incomplete graph instead of the full
pair-wise instance graph to improve the computational efficiency, and produce the uniform similarity
under parameter free searching. Long et al. (2024) utilize the prototypes in potential feature subspace
to do low-rank approximation for the view correlations, and preserve the consistencies between
views by decreasing the rotation sensitivity in the embedded space. Rather than the distance-oriented
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Figure 1: The overall framework of proposed SIIHPC. It firstly utilizes T-PBL to split out of observed
similarity and then conducts SLI based on the connection between CG and view-specific similarities.
Further, combined with IVHGP, it generates MSVSG to flexibly extract features on respective view.

weighting, He et al. (2023) construct an asymmetric matrix by structural prototype based metric
learning to expand the late fusion, and accelerate the spectral generation through prototype inferred
graph learning. Li et al. (2023) maintain the view versatility and instance commonality via a double
stream learning framework, and use view-wise prototypes to exploit cluster-specific representations.

These approaches successfully achieve clustering result improvement from various perspectives,
nevertheless, they typically choose to ignore the missing samples and only take advantages of observed
samples to achieve the construction of bipartite similarity. This will miss out latent useful information
from the missing samples, resulting in the generated similarity not that accurate. Also, due to the
randomness of sample missing, the remaining observed samples are usually unpaired, which could
lead to unbalanced cluster distribution and deteriorate the graph structure. Besides, they usually
employ a single quantity of prototypes to extract all view information. This is apparently unreasonable
since each view generally owns unique features, and a single quantity of prototypes could be not
competent to adequately characterize all views, accordingly weakening the view information diversity.

To eliminate these issues, we present a simple yet effective IMVC method, SIIHPC, in this paper.
The overall framework is described in Fig. 1. Concretely, we firstly transform partial bipartition
learning under prototype orthogonality into the form containing original samples by utilizing the data
reconstruction concept to split out of observed similarity, and then relax conventional non-negative
constraints through a sample regularization skill to make the measure of similarity more free. Based
on the criterion that one object appears on at least one view, we further introduce the learnable
consensus graph, which is shared for all views, to provide unified structure. Afterwards, relying on
the connection built between all view-specific bipartition similarities and the consensus graph, we
gather the information from other views at the similarity level to assist imputing the incomplete parts
of similarity on each view. On this basis, rather than a single prototype quantity for all views, we
associate a group of hybrid prototype quantities for each individual view so that it can flexibly exploit
features according to the characteristics of each view. Accordingly, the resultant graphs have various
scales and in addition to balancing views, they also can more comprehensively characterize the
overall similarity. In particular, we achieve these goals within one unified learning framework such
that they are able to negotiate with each other towards the direction of mutual reinforcement. Then,
to minimize the objective function, we adopt the alternate optimization idea and design an ingenious
four-step solution scheme that cleverly solves the sub-problem through an auxiliary function with
theoretically and experimentally proven monotonic-increasing properties. Subsequently, we stack all
obtained multi-scale consensus graphs and perform spectral grouping action on the feature embedding
that consists of the eigenvectors to generate the clustering results. After that, to demonstrate the
effectiveness of SIIHPC, we organize experiments on multiple datasets and under different missing
percentages. Numerous experiment results suggest that our SIIHPC has the ability to effectively
cluster incomplete data. Main novelties in this paper are as follows:
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• Unlike previous methods disregarding the missing samples when constructing bipartite
similarity, this paper successfully imputes incomplete parts at the similarity level. Not only
does this alleviate the adverse impacts caused by the unpairing of observed samples but
also can take advantages of the potential useful information of missing samples to help
characterize the similarity more accurately.

• Instead of a single prototype quantity for all views, this paper successfully generates a
group of hybrid prototype quantities for each individual view to flexibly extract data features
according to the characteristics of each view itself. The resulting graphs are with diverse
scales and besides balancing views, they are also able to more comprehensively describe the
overall similarity.

• To optimize the objective function, this paper carefully designs an alternate solving scheme,
which decomposes the entire problem into four parts and solves the sub-problem via an
ingenious auxiliary function with theoretically proven monotonic-increasing properties.

2 RELATED WORKS

As the information age progresses, multi-view data which commonly stems from diverse descriptions
of the same instances is becoming increasingly widespread (Ma et al., 2024b; Peng et al., 2019; Kang
et al., 2020b; Yu et al., 2023a; Qin et al., 2023; Zhang et al., 2024c; Yang et al., 2023b; Lu et al.,
2024). Accordingly, clustering technology receives growing interest owing to its ability effectively
grouping multi-view data without needing label information (Wan et al., 2024; Liang et al., 2024;
Kang et al., 2020a; Lin et al., 2023b; Wang et al., 2021a; Huang et al., 2022; Yu et al., 2024b).
However, due to factors like sensor breakdown or environment change, it is inevitable that some
samples are missing/incomplete on certain views, causing traditional clustering methods not working
properly and inducing the IMVC problem (Wang et al., 2022b; Zhang et al., 2019; Xu et al., 2024;
Zeng et al., 2024; Lv et al., 2022). For effectively tackling this problem, many remarkable works have
been proposed successively from various perspectives, such as (Zhao et al., 2023; Yang et al., 2024;
Zhang et al., 2024a; Wang et al., 2021b; Huang et al., 2023; Xu et al., 2022; Zhang et al., 2024b).

Let matrices {Dv ∈ Rdv×n}Vv=1 and vectors {rv ∈ Rnv}Vv=1 denote the overall data and indexes of
observed data respectively, then, the basic IMVC framework can be expressed as

min
Xv

V∑
v=1

∥DvWv −HvXvWv∥2F + λ ∥Xv∥2F s.t. X⊤
v 1 = 1,Xv ≥ 0, (1)

where the indicator matrix Wv ∈ Rn×nv measures the incompleteness of view v, and its elements
consist of [Wv]i,j = 1 when [rv]j == i otherwise [Wv]i,j = 0, ∀j = 1, 2, · · · , nv. Hv ∈
Rdv×m denotes the prototype matrix on view v, and is intended to approximately characterize the
data Dv . Xv ∈ Rm×n denotes the incomplete similarity matrix on view v. The clustering results can
be obtained by first fusing all learned Xv and then performing spectral embedding partitioning on it.

Following this paradigm, Chen et al. (2023) introduce tensor learning to exploit the low-rankness
between views and utilize high-level view correlations captured by tensor to assist the learning of
prototypes. Wang et al. (2022a) conduct a group of projectors to guarantee the dimension consistency
of prototypes and aggregate different view information via an uniform fusion scheme. Xu et al. (2023a)
regard the common features among views as prototypes and perform the distribution alignment by
maximizing the mutual information between prototypes and view-wise features. Lin et al. (2023a)
choose to concatenate view-representations as prototypes on each view and preserve the consistency
by minimizing the distance between prototypes and within-cluster instances. Wen et al. (2021a) adopt
the within-view maintenance and between-view inference strategy to decrease the adverse impact of
information unbalance and encourage cluster structure directly reflected in representations. Lin et al.
(2024) concurrently recoup and infer features in latent embedding space to explore the correlations
between views and utilize an exploratory scheme to update all parameters. Xia et al. (2022) employ
tensor norm to extract complementary information and introduce connectivity constraint to capture the
spatial structure hidden into similarity. Xu et al. (2023b) design a two-branch, common and private,
variable strategy to leverage representations and improve the robustness to senseless information via
a controllable way. Wen et al. (2021b) devise a graph regularizer to maintain the local geometric
similarities between views and utilize semantic coherence constraints to stimulate uniform features.
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3 METHODOLOGY

Rethinking (1), its nature is to reconstruct Dv using HvXv under given Hv. Unlike the fixing
strategy, we firstly make prototype learnable and then introduce orthogonal constraint to strengthen its
discrimination, i.e., H⊤

v Hv = I. On this basis, we have H⊤
v DvWv = XvWv. Then, the observed

parts can be splited out through XvWvW
⊤
v = H⊤

v DvWvW
⊤
v . Notice that the item H⊤

v Dv can be
regarded as the cosine similarity between H⊤

v and Dv when all columns of Dv are unit vectors. Hence,
we choose to do normalization on Dv, which expands the similarity range from [0, 1] to [−1, 1],
more freely measuring the similarity. Subsequently, we introduce a consensus graph G to aggregate
information from different views, and impute the incomplete parts by utilizing H⊤

v DvWvW
⊤
v and

G. Further, to avoid a single prototype quantity for all views, we provide a group of hybrid prototype
quantities {m1,m2, · · · ,ms, · · · ,mS} for each view v to flexibly extract features according to
the characteristics of each view itself. Consequently, we have Xv,sWvW

⊤
v = H⊤

v,sDvWvW
⊤
v .

Besides, to adaptively adjust the importance between prototype quantities, we associate a learnable
weight, av,s, for each prototype quantity on each view. Finally, our SIIHPC can be formulated as

min
A,Hv,s,Qv,s,Gs

V∑
v=1

S∑
s=1

av,s

(∥∥H⊤
v,sDvWvW

⊤
v +Qv,sMvM

⊤
v −Gs

∥∥2
F
+ λ ∥Gs∥2F

)
+ β ∥A∥2F

s.t. H⊤
v,sHv,s = Ims ,−1 ≤ Qv,s ≤ 1,−1 ≤ Gs ≤ 1,A1 = 1, 0 ≤ A,

(2)
where Hv,s ∈ Rdv×ms denotes the prototype matrix with the s-th quantity on view v. Mv consists of
[Mv]i,j = 1 when [hv]j == i otherwise [Mv]i,j = 0, ∀j = 1, 2, · · · , n− nv; i = 1, 2, · · · , n.
hv = {z|z ∈ Ta and z /∈ To} where Ta = {1, 2, · · · , n} and To = {[rv]1, [rv]2, · · · , [rv]nv

}.
Qv,s ∈ Rms×n is the imputation matrix with the s-th scale on view v. A ∈ RV×S consists of av,s.

4 OPTIMIZATION

Due to the non-convexity when jointly considering all variables in (2), we alternatively optimize each
variable via the following four-step updating skill.

Step 1: Optimizing the Prototype Matrix Hv,s

Under fixed Qv,s, Gs and A, we can simplify the optimization problem (2) as

max
Hv,s

Tr
(
H⊤

v,sL̂vHv,s +H⊤
v,sPv,s

)
s.t. H⊤

v,sHv,s = Ims
, (3)

where the matrix L̂v = φvIdv
− Lv, the scalar φv represents the largest eigenvalue of Lv, Lv =

DvWvW
⊤
v WvW

⊤
v D

⊤
v , Pv,s = 2DvWvW

⊤
v

(
Gs −Qv,sMvM

⊤
v

)⊤
.

Denote the function g(Hv,s) = Tr(H⊤
v,sL̂vHv,s+H⊤

v,sPv,s), its derivative as ∇g((Hv,s)), the value
of Hv,s at the r-th iteration as (Hv,s)

r, the singular value decomposition results of ∇g((Hv,s)
r
) as

(Uv,s)
r
(Σv,s)

r (
V⊤

v,s

)r
. Then, we have the following two lemmas hold.

Lemma 1. Under (Hv,s)
r+1 taking (Uv,s)

r (
V⊤

v,s

)r
, for the trace of Hv,s and its derivative, we

have
Tr
([(

H⊤
v,s

)r+1 −
(
H⊤

v,s

)r]∇g ((Hv,s)
r
)
)
≥ 0, (4)

where ∇g ((Hv,s)
r
) denotes the derivative value at the r-th iteration.

Lemma 2. For the trace of Hv,s at the r-th iteration and (r + 1)-th iteration, we have

Tr
((

H⊤
v,s

)r+1
L̂v

[
(Hv,s)

r+1 − (Hv,s)
r
])

≥ Tr
([(

H⊤
v,s

)r+1 −
(
H⊤

v,s

)r]
L̂v (Hv,s)

r
)
. (5)

In conjunction with Lemma 1 and Lemma 2, we have the following theorem holds.

Theorem 1. For the function g, under any (Hv,s)
r and (Hv,s)

r+1
= (Uv,s)

r (
V⊤

v,s

)r
, we have

g(Hv,s ) is monotonically increasing.

According to Theorem 1, we can determine Hv,s by comparing the objective value at current iteration
and that at previous iteration. Algorithm 1 summaries the overall procedure of optimizing Hv,s.
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Algorithm 1 The procedure of optimizing Hv,s in (3).
Input: The matrices Hv,s, Qv,s, Gs, A, Dv , Wv , Mv .

Construct the function g(Hv,s).
1: while g((Hv,s)

r+1
)− g((Hv,s)

r
)/g((Hv,s)

r
) ≤ 1e− 3 do

2: Compute the derivative function ∇g ((Hv,s)
r
).

3: Generate the singular matrices (Uv,s)
r and

(
V⊤

v,s

)r
.

4: Assign (Hv,s)
r+1 by (Hv,s)

r+1
= (Uv,s)

r (
V⊤

v,s

)r
.

5: r = r + 1.
6: end while

Output: The prototype matrices {Hv,s}V, S
v=1,s=1.

Remark 1. Due to WvW
⊤
v ∈ Rn×n and MvM

⊤
v ∈ Rn×n, calculating Lv and Pv,s needs at least

O(n2) computing overhead. Noticed that WvW
⊤
v and MvM

⊤
v are diagonal matrices with elements

0 or 1, by virtue of Hadamard product, we can transform Lv and Pv,s as Dv ⊙Bv ·B⊤
v ⊙D⊤

v and
2Dv⊙Bv(Gs−Qv,s⊙Cv)

⊤, where Bv = 1dv
·[
∑nv

j=1[Wv]1,j ,
∑nv

j=1[Wv]2,j , · · · ,
∑nv

j=1[Wv]n,j ]

and Cv = 1ms
· [
∑n−nv

j=1 [Mv]1,j ,
∑n−nv

j=1 [Mv]2,j , · · · ,
∑n−nv

j=1 [Mv]n,j ]. After transforming, the
computing complexity is reduced to O(n).

Step 2: Optimizing the Similarity Imputation Matrix Qv,s

Under fixed Hv,s, Gs and A, we can simplify the problem (2) as

min
Qv,s

∥∥Qv,sMvM
⊤
v − Jv,s

∥∥2
F

s.t. − 1 ≤ Qv,s ≤ 1, (6)

where the matrix Jv,s = Gs −H⊤
v,sDvWvW

⊤
v . Mv is an indicator matrix, and therefore we can

determine Qv,s by taking the value of corresponding index of Jv,s. To guarantee the feasible region,
we can regularize the solution by first comparing it and ±1 and then performing truncation operation.
Remark 2. Due to the direct assignment operation, the computing overhead of optimizing Qv,s

is mainly from the construction of Jv,s. Inspired by Remark 1, the item H⊤
v,sDvWvW

⊤
v can be

transformed as H⊤
v,sDv ⊙Bv . Therefore, the computing complexity about optimizing Qv,s is O(n).

Step 3: Optimizing the Unified Representation Matrix Gs

Under fixed Hv,s, Qv,s and A, we can simplify the problem (2) as

min
Gs

Tr

(
G⊤

s

(
V∑

v=1

av,s(1 + λ)Ims

)
Gs − 2

(
V∑

v=1

(av,sFv,s)
⊤

)
Gs

)
, s.t. − 1 ≤ Gs ≤ 1,

(7)
where the matrix Fv,s = H⊤

v,sDvWvW
⊤
v +Qv,sMvM

⊤
v . After expanding the trace by elements,

we can equivalently transform the objective as

min
[Gs]:,j

[Gs]
⊤
:,j

(
V∑

v=1

av,s (1 + λ) Ims

)
[Gs]:,j − 2

(
V∑

v=1

av,s[Fv,s]:,j

)⊤

[Gs]:,j . (8)

For the feasible region, we can split it into −1 ≤ [Gs]:,j ≤ 1, j = 1, 2, · · · , n. Therefore, the
problem (7) is transformed as a quadratic programming (QP) problem, and can be effectively solved
using existing software packages.
Remark 3. Solving each column vector [Gs]:,j by QP consumes O(m3

s) overhead. Therefore, the
computing overhead of optimizing Gs is O(m3

sn). Note that the number of prototypes ms is not
related to n and usually is far less than n, accordingly, the computing complexity of Gs is also O(n).

Step 4: Optimizing the Prototype Balance Matrix A

Under fixed Hv,s, Qv,s and Gs, we can simplify the problem (2) as

min
A

V∑
v=1

S∑
s=1

av,spv,s + β ∥A∥2F s.t. A1 = 1, 0 ≤ A, (9)
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Algorithm 2 The procedure of solving the problem (2).
Input: Data matrix Dv , index vectors bv , hyper-parameters λ and β, v = 1, 2, · · · , V .

Construct indicator matrices Wv and Mv .
1: while (fobj(t)− fobj(t+ 1))/fobj(t) <= 1e− 4 do
2: Optimize the variable Hv,s by Algorithm 1.
3: Optimize the variable Qv,s by solving (6).
4: Optimize the variable Gs by solving (7).
5: Optimize the variable A by (11).
6: end while

Output: The unified representation matrices {Gs}Ss=1.

where pv,s =
∥∥H⊤

v,sDvWvW
⊤
v +Qv,sMvM

⊤
v −Gs

∥∥2
F
+ λ ∥Gs∥2F . Due to the constraints being

for the row of A, we can further transform the problem (9) as

min
av,s

S∑
s=1

av,spv,s + βa2v,s s.t. av,:1 = 1, 0 ≤ av,:, (10)

where the vector av,: denotes the v-th row of A. For the above optimization problem, we can get its
closed-form solution as

av,: =

 pv,:·1·1⊤

2β + 1⊤

S
− pv,:

2β


+

, (11)

where the vector pv,: is composed of pv,s, s = 1, 2, · · · , S.
Remark 4. Owing to the closed-form solution, the computing overhead is mainly from the con-
struction of pv,:. According to Remark 1, we can obtain that constructing each pv,s takes O(n).
Accordingly, solving av,: takes O(Sn). Solving the overall A will take O(V Sn), which is also O(n).

We summary the overall procedure for solving the optimization problem (2) in Algorithm 2, where
fobj(t) denotes the objective value at the t-th iteration.

After obtaining the unified representation matrices {Gs}Ss=1, we concatenate them by row and
subsequently perform spectral grouping on it to generate the data clustering results.
Remark 5. The overall computing complexity of Algorithm 2 is O(n) since updating Hv,s, Qv,s,
Gs and A all take O(n), which consequently enables it to be expanded to large-scale tasks.
Remark 6. Storing the optimization variables Hv,s, Qv,s, Gs and A takes O(msdv), O(msn),
O(msn) and O(SV ), respectively. Therefore, the space complexity of Algorithm 2 is also O(n).

5 EXPERIMENTS

5.1 BASELINES AND DATASETS

We conduct all experiments on six public multi-view datasets, and their details are presented in Table
1, where SS: Sample Size, NV: Number of Views, FD: Feature Dimension, NC: Number of Clusters.

Table 1: Dataset Description

Dataset SS NV FD NC

BDGPFEA 2500 3 1000/500/250 5
NUSOBJECT 6251 5 129/74/145/226/65 10

VGGFACEFIFTY 16936 4 944/576/512/640 50
VGGFACEHUND 36287 4 512/576/640/944 100
YOUTUBEFACE 63896 4 640/944/576/512 20

FASHMINST 70000 4 576/512/944/640 10

The following methods are used as baselines in this paper to illustrate the effectiveness of SIIHPC:
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Localized Sparsity (LSIMVC (Liu et al., 2023)), Refined Graph Structure (GSRIMC (Li et al.,
2024b)), High-Order Correlation (HCPIMSC (Li et al., 2022)), Efficient Effective Regularizer
(EEIMVC (Liu et al., 2021)), Low-Rank Graph (LRGRIMVC (Cui et al., 2024)), Consensus
Bipartite Graph (IMVCCBG (Wang et al., 2022a)), Balance Guidance (BGIMVSC (Sun et al.,
2023)), Late Fusion (OSLFIMVC (Zhang et al., 2021b)), Neighbor Group Structure (NGSPCGL
(Wong et al., 2023)), Projections (PIMVC (Deng et al., 2023)), Parameter-Free Scalable Prototype
Graph (PSIMVC (Li et al., 2024a)), Structured Anchor-Inferred Graph (SAGL (He et al., 2023)),
Local Structure Consensus Graph (HCLSCGL Wen et al. (2023)).

5.2 RESULTS AND DISCUSSIONS

Table 2: Clustering Results on Benchmark Datasets

Method
BDGPFEA NUSOBJECT

30% 50% 70% 30% 50% 70%

ACC NMI PUR ACC NMI PUR ACC NMI PUR ACC NMI PUR ACC NMI PUR ACC NMI PUR

LSIMVC 26.56 6.14 26.56 26.81 7.18 26.81 27.40 8.35 28.07 21.70 9.03 31.23 21.81 8.43 30.99 20.57 7.43 30.52
GSRIMC 39.84 14.22 39.96 38.30 13.15 36.78 34.41 11.22 34.17 23.03 8.34 32.73 20.91 7.58 32.04 20.46 7.86 31.20

HCPIMSC 34.12 12.65 36.36 32.20 12.41 35.24 33.16 11.81 34.58 21.56 6.38 29.31 21.33 8.93 30.18 22.87 8.07 29.81
EEIMVC 35.70 14.47 36.34 33.23 12.39 36.05 31.02 10.37 33.64 21.51 6.17 13.51 21.07 8.97 13.42 20.13 8.14 13.17

LRGRIMVC 34.71 12.58 35.74 31.43 9.12 32.63 27.25 4.80 27.27 21.43 7.25 30.17 22.62 7.83 30.99 21.73 8.16 30.15
IMVCCBG 40.05 15.01 40.17 38.10 11.49 36.76 34.78 10.03 34.06 22.59 8.36 31.96 21.35 7.90 32.85 22.05 7.43 31.16
BGIMVSC 22.65 3.19 23.26 26.88 9.68 27.08 24.04 4.72 24.56 19.06 0.30 22.86 19.13 0.34 22.91 19.06 0.31 22.86

OSLFIMVC 30.38 9.58 36.47 31.84 9.12 35.37 31.68 8.80 35.73 21.88 7.67 32.34 20.68 6.91 33.00 18.41 4.63 29.58
NGSPCGL 29.95 6.64 31.13 29.54 6.07 29.89 27.15 5.70 27.64 23.09 7.83 30.78 19.97 4.62 28.32 17.47 2.22 25.20

PIMVC 34.03 14.62 35.99 33.04 12.92 33.54 34.41 11.60 35.41 21.29 9.36 31.07 21.08 8.52 31.12 19.44 7.89 31.36
PSIMVC 34.00 12.51 35.58 31.98 9.55 33.65 30.12 9.15 32.45 19.65 8.25 29.11 20.09 8.91 30.21 22.07 7.91 30.35

SAGL 23.76 1.69 23.92 23.03 1.41 23.60 28.52 4.09 29.56 20.48 7.67 27.46 20.39 6.91 26.16 18.39 6.63 26.47
HCLSCGL 29.80 7.12 31.40 24.28 3.12 25.08 28.25 4.31 28.55 21.93 7.54 30.68 21.59 7.79 31.49 20.28 7.81 31.31

Ours 38.80 15.21 39.97 40.31 13.88 40.31 35.04 11.54 37.30 23.30 9.14 32.87 22.38 9.21 33.92 21.46 8.36 31.49

VGGFACEFIFTY VGGFACEHUND

LSIMVC 8.45 10.78 8.65 7.30 9.83 7.56 6.94 9.08 7.18
N/AGSRIMC N/A

HCPIMSC 10.33 12.36 12.14 10.54 11.90 10.85 10.85 9.23 10.16
EEIMVC 6.05 14.03 5.94 5.60 14.15 5.50 5.33 13.29 5.23 3.37 7.32 4.78 3.41 6.89 5.67 3.20 6.27 5.74

LRGRIMVC 9.21 13.23 11.37 10.02 12.48 11.45 9.15 11.58 12.56 N/A
IMVCCBG 12.13 14.25 13.11 11.52 13.29 12.40 10.80 12.35 11.66 8.12 14.23 8.92 7.52 13.25 8.25 6.80 12.20 7.06
BGIMVSC 6.49 9.83 6.83 7.34 9.45 7.19 6.76 9.85 7.19 N/A

OSLFIMVC 8.50 8.79 8.96 6.98 6.70 7.58 6.01 5.09 6.60 5.54 9.59 5.97 4.62 7.54 5.05 3.60 5.81 4.08
NGSPCGL 6.50 6.47 7.19 6.24 6.54 6.74 6.08 6.24 6.75 N/A

PIMVC 9.40 13.36 11.07 9.06 12.52 11.12 8.78 11.89 12.06 6.10 13.42 7.32 5.97 12.91 7.11 5.68 12.36 6.72
PSIMVC 10.63 12.50 11.58 9.54 11.33 10.49 9.06 10.45 9.92 6.17 11.04 6.71 5.28 10.58 5.89 5.51 9.91 6.04

SAGL 8.25 9.33 9.75 6.54 9.65 6.75 5.84 9.65 8.86 5.84 10.54 6.36 4.85 10.13 4.74 3.84 9.32 4.54
HCLSCGL 5.65 9.55 5.74 4.18 8.68 4.62 4.67 8.55 5.01 3.05 10.32 4.26 3.05 10.12 4.13 3.15 9.51 4.02

Ours 12.52 14.91 13.44 12.31 14.48 13.21 11.18 13.35 11.96 8.26 14.94 9.13 7.55 13.85 8.39 6.82 12.69 7.55

YOUTUBEFACE FASHMINST

LSIMVC

N/A N/A
GSRIMC

HCPIMSC
EEIMVC

LRGRIMVC
IMVCCBG 74.88 79.28 77.29 72.39 78.33 77.04 70.61 78.60 77.97 58.18 57.58 62.22 58.01 58.01 61.75 56.27 56.48 60.17
BGIMVSC N/A N/A

OSLFIMVC 61.85 70.25 69.84 60.78 69.27 69.56 61.99 68.27 67.46 41.73 36.25 47.28 41.67 34.36 45.37 41.23 32.89 44.76
NGSPCGL N/A N/A

PIMVC
PSIMVC 68.10 75.67 74.33 67.48 72.29 74.49 67.67 71.64 74.17 50.11 52.23 51.92 54.09 57.19 58.11 54.42 54.78 57.73

SAGL 63.48 72.89 72.45 62.47 73.63 73.04 62.65 72.75 73.68 43.47 53.56 53.68 43.35 57.88 55.73 43.58 53.62 54.86
HCLSCGL N/A N/A

Ours 76.29 82.27 80.81 72.60 79.60 77.65 71.05 79.19 76.75 61.24 59.52 62.69 62.51 60.22 64.64 60.59 58.77 63.18

Table 2 presents the clustering results under multiple missing ratios (30%, 50%, 70%). We can get:

• The proposed SIIHPC receives preferable results than many comparison algorithms under
multiple missing ratios and metrics. For instance, on the datasets VGGFACEHUND and
FASHMINST, SIIHPC is consistently the best; on VGGFACEFIFTY and YOUTUBEFACE,
SIIHPC obtains only two sub-optimal results totally; on BDGPFEA and NUSOBJECT,
SIIHPC also makes desirable results. Therefore, SIIHPC can effectively tackle IMVC tasks.

• LSIMVC, GSRIMC, HCPIMSC, EEIMVC, LRGRIMVC, BGIMVSC, NGSPCGL, PIMVC
and HCLSCGL can not normally run on slightly-larger dataset VGGFACEFIFTY, VG-
GFACEHUND, YOUTUBEFACE or FASHMNIST, while the proposed SIIHPC is not only
able to work properly under these circumstances but also makes favorable results. Therefore,
SIIHPC is with relatively stronger practicality.
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5.3 TIME AND MEMORY OVERHEAD COMPARISON

For illustrating SIIHPC’s friendliness to computing resource and storage resource, we compare the
running time (min) and memory overhead (GB) between all previously-mentioned IMVC methods,
as reported in Table 3. According to this table, we can observe that:

• SIIHPC consumes fewer resources against most methods. For example, on datasets
YOUTUBEFACE and FASHMINST, the algorithms OSLFIMVC and SAGL require
126.28GB, 82.96GB, 123.42GB and 99.01GB memory respectively while our SIIHPC
only needs 6.01GB and 5.13GB. In other situations, the time overhead and memory over-
head of SIIHPC are still relatively small. Therefore, SIIHPC is resource-friendly.

• In some cases, PIMVC, PSIMVC and IMVCCBG take lower running time and/or memory
overhead, possibly because PIMVC learns representation in a common low-dimensional
space instead of in diverse original space, PSIMVC employs only one bipartite graph to
characterize the correlation between all views, and IMVCCBG utilizes the landmarks with
a single dimension to extract features. Despite resource-saving, they generally can not
integrate information from missing samples, accordingly giving inferior clustering results.

Table 3: Running Time and Memory Overhead Comparison

Method BDGPFEA NUSOBJECT VGGFACEFIFTY VGGFACEHUND YOUTUBEFACE FASHMINST

Time Memo Time Memo Time Memo Time Memo Time Memo Time Memo

LSIMVC 0.03 0.32 0.13 2.42 0.55 15.18
N/A

N/A N/A
GSRIMC 2.10 2.82 28.88 28.07 N/A

HCPIMSC 2.79 1.93 43.33 17.25 741.45 104.84
EEIMVC 0.02 0.80 0.33 5.06 2.99 30.97 238.01 98.84

LRGRIMVC 3.35 1.11 60.59 10.09 492.37 61.87 N/A
IMVCCBG 0.02 0.17 0.05 0.20 0.56 1.73 2.46 3.96 1.23 6.16 1.27 6.41
BGIMVSC 4.85 1.27 15.76 8.75 132.67 135.70 N/A N/A N/A

OSLFIMVC 0.09 0.30 0.18 1.51 3.23 10.02 20.00 41.96 13.54 126.28 12.27 123.42
NGSPCGL 0.97 1.79 11.42 13.43 111.29 89.09 N/A N/A N/A

PIMVC 0.01 0.46 0.40 2.53 0.36 17.20 3.37 76.58
PSIMVC 0.02 0.16 0.04 0.15 0.40 1.62 1.30 5.22 1.57 6.42 1.95 6.41

SAGL 0.22 0.40 0.41 2.22 7.54 16.29 45.06 26.96 38.39 82.96 30.07 99.01
HCLSCGL 0.17 1.84 4.14 13.92 309.87 91.51 4838.55 133.20 N/A N/A

Ours 0.06 0.14 0.11 0.22 1.86 2.84 6.22 10.32 3.31 6.01 3.57 5.13

5.4 ABLATION

We utilize the similarity level imputation (SLI) to capture the latent useful information from missing
samples and thereby improve the clustering performance. To verify its effectiveness, we do result
comparison under these two situations, as shown in Table 4, where AB: Ablation, MR: Missing Ratio,
NSLI: No-SLI. As seen, SLI results are always preferable. Therefore, our SLI scheme is functional.

Table 4: Similarity-level Imputation Effectiveness

AB MR BDGPFEA NUSOBJECT VGGFACEFIFTY VGGFACEHUND YOUTUBEFACE FASHMINST

ACC NMI PUR ACC NMI PUR ACC NMI PUR ACC NMI PUR ACC NMI PUR ACC NMI PUR

NSLI 30% 28.15 3.83 30.38 22.60 7.29 31.85 6.71 7.22 7.51 4.83 9.93 5.53 46.19 40.95 51.69 46.99 33.74 49.41
SLI 38.80 15.21 39.97 23.30 9.14 32.87 12.52 14.91 13.44 8.26 14.94 9.13 76.29 82.27 80.81 61.24 59.52 62.69

NSLI 50% 29.74 3.97 30.98 21.09 6.20 31.10 5.33 4.45 6.00 3.73 6.69 4.26 26.07 16.16 28.60 37.85 24.03 40.85
SLI 40.31 13.88 40.31 22.38 9.21 33.92 12.31 14.48 13.21 7.55 13.85 8.39 72.60 79.60 77.65 62.51 60.22 64.64

NSLI 70% 26.39 1.68 26.80 18.05 3.25 27.86 5.01 3.76 5.64 3.12 4.98 3.56 15.82 15.40 17.46 25.15 9.26 27.31
SLI 35.04 11.54 37.30 21.46 8.36 31.49 11.18 13.35 11.96 6.82 12.69 7.55 71.05 79.19 76.75 60.59 58.77 63.18

Unlike a single prototype quantity (SPQ) for all views, we introduce a group of hybrid prototype
quantities (HPQ) [1k, 2k, · · · , 5k] for each view to flexibly exploit features where k is the number of
clusters. The ablation results are shown in Table 5 where PQ: prototype quantity. It can be seen that
the HPQ results are consistently superior to any SPQ ones. Therefore, our HPQ scheme is effective.

Further, we adaptively adjust the importance of each prototype quantity via a learnable weight to
more flexibly extract features. To verify its effectiveness, we present the ablation results in Table 6,
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Table 5: Hybrid-group Prototype Quantity Effectiveness
AB MR PQ BDGPFEA NUSOBJECT VGGFACEFIFTY VGGFACEHUND YOUTUBEFACE FASHMINST

ACC NMI PUR ACC NMI PUR ACC NMI PUR ACC NMI PUR ACC NMI PUR ACC NMI PUR

SPQ
30%

m=1k 29.77 6.07 30.45 12.75 1.30 23.03 9.48 11.21 10.45 5.15 10.63 6.03 65.28 72.52 70.51 53.16 56.70 58.30
m=2k 34.46 9.79 35.89 13.93 2.08 23.22 10.42 12.57 11.23 5.67 11.54 6.59 69.74 78.24 75.29 55.01 58.94 59.26
m=3k 28.71 6.70 30.60 15.15 3.64 24.36 11.29 13.35 12.06 6.41 12.27 7.27 70.68 80.63 76.57 53.50 58.61 57.34
m=4k 34.43 11.46 35.66 16.88 4.56 27.12 11.18 13.60 12.04 6.48 12.80 7.36 68.36 78.85 74.42 56.94 58.71 58.40
m=5k 34.84 9.74 36.15 17.46 4.21 27.17 12.00 14.03 12.92 7.06 12.56 7.44 69.81 76.88 75.33 56.12 55.80 59.85

HPQ m=ours 38.80 15.21 39.97 23.30 9.14 32.87 12.52 14.91 13.44 8.26 14.94 9.13 76.29 82.27 80.81 61.24 59.52 62.69

SPQ
50%

m=1k 24.23 2.30 25.18 14.37 1.57 24.79 9.20 10.70 10.08 5.98 10.78 6.16 62.12 66.35 66.63 53.41 56.05 54.69
m=2k 34.87 7.83 34.87 18.88 5.68 29.75 10.77 12.81 11.71 6.12 11.31 6.32 66.96 74.15 71.43 50.97 55.58 54.41
m=3k 34.59 8.96 34.59 19.27 6.21 29.56 11.17 13.31 11.93 6.61 11.68 6.76 67.03 73.99 72.04 55.62 58.39 57.25
m=4k 34.98 9.44 35.74 20.13 7.01 30.80 11.24 13.51 12.17 6.54 11.74 6.68 70.21 77.23 74.64 58.47 58.69 59.24
m=5k 34.25 9.22 36.55 19.04 6.01 31.08 11.33 13.25 12.16 6.68 11.89 7.43 70.53 76.28 75.53 61.01 58.45 62.83

HPQ m=ours 40.31 13.88 40.31 22.38 9.21 33.92 12.31 14.48 13.21 7.55 13.85 8.39 72.60 79.60 77.65 62.51 60.22 64.64

SPQ
70%

m=1k 22.84 1.26 23.78 12.34 1.26 22.45 7.90 9.00 8.83 5.03 9.37 5.09 59.53 64.12 64.69 51.36 52.32 55.39
m=2k 28.48 4.64 29.64 14.92 2.55 24.69 9.08 10.91 10.00 5.84 10.37 5.96 60.57 70.46 66.26 52.86 55.75 57.26
m=3k 30.49 7.02 31.35 15.37 3.37 25.00 9.69 11.77 10.50 5.84 10.55 5.92 64.61 74.48 70.66 55.76 57.80 60.05
m=4k 30.38 6.91 32.76 14.06 3.53 25.58 10.08 12.13 10.98 6.00 10.69 6.03 68.09 76.77 73.13 53.57 56.62 57.78
m=5k 31.90 7.67 33.73 16.93 3.98 26.53 10.53 12.24 11.35 6.06 10.54 6.34 69.58 75.94 73.29 52.69 53.91 57.57

HPQ m=ours 35.04 11.54 37.30 21.46 8.36 31.49 11.18 13.35 11.96 6.82 12.69 7.55 71.05 79.19 76.75 60.59 58.77 63.18

where ETPQ: Equally Treating Prototype Quantity, AWPQ: Adaptively Weighing Prototype Quantity.
Evidently, our AWPQ scheme makes performance improvement.

Table 6: Hybrid-group Prototype Quantity Weighting Effectiveness

AB MR BDGPFEA NUSOBJECT VGGFACEFIFTY VGGFACEHUND YOUTUBEFACE FASHMINST

ACC NMI PUR ACC NMI PUR ACC NMI PUR ACC NMI PUR ACC NMI PUR ACC NMI PUR

ETHP 30% 33.28 11.99 36.33 20.29 6.16 28.41 11.21 14.66 13.08 8.06 14.13 8.38 69.86 78.89 76.31 55.02 59.01 59.12
AWPQ 38.80 15.21 39.97 23.30 9.14 32.87 12.52 14.91 13.44 8.26 14.94 9.13 76.29 82.27 80.81 61.24 59.52 62.69

ETHP 50% 37.70 12.37 39.04 21.37 7.24 31.79 11.29 13.44 12.13 7.11 12.87 7.54 71.32 78.93 75.67 62.08 59.90 64.84
AWPQ 40.31 13.88 40.31 22.38 9.21 33.92 12.31 14.48 13.21 7.55 13.85 8.39 72.60 79.60 77.65 62.51 60.22 64.64

ETP 70% 34.70 10.66 35.69 17.44 5.13 28.10 10.37 12.58 10.22 6.26 11.68 6.97 68.62 78.38 75.92 56.35 59.42 60.54
AWPQ 35.04 11.54 37.30 21.46 8.36 31.49 11.18 13.35 11.96 6.82 12.69 7.55 71.05 79.19 76.75 60.59 58.77 63.18

5.5 CONVERGENCE

We draw the objective value evolution of Algorithm 2 to illustrate the convergence of SIIHPC. From
Fig. 2, we can know that it monotonically decreases and gradually stabilizes within twenty iterations.
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Figure 2: The objective value of Algorithm 2 on BDGPFEA, NUSOBJECT and VGGFACEFIFTY.

5.6 MONOTONICITY OF FUNCTION g

To experimentally verify the monotonicity of function g, we draw its objective value evolution in
Fig. 3. Evidently, g is monotonically increasing. Further, we also give the change of g during each
iteration of Algorithm 2. Taking Fig. 2 (a) as an example, Algorithm 2 iterates totally 10 times.
Fig. 4 presents the change of g when Algorithm 2 is at the 2-th ∼ 10-th iteration respectively. As seen,
it is also monotonically increasing. Moreover, it can be observed that as the upper-loop Algorithm 2
iterates, the number of iterations required for the inner-loop Algorithm 1 gradually decreases, which
is mainly because along with the iteration of Algorithm 2, the optimization variable in the inner-loop
gradually reaches to its optimal solution and accordingly Algorithm 1 needs fewer iterations.
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Figure 3: The value change of function g when Algorithm 2 is at the 1-th iteration.
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1 1.2 1.4 1.6 1.8 2

Iteration Number

842.95

843

843.05

843.1

843.15

843.2

843.25

843.3

O
bj

ec
tiv

e 
V

al
ue

(g) Algorithm 2 at 8-th iteration

1 1.2 1.4 1.6 1.8 2

Iteration Number

842.6

842.7

842.8

842.9

843

O
bj

ec
tiv

e 
V

al
ue

(h) Algorithm 2 at 9-th iteration

1 1.2 1.4 1.6 1.8 2

Iteration Number

842.5

842.55

842.6

842.65

842.7

842.75

842.8

842.85

O
bj

ec
tiv

e 
V

al
ue

(i) Algorithm 2 at 10-th iteration

Figure 4: The value change of function g on BDGPFEA.

6 CONCLUSION

We propose a simple yet effective IMVC method named SIIHPC in this paper. Rather than only
utilizing observed unpaired samples to construct bipartite similarity, it successfully imputes incom-
plete parts at the similarity level via partial bipartition learning transformation to integrate the latent
useful information from missing samples. Then, instead of a single prototype quantity for all views,
it introduces a group of hybrid prototype quantities for each view to flexibly extract data features
according to the characteristics of respective view itself. To minimize the formulated objective, it
carefully decomposes the entire optimization problem into four sub-parts and devises an auxiliary
function with theoretically and experimentally proven monotonic-increasing properties. Experimental
results on six popular datasets with various missing ratios demonstrate the effectiveness of SIIHPC.
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APPENDIX

A EXPERIMENTAL SETTING

In the paper, we fine-tune λ and β in {10−7, 10−6, · · · , 10−2} and {102, 103, · · · , 107} respectively.
The hybrid prototype quantities on each view are set as [1k, 2k, 3k, 4k, 5k]. To demonstrate the
effectiveness of our SIIHPC in clustering incomplete multi-view data, we conduct experiments under
missing ratio = 30%, 50% and 70% respectively.

Some reasons about hyper-parameter setting are here. In our model, the hyper-parameters λ and β

aim at fine-tuning ∥Gs∥2F and ∥A∥2F respectively. Note that Gs ∈ Rms×n and A ∈ RV×S where
ms, n, V and S denote the numbers of prototypes at the s-th group, samples, views and prototype
quantity candidates, respectively. Generally, V ≤ ms and S ≪ n. Therefore, we have that the size
of Gs is much greater than that of A. Besides, combined with the feasible regions, we have that the
absolute values of the elements in Gs and A are all within the range [0, 1], Therefore, we can get that
∥Gs∥2F is much larger than ∥A∥2F . Based on these, we search λ within a small range while searching
β within a relatively large range.

B SYMBOL SUMMARY

V : the quantity of views;

S: the element quantity of hybrid prototype group;

dv: the feature dimension on view v;

n: the quantity of samples;

k: the quantity of clusters;

nv: the quantity of observed samples on view v;

ms: the s-th prototype quantity on each view;

Dv: the data matrix on view v, dv × n;

Xv: the incomplete similarity matrix on view v, m× n;

Xv,s: the incomplete similarity with the s-th scale on view v, ms × n;

Wv: the constructed index matrix on view v, n× nv;

Hv: the prototype matrix on view v, dv ×m;

Hv,s: the prototype matrix with the s-th quantity on view v, dv ×ms;

Qv,s: the imputation matrix with the s-th scale on view v, ms × n;

Mv: the constructed index matrix on view v, n× (n− nv);

G: the consensus graph, m× n;

Gs: the consensus graph with the s-th scale, ms × n;

A: the prototype quantity weighting matrix, V × S;

L̂v: temporary variable, dv × dv;

Lv: temporary variable, dv × dv;

Pv,s: temporary variable, dv ×ms;

Jv,s: temporary variable, ms × n;

Fv,s: temporary variable, ms × n.

16



Published as a conference paper at ICLR 2025

C TERMINOLOGY SUMMARY

In the paper, we utilize some terms like T-PBL, IVHGP, OS, MSVSG, etc. Here, we provide more
detailed descriptions about them.

T-PBL represents transforming partial bipartition learning into original sample form to split out of
observed similarity.

IVHGP represents introducing a group of hybrid prototype quantities for each individual view to
flexibly extract the data features belonging to each view itself, i.e., intra-view hybrid-group prototypes.

OS represents the observed similarity on each individual view.

MSVSG represents the generated graphs with various scales on each view, i.e., multi-scale view-
specific graphs.

SLI represents learning to recover the incomplete parts by utilizing the connection built between the
similarity exclusive on respective view and the consensus graph shared for all views, i.e., similarity-
level imputation.

CG represents the learned consensus graph that is shared for all views.

SG represents conducting spectral grouping on the graph generated by stacking multi-scale consensus
graphs.

D PROOF OF LEMMA 1

Recall the function g,

g(Hv,s) = Tr
(
H⊤

v,sL̂vHv,s +H⊤
v,sPv,s

)
, (12)

where L̂v = φvIdv
− Lv, Lv = DvWvW

⊤
v WvW

⊤
v D

⊤
v , and then, together with the symmetry of

L̂v , we have that its derivative ∇g(Hv,s) is

∇g(Hv,s) = L̂vHv,s + L̂⊤
v Hv,s +Pv,s = 2L̂vHv,s +Pv,s. (13)

Denote the value of Hv,s at the r-th iteration as (Hv,s)
r, the SVD of ∇g((Hv,s)

r
) as

(Uv,s)
r
(Σv,s)

r (
V⊤

v,s

)r
. Then, for the Hv,s at any iteration number, we have the following equality

holds,

Tr
(
H⊤

v,s∇g((Hv,s)
r
)
)
= Tr

(
H⊤

v,s (Uv,s)
r
(Σv,s)

r (
V⊤

v,s

)r)
= Tr

((
V⊤

v,s

)r
H⊤

v,s (Uv,s)
r
(Σv,s)

r
)
.

(14)

Considering that
(
V⊤

v,s

)r
H⊤

v,s (Uv,s)
r (

U⊤
v,s

)r
Hv,s (Vv,s)

r
= I, we have

(
V⊤

v,s

)r
H⊤

v,s (Uv,s)
r

is orthogonal. Additionally, the diagonal elements of (Σv,s)
r are all non-negative. Therefore, we

have
Tr
(
H⊤

v,s∇g((Hv,s)
r
)
)
≤ Tr ((Σv,s)

r
) . (15)

In particular, when
(
V⊤

v,s

)r
H⊤

v,s (Uv,s)
r
= I, i.e., Hv,s takes (Uv,s)

r (
V⊤

v,s

)r
, the equality holds.

Therefore, under (Hv,s)
r+1 taking (Uv,s)

r (
V⊤

v,s

)r
, we have the following inequality always holds,

Tr
((

H⊤
v,s

)r+1 ∇g((Hv,s)
r
)
)
≥ Tr

(
H⊤

v,s∇g((Hv,s)
r
)
)
. (16)

At the (r + 1)-th iteration, accordingly, we also always have

Tr
((

H⊤
v,s

)r+1 ∇g((Hv,s)
r
)
)
− Tr

((
H⊤

v,s

)r ∇g((Hv,s)
r
)
)
≥ 0. (17)

Consequently, Lemma 1 holds.
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E PROOF OF LEMMA 2

According to the fact that L̂v is positive semi-definite, we have L̂v can be expressed as Y Y⊤ via
matrix decomposition. On this basis, we can further obtain

Tr

([
(Hv,s)

r+1 − (Hv,s)
r
]⊤

L̂v

[
(Hv,s)

r+1 − (Hv,s)
r
])

=

Tr

([
(Hv,s)

r+1 − (Hv,s)
r
]⊤

YY⊤
[
(Hv,s)

r+1 − (Hv,s)
r
])

=∥∥∥∥[(Hv,s)
r+1 − (Hv,s)

r
]⊤

Y

∥∥∥∥2
F

≥ 0.

(18)

Therefore, we have the following inequality holds,

Tr
((

H⊤
v,s

)r+1
L̂v (Hv,s)

r+1 −
(
H⊤

v,s

)r
L̂v (Hv,s)

r+1

−
(
H⊤

v,s

)r+1
L̂v (Hv,s)

r
+
(
H⊤

v,s

)r
L̂v (Hv,s)

r
)
=

Tr
([(

H⊤
v,s

)r+1 −
(
H⊤

v,s

)r]
L̂v

[
(Hv,s)

r+1 − (Hv,s)
r
])

=

Tr

([
(Hv,s)

r+1 − (Hv,s)
r
]⊤

L̂v

[
(Hv,s)

r+1 − (Hv,s)
r
])

≥ 0.

(19)

Merging common items yields

Tr
((

H⊤
v,s

)r+1
L̂v

[
(Hv,s)

r+1 − (Hv,s)
r
]
−
(
H⊤

v,s

)r
L̂v

[
(Hv,s)

r+1 − (Hv,s)
r
])

≥ 0. (20)

Furthermore, in conjunction with the symmetry of L̂v , we have

Tr
((

H⊤
v,s

)r
L̂v

[
(Hv,s)

r+1 − (Hv,s)
r
])

= Tr
([(

H⊤
v,s

)r+1 −
(
H⊤

v,s

)r]
L̂v (Hv,s)

r
)
. (21)

Therefore, we have the following inequality holds,

Tr
((

H⊤
v,s

)r+1
L̂v

[
(Hv,s)

r+1 − (Hv,s)
r
]
−
[(
H⊤

v,s

)r+1 −
(
H⊤

v,s

)r]
L̂v (Hv,s)

r
)
≥ 0. (22)

Consequently, Lemma 2 holds.

F PROOF OF THEOREM 1

Proving that the function g (Hv,s) is monotonically increasing is equivalent to proving

g
(
(Hv,s)

r+1
)
≥ g ((Hv,s)

r
) for any iteration number r.

According to Lemma 1 and the derivative of function g, we can get

Tr
([(

H⊤
v,s

)r+1 −
(
H⊤

v,s

)r] (
2L̂v (Hv,s)

r
+Pv,s

))
≥ 0. (23)

Therefore, the following inequality holds,

Tr
((

H⊤
v,s

)r+1
(
2L̂v (Hv,s)

r
+Pv,s

)
−
(
H⊤

v,s

)r
L̂v (Hv,s)

r
)
≥

Tr
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H⊤
v,s

)r
L̂v (Hv,s)

r
+
(
H⊤

v,s

)r
Pv,s

)
.

(24)

According to Lemma 2, we can get

Tr
((

H⊤
v,s

)r+1
L̂v

[
(Hv,s)

r+1 − (Hv,s)
r
]
+
(
H⊤

v,s

)r+1
Pv,s

)
≥

Tr
([(

H⊤
v,s
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(
H⊤

v,s
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r
+
(
H⊤

v,s
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)
.

(25)
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Therefore, we can have

Tr
((

H⊤
v,s

)r+1
L̂v (Hv,s)

r+1
+
(
H⊤

v,s

)r+1
Pv,s

)
≥

Tr
(
2
(
H⊤

v,s

)r+1
L̂v (Hv,s)

r −
(
H⊤

v,s

)r
L̂v (Hv,s)

r
+
(
H⊤

v,s

)r+1
Pv,s

)
.

(26)

Further, we have the following equality always holds,

Tr
(
2
(
H⊤

v,s

)r+1
L̂v (Hv,s)

r −
(
H⊤

v,s

)r
L̂v (Hv,s)

r
+
(
H⊤

v,s

)r+1
Pv,s

)
=

Tr
((

H⊤
v,s

)r+1
(
2L̂v (Hv,s)

r
+Pv,s

)
−
(
H⊤

v,s

)r
L̂v (Hv,s)

r
)
.

(27)

Noticed that g((Hv,s)
r
) = Tr

((
H⊤

v,s

)⊤
L̂v (Hv,s)

r
+
(
H⊤

v,s

)r
Pv,s

)
and g((Hv,s)

r+1
) =

Tr
((

H⊤
v,s

)r+1
L̂v (Hv,s)

r+1
+
(
H⊤

v,s

)r+1
Pv,s

)
, and in conjunction with (24), (26) and (27), we

can get

Tr
((

H⊤
v,s

)r+1
L̂v (Hv,s)

r+1
+
(
H⊤

v,s

)r+1
Pv,s

)
≥ Tr

((
H⊤

v,s

)r
L̂v (Hv,s)

r
+
(
H⊤

v,s

)r
Pv,s

)
.

(28)
That is, g

(
(Hv,s)

r+1
)
≥ g ((Hv,s)

r
). The proof is complete.

G DERIVATION PROCEDURE OF OPTIMIZATION VARIABLES

G.1 Optimizing the Prototype Matrix Hv,s

Fixing Qv,s, Gs and A, we can equivalently transform the original optimization problem (2) as

min
Hv,s

∥∥H⊤
v,sDvWvW

⊤
v +Qv,sMvM

⊤
v −Gs

∥∥2
F

s.t. H⊤
v,sHv,s = Ims .

(29)

Using trace operation, we can obtain

min
Hv,s

∥∥H⊤
v,sDvWvW

⊤
v +Qv,sMvM

⊤
v −Gs

∥∥2
F
⇔

min
Hv,s

Tr
(
H⊤

v,sLvHv,s + 2H⊤
v,sDvWvW

⊤
v

(
Qv,sMvM

⊤
v −Gs

)⊤)
,

(30)

where Lv = DvWvW
⊤
v WvW

⊤
v D

⊤
v . Denote the largest eigenvalue of Lv as φv , and in conjunction

with H⊤
v,sHv,s = Ims

, we have

min
Hv,s

Tr
(
H⊤

v,sLvHv,s + 2H⊤
v,sDvWvW

⊤
v

(
Qv,sMvM

⊤
v −Gs

)⊤)⇔

min
Hv,s

Tr
(
H⊤

v,s (Lv − φvIdv )Hv,s + 2H⊤
v,sDvWvW

⊤
v

(
Qv,sMvM

⊤
v −Gs

)⊤)⇔

max
Hv,s

Tr
(
H⊤

v,sL̂vHv,s +H⊤
v,sPv,s

)
,

(31)

where L̂v = φvIdv − Lv, Pv,s = 2DvWvW
⊤
v

(
Gs −Qv,sMvM

⊤
v

)⊤
. Then, in conjunction with

Theorem 1, we can obtain that the objective value in (31) is monotonically increasing. Therefore, we
can determine the value of Hv,s by comparing the objective values at (Hv,s)

r+1 and (Hv,s)
r where

r denotes the r-th iteration.

G.2 Optimizing the Similarity Imputation Matrix Qv,s

Fixing Hv,s, Gs and A, we can equivalently transform the optimization problem (2) as

min
Qv,s

∥∥H⊤
v,sDvWvW

⊤
v +Qv,sMvM

⊤
v −Gs

∥∥2
F

s.t. − 1 ≤ Qv,s ≤ 1.
(32)
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Denote the matrix Jv,s = Gs − H⊤
v,sDvWvW

⊤
v , and then we can obtain that the value∥∥Qv,sMvM

⊤
v − Jv,s

∥∥2
F

is equal to
∥∥H⊤

v,sDvWvW
⊤
v +Qv,sMvM

⊤
v −Gs

∥∥2
F

. Accordingly, the
objective value of (32) can be minimizing by making Qv,sMvM

⊤
v and Jv,s as close as possible.

Therefore, we can determine Qv,s using the value of corresponding index of Jv,s. Subsequently, to
ensure that the solution is within the feasible region, we regularize it by first comparing it and ±1
and then conducting truncation.

G.3 Optimizing the Unified Representation Matrix Gs

Fixing Hv,s, Qv,s and A, we can equivalently transform the problem (2) as

min
Gs

V∑
v=1

av,s

(∥∥H⊤
v,sDvWvW

⊤
v +Qv,sMvM

⊤
v −Gs

∥∥2
F
+ λ ∥Gs∥2F

)
s.t. − 1 ≤ Gs ≤ 1.

(33)

Expanding the objective using trace operation yields

min
Gs

V∑
v=1

av,s

(∥∥H⊤
v,sDvWvW

⊤
v +Qv,sMvM

⊤
v −Gs

∥∥2
F
+ λ ∥Gs∥2F

)
⇔

min
Gs

V∑
v=1

av,s
(
Tr
(
G⊤

s (1 + λ)ImsGs − 2F⊤
v,sGs

))
⇔

min
Gs

Tr

(
G⊤

s

V∑
v=1

av,s(1 + λ)Ims
Gs − 2

V∑
v=1

(av,sFv,s)
⊤
Gs

)
,

(34)

where the matrix Fv,s = H⊤
v,sDvWvW

⊤
v +Qv,sMvM

⊤
v . After expanding the trace by elements,

we can obtain

min
Gs

Tr

(
G⊤

s

V∑
v=1

av,s(1 + λ)ImsGs − 2

V∑
v=1

(av,sFv,s)
⊤
Gs

)
⇔

min
[Gs]:,j

[Gs]
⊤
:,j

V∑
v=1

av,s (1 + λ) Ims
[Gs]:,j − 2

(
V∑

v=1

av,s[Fv,s]:,j

)⊤

[Gs]:,j .

(35)

Consequently, together with (34) and (35), we can further transform (33) as

min
[Gs]:,j

[Gs]
⊤
:,j

V∑
v=1

av,s (1 + λ) Ims
[Gs]:,j − 2

(
V∑

v=1

av,s[Fv,s]:,j

)⊤

[Gs]:,j

s.t. − 1 ≤ [Gs]:,j ≤ 1,

(36)

which is a classical quadratic programming problem, and can be solved by present software packages.

G.4 Optimizing the Prototype Balance Matrix A

Fixing Hv,s, Qv,s and Gs, we can transform the problem (2) as

min
A

V∑
v=1

S∑
s=1

av,s

(∥∥H⊤
v,sDvWvW

⊤
v +Qv,sMvM

⊤
v −Gs

∥∥2
F
+ λ ∥Gs∥2F

)
+ β ∥A∥2F

s.t. A1 = 1, 0 ≤ A.

(37)

The scalar pv,s =
∥∥H⊤

v,sDvWvW
⊤
v +Qv,sMvM

⊤
v −Gs

∥∥2
F
+λ ∥Gs∥2F is a constant with respect

to av,s. Besides, the constraints are for the rows of A, and therefore we optimize A row by row. In
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particular, we can equivalently transform (37) as

min
av,:

S∑
s=1

av,spv,s + β ∥av,:∥2F

s.t. av,:1 = 1, 0 ≤ av,:,

(38)

where the vector av,: denotes the v-th row of A. We can further transform (38) as

min
av,:

∥∥∥∥av,: + pv,:

2β

∥∥∥∥2
F

s.t. av,:1 = 1, 0 ≤ av,:,

(39)

where the vector pv,: consists of pv,s, s = 1, 2, · · · , S. The Lagrangian function of (39) is

L (av,:, κ,µ) =
1

2

∥∥∥∥av,: + pv,:

2β

∥∥∥∥2
F

+ κ (av,:1− 1) + av,:µ, (40)

where the scalar κ and vector µ ∈ RS denote Lagrangian Multipliers. In conjunction with KKT
conditions, we can obtain

av,: +
pv,:

2β
+ κ1⊤ + µ⊤ = 0, av,: ⊙ µ⊤ = 0⊤. (41)

Therefore, we have

av,: = −pv,:

2β
− κ1⊤ − µ⊤, av,sµs = 0, s = 1, 2, · · · , S. (42)

Then, in conjunction with the constraint of row sum, we can obtain

av,: =

(
−pv,:

2β
− κ1⊤

)
+

, κ =
−1− pv,:1

2β

S
. (43)

Therefore, we have av,: =

(
pv,:·1·1⊤

2β +1⊤

S − pv,:

2β

)
+

.

H OTHER CONVERGENCE EXAMPLES

During alternatively updating the optimization variables Hv,s, Qv,s, Gs and A, their solutions can
be acquired by Algorithm 1, (6), (7) and (11) respectively. This indicates that the objective value of
Algorithm 2 is monotonically reducing during optimizing each variable. Besides, the objective in (2)
has the lower bound, for example 0. In conjunction with the monotonic-reducing and lower bound
properties, therefore, our Algorithm 2 is convergent.

Besides the convergence examples in Fig. 2, we also present the change in the objective value of
Algorithm 2 on datasets VGGFACEHUND, YOUBUBEFACE and FASHMNIST, as shown in Fig. 5.
It can be seen that these examples are also convergent.
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(c) FASHMNIST

Figure 5: The objective value of Algorithm 2 on VGGFACEHUND, YOUBUBEFACE and FASHM-
NIST.
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I MORE EXAMPLES ABOUT THE FUNCTION g

The function g is monotonically increasing. To further illustrate this point, besides the examples in
Fig. 3 and 4 we also give its objective value evolution on datasets VGGFACEHUND, YOUBUBE-
FACE and FASHMNIST, as shown in Fig. 6 and Fig 10. It is easy to see that the function g is indeed
monotonically increasing.
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(c) FASHMNIST

Figure 6: The value change of function g on VGGFACEHUND, YOUBUBEFACE and FASHMNIST
when Algorithm 2 is at the 1-th iteration.

Table 7: Performance Comparison under Missing Ratio = 40%

Method BDGPFEA NUSOBJECT VGGFACEFIFTY VGGFACEHUND YOUTUBEFACE FASHMINST

ACC NMI PUR ACC NMI PUR ACC NMI PUR ACC NMI PUR ACC NMI PUR ACC NMI PUR

LSIMVC 26.68 6.80 26.68 21.65 8.92 31.54 7.55 10.11 7.78
N/A

N/A N/A
GSRIMC 39.03 13.22 39.03 22.00 7.65 32.05 N/A

HCPIMSC 33.63 14.14 37.16 21.99 8.92 29.84 9.66 12.22 11.15
EEIMVC 33.40 12.68 35.74 22.00 6.12 13.59 5.85 14.65 5.74 3.37 7.17 4.56

LRGRIMVC 33.89 11.58 34.72 21.64 7.24 30.12 9.26 13.03 12.56 N/A
IMVCCBG 40.72 14.13 39.36 22.03 8.22 31.15 11.78 13.70 12.68 7.69 13.81 8.65 74.79 79.01 77.30 56.76 57.41 60.19
BGIMVSC 23.60 6.29 24.20 19.01 0.30 22.83 7.34 10.41 7.76 N/A N/A N/A

OSLFIMVC 31.85 8.58 35.67 20.96 6.62 32.11 8.15 8.04 8.86 4.94 8.39 5.42 59.67 69.78 70.15 40.78 36.57 46.37
NGSPCGL 28.58 5.92 29.47 19.68 5.14 28.36 6.24 5.77 6.86 N/A N/A N/A

PIMVC 32.16 12.94 33.34 19.62 9.04 31.13 9.14 13.04 11.13 6.12 13.25 7.31
PSIMVC 37.05 12.64 38.56 20.27 8.26 29.02 10.14 11.78 10.98 5.45 10.27 6.00 71.85 74.66 76.75 53.56 56.45 57.45

SAGL 24.35 1.58 24.56 19.49 7.22 26.47 8.49 9.41 7.66 5.14 9.33 5.28 63.48 71.98 73.24 42.37 57.33 54.63
HCLSCGL 27.28 4.54 28.40 21.26 7.85 31.30 5.18 9.02 5.47 3.06 10.55 4.15 N/A N/A

Ours 41.03 14.27 42.43 22.32 8.50 31.97 12.68 14.85 13.45 7.77 14.26 8.60 75.34 79.89 79.97 61.92 60.86 65.38

Table 8: Performance Comparison under Missing Ratio = 60%

Method BDGPFEA NUSOBJECT VGGFACEFIFTY VGGFACEHUND YOUTUBEFACE FASHMINST

ACC NMI PUR ACC NMI PUR ACC NMI PUR ACC NMI PUR ACC NMI PUR ACC NMI PUR

LSIMVC 27.16 6.51 27.16 20.90 8.10 31.21 7.17 9.53 7.42
N/A

N/A N/A
GSRIMC 35.53 13.29 36.33 20.47 7.78 30.87 N/A

HCPIMSC 31.63 11.96 32.75 22.40 8.01 29.70 9.14 10.34 10.45
EEIMVC 32.90 10.35 34.02 22.14 8.05 14.01 5.49 13.73 5.39 3.35 6.42 4.26

LRGRIMVC 30.29 8.24 31.54 21.22 7.66 30.73 9.80 12.33 11.26 N/A
IMVCCBG 36.09 10.82 35.97 22.05 7.34 32.00 11.19 12.92 12.10 7.13 12.74 7.67 74.33 78.85 78.33 57.99 57.62 61.14
BGIMVSC 23.32 6.08 23.76 19.13 0.41 22.89 7.20 10.22 7.70 N/A N/A N/A

OSLFIMVC 31.64 8.24 36.46 20.27 4.76 30.14 6.54 5.74 7.17 4.01 6.62 4.54 61.89 68.37 69.18 40.18 33.56 43.47
NGSPCGL 27.24 4.23 27.73 18.75 3.33 26.43 6.03 6.25 6.66 N/A N/A N/A

PIMVC 37.10 11.39 38.08 19.78 8.08 30.92 8.98 12.08 10.92 5.85 12.57 6.94
PSIMVC 32.47 9.49 33.52 22.08 7.95 30.14 9.84 11.12 11.07 5.29 10.11 5.84 68.39 72.70 74.56 54.53 54.94 57.86

SAGL 23.11 1.29 23.36 19.39 6.76 25.98 6.15 9.22 6.85 4.04 10.57 4.64 63.39 72.16 74.18 42.37 58.76 54.56
HCLSCGL 20.80 1.46 20.80 20.42 7.74 31.19 4.57 8.30 5.08 2.96 10.45 4.01 N/A N/A

Ours 36.13 12.09 38.13 21.99 8.16 32.15 11.65 13.83 12.53 7.14 13.18 7.88 74.98 80.49 79.68 57.95 59.49 60.94

J MORE RESULT COMPARISON ON OTHER MISSING RATIOS

To further reveal the ability of our SIIHPC to effectively tackle incomplete multi-view data, we
also organize the comparison experiments under missing ratio = 40%, 60% and 80%. The results
are reported in Table 7, 8 and 9 respectively. It can bee seen that SIIHPC still receives preferable
clustering results in most cases, even under fairly high missing ratio (like 80%). There results
illustrate that the proposed SIIHPC is able to effectively deal with incomplete multi-view data with
diverse missing ratios.
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Table 9: Performance Comparison under Missing Ratio = 80%

Method BDGPFEA NUSOBJECT VGGFACEFIFTY VGGFACEHUND YOUTUBEFACE FASHMINST

ACC NMI PUR ACC NMI PUR ACC NMI PUR ACC NMI PUR ACC NMI PUR ACC NMI PUR

LSIMVC 28.33 6.92 28.78 19.87 7.05 30.14 6.86 8.88 7.12
N/A

N/A N/A
GSRIMC 34.94 11.64 31.71 20.66 7.62 30.93 N/A

HCPIMSC 33.34 11.43 34.37 20.79 7.51 28.82 9.47 8.88 10.32
EEIMVC 30.49 9.80 32.89 20.56 7.75 13.13 5.14 12.71 5.05 3.27 6.42 3.57

LRGRIMVC 26.84 3.97 27.45 21.83 6.91 29.37 9.04 11.78 11.83 N/A
IMVCCBG 35.56 9.13 34.01 21.04 7.37 30.53 10.59 11.95 11.43 6.52 11.73 7.17 69.99 78.24 75.56 55.75 56.05 59.50
BGIMVSC 20.88 1.45 21.32 19.07 2.05 22.93 6.81 10.18 7.28 N/A N/A N/A

OSLFIMVC 30.37 8.97 34.64 18.91 4.16 30.00 5.49 4.56 6.31 3.42 5.33 3.87 60.79 68.28 68.36 42.22 36.14 43.60
NGSPCGL 27.59 5.67 27.94 17.80 2.11 24.38 6.30 6.22 6.85 N/A N/A N/A

PIMVC 32.46 9.57 32.46 19.28 7.62 31.88 8.54 11.62 11.88 5.57 11.98 6.61
PSIMVC 32.13 8.61 32.95 19.86 7.78 30.20 9.37 10.09 9.96 5.24 9.81 5.68 66.47 72.15 74.60 54.36 54.31 57.62

SAGL 27.56 5.23 30.80 17.58 6.16 26.25 5.44 9.18 7.58 3.85 8.36 4.36 61.37 71.57 72.47 44.53 53.67 55.01
HCLSCGL 27.49 3.85 27.80 19.74 7.82 29.57 4.98 8.02 5.31 3.25 9.33 3.89 N/A N/A

Ours 36.79 10.71 37.91 21.38 7.19 31.75 11.20 13.17 12.03 6.60 12.12 7.37 70.40 77.78 75.72 66.15 60.96 66.15

K HYPER-PARAMETER SENSITIVITY

To explore the sensitivity of our SIIHPC to hyper-parameters λ and β, we collect the clustering results
under different combinations of λ and β, and present them in Fig. 7. One can observe that for any
fixed β, there is no significant fluctuation in the clustering performance. On the other hand, for any
fixed λ, although the clustering performance is fluctuating with the change of β, it is still tolerable to
some extent. Therefore, our SIIHPC is not significantly affected by λ and β.

(a) BDGPFEA (b) NUSOBJECT (c) VGGFACEFIFTY

(d) VGGFACEHUND (e) YOUBUBEFACE (f) FASHMNIST

Figure 7: The clustering results of SIIHPC under different hyper-parameters.

L THE INFLUENCE OF HYBRID PROTOTYPE QUANTITIES

In this paper, the hybrid prototype quantities on each view are set as [1k, 2k, 3k, 4k, 5k]. We
consider that too few prototype quantities are not adequately to exploit data features, while too
many prototype quantities could lead to information redundancy and the increasing of running time.
To explore the influence of hybrid prototype quantities on the clustering performance, we conduct
multiple comparison experiments and collect the clustering results under [1k, 2k], [1k, 2k, 3k], · · ·
[1k, 2k, · · · , 8k] respectively, as shown in Table 10, 11 and 12 where SHPQ: the Setting of Hybrid
Prototype Quantities. It can be seen that when m1 ∼ mS take [1k, 2k], the obtained results are
inferior than that m1 ∼ mS taking [1k, 2k, · · · , 5k], [1k, 2k, · · · , 6k] and [1k, 2k, · · · , 7k] in most
instances. For instance, on VGGFACEFIFTY with missing ratio = 30%, 50% and 70% in ACC,
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NMI and PUR, the results under [1k, 2k] are lower than that under [1k, 2k, · · · , 5k], [1k, 2k, · · · , 6k]
and [1k, 2k, · · · , 7k] by (1.16%, 1.39%, 1.28%, 0.77%, 0.86%, 0.77%, 1.15%, 1.45%, 0.96%),
(1.35%, 1.64%, 1.48%, 0.74%, 0.85%, 0.58%, 1.24%, 1.44%, 1.07%) and (1.14%, 1.27%, 1.20%,
0.81%, 0.88%, 0.80%, 1.30%, 1.72%, 1.23%), respectively. There illustrate that too few prototype
quantities could be not conductive to the improvement of clustering results. On the other hand,
when m1 ∼ mS take [1k, 2k, · · · , 8k], the obtained results are also inferior than m1 ∼ mS taking
[1k, 2k, · · · , 5k] and [1k, 2k, · · · , 6k] in most cases. For example, on FASHMINST with missing
ratio = 30%, 50% and 70% in ACC, NMI and PUR, the results under [1k, 2k, · · · , 8k] are lower
than that under [1k, 2k, · · · , 5k] and [1k, 2k, · · · , 6k] by (9.50%, 2.69%, 6.48%, 6.57%, 2.46%,
4.30%, 2.10%, 0.91%, 0.84%) and by (9.13%, 2.40%, 6.02%, 1.45%, 0.36%, 0.71%, 3.00%, 0.25%,
2.02%), respectively. Also, the running time (in second) under [1k, 2k, · · · , 8k] is also relatively
higher than that under [1k, 2k, · · · , 5k] and [1k, 2k, · · · , 6k]. In addition to these, combined with
Table 2, we know that SIIHPC is able to beat most of comparison algorithms when m1 ∼ mS

take [1k, 2k, · · · , 5k]. Based on these, we hold that m1 ∼ mS taking [1k, 2k, · · · , 5k] is worth
recommending in our SIIHPC.

Table 10: The Influence of Prototype Quantity on Performance (Results on BDGPFEA)

SHPQ 30% 50% 70%

ACC NMI PUR Time ACC NMI PUR Time ACC NMI PUR Time

m1 ∼ mS = [1k, 2k] 39.32 13.36 40.64 5.54 38.83 9.30 38.83 1.81 32.49 5.84 33.62 1.62
m1 ∼ mS = [1k, 2k, 3k] 35.11 11.83 38.21 8.74 38.59 10.47 38.59 1.94 34.50 8.22 35.35 1.87

m1 ∼ mS = [1k, 2k, 3k, 4k] 35.63 13.35 36.37 8.29 38.95 10.93 39.71 2.29 34.39 8.11 36.74 2.10
m1 ∼ mS = [1k, 2k, · · · , 5k] 38.80 15.21 39.97 7.16 40.31 13.88 40.31 2.02 35.04 11.54 37.30 1.45
m1 ∼ mS = [1k, 2k, · · · , 6k] 39.20 15.65 39.91 10.16 40.39 13.32 42.58 3.81 38.80 9.61 38.80 3.06
m1 ∼ mS = [1k, 2k, · · · , 7k] 37.55 16.12 39.54 13.54 36.98 13.44 38.93 3.70 39.12 10.01 39.12 4.28
m1 ∼ mS = [1k, 2k, · · · , 8k] 37.18 15.24 38.61 15.02 41.04 14.11 41.41 4.58 39.06 10.71 39.06 3.77

Table 11: The Influence of Prototype Quantity on Performance (Results on VGGFACEFIFTY)

SHPQ 30% 50% 70%

ACC NMI PUR Time ACC NMI PUR Time ACC NMI PUR Time

m1 ∼ mS = [1k, 2k] 11.36 13.52 12.16 60.74 11.54 13.62 12.44 61.48 10.03 11.90 11.00 48.74
m1 ∼ mS = [1k, 2k, 3k] 12.05 14.18 12.86 85.43 12.07 14.20 12.81 85.75 10.49 12.66 11.33 75.81

m1 ∼ mS = [1k, 2k, 3k, 4k] 12.08 14.36 12.90 115.63 11.99 14.27 12.87 115.57 11.14 13.16 12.01 107.57
m1 ∼ mS = [1k, 2k, · · · , 5k] 12.52 14.91 13.44 112.19 12.31 14.48 13.21 113.03 11.18 13.35 11.96 109.47
m1 ∼ mS = [1k, 2k, · · · , 6k] 12.71 15.16 13.64 214.75 12.28 14.47 13.02 211.99 11.27 13.34 12.07 215.13
m1 ∼ mS = [1k, 2k, · · · , 7k] 12.50 14.79 13.36 263.73 12.35 14.50 13.24 262.95 11.33 13.62 12.23 257.53
m1 ∼ mS = [1k, 2k, · · · , 8k] 12.61 15.02 13.47 343.71 12.41 14.62 13.27 352.80 11.44 13.51 12.31 353.56

Table 12: The Influence of Prototype Quantity on Performance (Results on FASHMINST)

SHPQ 30% 50% 70%

ACC NMI PUR Time ACC NMI PUR Time ACC NMI PUR Time

m1 ∼ mS = [1k, 2k] 55.22 59.34 59.54 137.94 54.90 58.55 60.45 139.56 56.23 59.16 60.48 162.99
m1 ∼ mS = [1k, 2k, 3k] 55.98 58.32 59.86 195.92 55.43 57.54 59.55 193.96 62.21 55.65 62.21 201.49

m1 ∼ mS = [1k, 2k, 3k, 4k] 56.02 59.30 60.11 242.65 62.14 56.38 62.26 251.98 59.60 53.82 62.19 255.66
m1 ∼ mS = [1k, 2k, · · · , 5k] 61.24 59.52 62.69 215.01 62.51 60.22 64.64 213.51 60.59 58.77 63.18 213.26
m1 ∼ mS = [1k, 2k, · · · , 6k] 60.87 59.23 62.23 371.20 57.39 58.12 61.05 376.81 61.49 58.11 64.36 383.28
m1 ∼ mS = [1k, 2k, · · · , 7k] 57.95 59.24 61.86 451.67 55.66 58.74 59.95 453.26 61.24 60.20 64.35 450.35
m1 ∼ mS = [1k, 2k, · · · , 8k] 51.74 56.83 56.21 540.36 55.94 57.76 60.34 522.42 58.49 57.86 62.34 534.14

M STABILITY AND RELIABILITY

To highlight the stability and reliability of our SIIHPC’s performance, we count the standard deviation
(%) of clustering results under diverse missing ratios, as shown in Table 13 and Table 14.

As seen, even under diverse missing rations, our standard deviation is small, which illustrates that our
SIIHPC is robust under varying data conditions.
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Table 13: The Standard Deviation Results (%) (Part One)
BDGPFEA

30% 50% 70%

ACC NMI PUR ACC NMI PUR ACC NMI PUR

0.25 0.16 0.37 0.24 0.02 0.24 0.32 0.01 0.06

NUSOBJECT

0.30 0.13 0.17 0.09 0.14 0.20 0.13 0.06 0.16

VGGFACEFIFTY

0.30 0.35 0.33 0.32 0.31 0.27 0.36 0.31 0.29

VGGFACEHUND

0.25 0.25 0.25 0.24 0.16 0.25 0.19 0.22 0.18

YOUTUBEFACE

2.46 1.07 1.58 2.09 1.30 1.88 2.55 0.82 1.67

FASHMINST

0.00 0.00 0.00 0.00 0.01 0.01 0.00 0.28 0.00

Table 14: The Standard Deviation Results (%) (Part Two)
BDGPFEA

40% 60% 80%

ACC NMI PUR ACC NMI PUR ACC NMI PUR

0.18 0.06 0.09 0.09 0.01 0.13 0.06 0.06 0.06

NUSOBJECT

0.18 0.19 0.12 0.52 0.09 0.09 0.18 0.07 0.14

VGGFACEFIFTY

0.32 0.23 0.31 0.47 0.33 0.29 0.51 0.35 0.41

VGGFACEHUND

0.22 0.24 0.19 0.16 0.19 0.15 0.17 0.20 0.16

YOUTUBEFACE

2.07 0.83 1.47 2.97 0.82 1.50 2.42 1.26 2.18

FASHMINST

0.48 0.00 0.01 0.01 0.00 0.01 0.02 0.01 0.02

N WEIGHTS OF HYBRID PROTOTYPE QUANTITIES

Instead of a single prototype quantity for all views, we generate a group of hybrid prototype quantities
for each view to flexible capture features. Further, we associate a weight variable for each prototype
quantity on each view to adaptively balance their contribution. To verify that it learns different
weights for prototype quantities, we visualize these weights, as shown in Fig. 8. It is easy to see that
on each view, each prototype quantity indeed enjoys a different weight, which makes it more flexibly
combine these prototype quantities to extract features.

O PERFORMANCE CHANGE W.R.T MISSING RATIO

To illustrate that the clustering performance of our proposed SIIHPC is not significantly affected by
the missing ratio, we collect the clustering results under multiple missing ratios, and report them in
Fig. 9. As seen, along with the increasing of missing ratio, the clustering performance in most cases
is gradually decreasing. This is mainly because the increasing of missing ratio leads to a gradual
reduction in available information and the clustering performance is accordingly reducing. Despite
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Figure 8: The learned weights of prototype quantities on each view.

all this, from Fig. 9, one can observe that our clustering performance does not fluctuate drastically
with the missing ratio.

P LIMITATION AND FUTURE WORK

We aggregate the information of graphs with diverse scales by stacking them and performing SVD to
construct splicing eigenvectors, which could weaken the contributions of certain graphs or certain
eigen-components. Other ingenious fusion schemes are worth further exploration. Additionally, we
utilize the cosine tool to do similarity measure, some other measure approaches can be further studied
in the future.
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Figure 9: The change in clustering performance w.r.t the missing ratio.
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(a) Algorithm 2 at 1-th iteration
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(b) Algorithm 2 at 2-th iteration
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(c) Algorithm 2 at 3-th iteration
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(d) Algorithm 2 at 4-th iteration
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(e) Algorithm 2 at 5-th iteration
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(f) Algorithm 2 at 6-th iteration
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(g) Algorithm 2 at 7-th iteration
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(h) Algorithm 2 at 8-th iteration
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(i) Algorithm 2 at 9-th iteration
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(j) Algorithm 2 at 10-th iteration
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(k) Algorithm 2 at 11-th iteration
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(l) Algorithm 2 at 12-th iteration
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(n) Algorithm 2 at 14-th iteration
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(o) Algorithm 2 at 15-th iteration

Figure 10: The value change of function g on YOUBUBEFACE.
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