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Ablation Study
We conducted an ablation study on various components of
ROSAME-I to justify our design choices. Specifically, we
aim to demonstrate the impact of the additional prior bias
introduced in the paper and the effects of overparameterizing5

PAMs with neural networks instead of directly learning the
probability distributions over the four PAM cases for each
action symbol.

Prior Bias
We demonstrate the effect of the additional prior bias by10

training another ROSAME-I with λ = 0 (without prior bias
loss), keeping all other settings the same as in the original
experiments. We then compare the results obtained in this
scenario with the evaluation results presented in the paper,
both of which are included in Tab. 1.15

As we can see, the action models learned without prior
bias loss contain more errors, even for the Blockworld do-
main where there is no prevail condition. The result suggests
that the prior bias not only assists in prevail condition learn-
ing but also enhances the overall quality of the recovered20

model.

Prior Bias Setting Acc Error
Blockworld
(grid world)

λ=0.2 97.51% 0
λ=0 94.36% 1

Gripper λ=0.2 90.54% 0
λ=0 89.73% 3

Logistics λ=0.2 96.41% 0
λ=0 94.07% 10

Tower of Hanoi λ=0.2 99.72% 1
λ=0 99.98% 3

8-puzzles λ=0.4 99.67% 4
λ=0 98.58% 20

Table 1: Comparison of ROSAME-I’s performance between
training with and without prior bias.

We also observe that the CV model’s prediction accuracy
generally improves with the inclusion of the prior bias loss,
except for the Tower of Hanoi domain. This is unsurprising
because the quality of the evolving model in ROSAME di-25

rectly affects the CV model’s learning.
In Tab. 2, we compare the two models learned for the

Tower of Hanoi domain in this experiment. By reducing λ

to 0, we effectively recover a model indistinguishable from
the model on the left where λ = 0.2, with all the prevail con- 30

ditions recognised as add effects. This comparison explains
why the accuracy of the CV model does not drop, as both
models can explain any valid traces in this domain.

Overparameterization
We implement a PAM model that directly learns the four 35

values of the discrete probability distribution over the four
PAM cases for each action symbol. Compared to the PAM
network presented in the paper, this model maintains a learn-
able vector of length four.

We train ROSAME-I with this PAM model instead of the 40

PAM network for each domain, as shown in Tab. 3. We ob-
serve that ROSAME-I, when using this new PAM model,
achieves significantly lower state prediction accuracy and re-
covers action models of lower quality. Overparameterizing
PAM into a PAM network facilitates our learning process 45

and is crucial for ROSAME-I to converge to high-quality
solutions.

During this ablation study, we also find that sometimes
(but not always), when ROSAME-I with the new PAM
model gets stuck, re-initializing ROSAME (i.e., the new 50

PAM model but not the CV model) may help ROSAME-I
overcome the local optimum and converge to a better solu-
tion. By repeating this re-initialization process several times
during training, we can bring the new PAM model’s perfor-
mance closer to that of the PAM network. This phenomenon 55

further confirms our hypothesis on overparameterization.
Re-initializing ROSAME encourages PAM to explore a dif-
ferent model while keeping the CV model unchanged helps
exploit the knowledge already acquired in the previous train-
ing. 60

Reasoning Shortcuts and Data Augmentation
Reasoning shortcuts are a specific issue within neuro-
symbolic methods (Li et al. 2023; Marconato et al. 2023).
These shortcuts occur when a deep learning model incor-
rectly maps inputs to high-level concepts, yet the overall 65

model still achieves low loss and high accuracy on training
data by combining incorrect concepts with incorrect sym-
bolic inference. In our specific context, reasoning shortcuts
occur when the CV model makes incorrect state predictions
and ROSAME learns a wrong action model, in which case 70

the two components work together to produce a consistent



λ = 0.2 λ = 0

move(?a ?b ?c)
precondition:

(smaller ?b ?a) (smaller ?c ?a)
(on ?a ?b) (clear ?a) (clear ?c)

add effect:
(clear ?b) (on ?a ?c)

delete effect:
(on ?a ?b) (clear ?c)

move(?a ?b ?c)
precondition:

(on ?a ?b) (clear ?c)
add effect:

(clear ?b) (on ?a ?c) (clear ?a)
(smaller ?b ?a) (smaller ?c ?a)

delete effect:
(on ?a ?b) (clear ?c)

Table 2: Comparison between the two models learned with different λ in the Tower of Hanoi domain.
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Figure 1: A 3-step trace and partial proposition predictions corresponding to a Reasoning Shortcut action model in the Block-
world domain.

Overparameterization Acc Error
Blockworld
(grid world)

PAM model 82.83% 20
PAM network 97.51% 0

Gripper PAM model 76.95% 9
PAM network 90.54% 0

Logistics PAM model 92.79% 12
PAM network 96.41% 0

Table 3: Comparison of ROSAME-I’s performance between
using the new PAM model and the PAM network

but unreasonable trace, leading to the correct goal state.
Fig. 1 gives an example of a 3-step trace correspond-

ing to a learned reasoning shortcut model in the Block-
world domain, where the putdown(?block) action schema75

misses a delete effect: holding(?block). As the predictions
are consistent with the incorrect action model learned by
ROSAME, and the goal state is correctly predicted, no loss
is incurred. ROSAME-I becomes stuck around this sub-
optimal solution. Leaving reasoning shortcuts during train-80

ing is relatively challenging because if ROSAME adjusts
its action model, the predictions and the model will be-
come inconsistent. ROSAME-I usually needs to incur higher
losses before moving towards the globally optimal solution.
In some neuro-symbolic tasks, the reasoning short model(s)85

may even achieve global optimal loss as well (hence indis-
tinguishable from the ground truth solutions) (Marconato,
Teso, and Passerini 2023).

We discover that one specific reason for reasoning short-
cuts in our task is the CV model’s failure to generalize90

among different images representing the same state. If we
look at the first and the third images in Fig. 1, we realize
that they represent the same state, but the images are differ-
ent due to the change of block4’s position when it is placed
on the ground by the arm. However, our CV model fails to 95

draw the connection between the two images, leading to in-
consistent predictions for these images to match the prob-
lematic action model in ROSAME. If the CV model had
better generalization, it would identify this discrepancy, and
ROSAME-I would not settle for this reasoning shortcut so- 100

lution. This type of problem is not uncommon in our experi-
ments, especially for the grid world representation where the
grids are discrete. To mitigate the issue of reasoning short-
cuts and enhance the CV model’s generalization, we create
customized data augmentation methods for domains using 105

grid world representations. In the Blockworld domain, we
randomly alter the positions and order of the block towers.
In the Gripper domain, we randomly change the balls’ po-
sitions in each room. In the Logistics domain, we randomly
rearrange the positions of all items within each 3 × 3 grid 110

associated with each location.
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