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APPENDIX

A DATA ACQUISITION, FILTERING, AND SPLITS (FULL DETAILS)

Source and fields. We query the UniProtKB/Swiss–Prot REST API (https://rest.uniprot.
org/uniprotkb/search) with the pattern organism_id:$T & reviewed:true, where T is a tax-
onomy identifier. For each hit we request only minimal fields to reduce bandwidth and ensure
reproducibility: accession, protein name, organism ID, GO IDs, function comment, and sequence.
Pagination is handled via cursors (page size 500) with exponential backoff on HTTP 429/5xx re-
sponses.

Uncharacterized heuristic. Let f denote the function text, G the set of GO IDs, and n(f) the
tokenized length. We classify an entry as uncharacterized if:

UNCHAR(name, f,G) = 1

[
name contains “uncharacterized”, “hypothetical”, “putative”, or “probable”,
∨
(
n(f) < 25 ∧ (G = ∅ ∨ G ⊆ {root terms} ∨ |G| ≤ 2)

) ]
.

Root terms are GO:0008150 (biological process), GO:0003674 (molecular function), and
GO:0005575 (cellular component). Names are normalized to lowercase and function text is
whitespace-normalized.

Rescue step. If a species lacks sufficient labeled examples to satisfy split targets, we attempt
to reclassify borderline cases. For proteins initially flagged as uncharacterized, we fetch the full
UniProt JSON (uniprotkb/<acc>.json) and re-parse both FUNCTION comments and GO cross-
references. If the entry yields longer function text or non-root GO annotations, it is re-labeled as
characterized. This ensures robust per-species coverage without artificially biasing the evaluation.

CD-HIT clustering. To mitigate homolog leakage, we cluster all sequences across species using
CD-HIT at c = 0.60 identity, following the word-size rule-of-thumb (n = 4 at this threshold). We
parse the .clstr output and enforce cluster-aware splits: entire clusters are assigned to either Dev
or Test. Uncharacterized proteins are sampled independently per species. If CD-HIT is unavailable,
the script falls back to random splits with an explicit warning.

Species and caps. We target ten species (NCBI TaxIDs): 9606 (human), 559292 (yeast), 83333
(E. coli), 3702 (Arabidopsis), 7955 (zebrafish), 7227 (fly), 6239 (worm), 10116 (rat), 10090
(mouse), and 4932 (budding yeast). For each, we select up to 500 proteins drawn from ≤2000
candidates: 200 Dev (labeled), 200 Test (labeled), 100 Unchar, plus an ablation slice of 100 yeast
proteins for fast iteration.

Reproducibility. Exact commands and parameters are provided for transparency:

Listing 1: Command used to create the 10-species benchmark.
1 python3 build_splits.py \
2 --out-root data_splits_10species_c60 \

1
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3 --species 9606 559292 83333 3702 7955 7227 6239 10116 10090 4932 \
4 --per-species 500 \
5 --max-per-species 2000 \
6 --fetch-size 500 \
7 --dev-per-species 200 \
8 --test-per-species 200 \
9 --unchar-per-species 100 \

10 --ablate-yeast 100 \
11 --seed 13 \
12 --cluster-id 0.6

Artifacts. The pipeline writes: ids_dev.txt, ids_test.txt, ids_unchar.txt,
ids_ablate_yeast.txt, as well as metadata.csv (per-species statistics) and records.jsonl
(traceable raw records).

Quality controls. We release per-species counts after each filter, the proportion classified as un-
characterized, the success rate of the rescue step, and CD-HIT logs. This ensures the benchmark can
be audited and replicated.

Limitations. REST responses may evolve over time; we log the snapshot date implicitly via times-
tamps in records.jsonl. The uncharacterized heuristic is conservative and may undercount bor-
derline cases in certain taxa. Our ablations analyze sensitivity to the 25-word threshold and the
CD-HIT identity cutoff.

B DATA, SPLITS, AND PREPROCESSING

Accession sets. We formalize three accession sets: Dev (labeled, cluster-aware), Test (labeled,
cluster-aware), and Unchar (optional, heuristic-based).

Schema example. Each UniProt record is serialized into a compact JSON schema for downstream
processing. An example (truncated) is shown below:

Listing 2: Schema JSON exemplar (truncated).
1 {
2 "accession": "P25623",
3 "gene": ["SYP1"],
4 "organism": "Saccharomyces cerevisiae",
5 "length_aa": 829,
6 "function_text": "Plays a role in ...",
7 "go": {
8 "BP": [{"term": "endocytosis"}],
9 "MF": [{"term": "protein binding"}],

10 "CC": []
11 },
12 "keywords": ["Coated vesicles"],
13 "interactions": [{"partner": "ENT1", "accession": "Q..." }],
14 "domains": [{"name": "BAR domain", "range": "20-240"}],
15 "sequence_fasta": ">P25623\nMTHQ..."
16 }

C ONTOLOGY LEXICON AND MAPPING

Graph source and aspects. We parse go-basic.obo with obonet, restricting to Biological Pro-
cess (BP) and Molecular Function (MF). The resulting lexicon L contains: (i) names and synonyms
→ IDs (lowercased), and (ii) adjacency via is_a and part_of relations.

2
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Table 1: Ontology lexicon and mapping statistics (example values).
Metric Value (BP+MF)

Unique GO phrases 43,512
GO IDs covered 25,781
Mean parents/child 1.83
Name→id entries 47,605

Synonym normalization. Phrases are normalized by lowercasing, collapsing whitespace, and
stripping punctuation. Regex-based extraction compiles batches of boundary-guarded patterns to
avoid regex-size limits.

Listing 3: Phrase normalization and matching (sketch).
1 normalize(p): lowercase -> collapse spaces -> strip punctuation
2 compile_candidate_regex(phrases): chunk -> escape -> boundary-guarded OR
3 extract_terms(text,L): iterate regex batches; de-duplicate by GO id

Name→id map. We additionally build a mapping M using make_go_map.py. This merges canon-
ical names from id2term with all synonyms in phrase2id, producing a dense dictionary of normal-
ized names to IDs. M is used for: (i) mapping free lists of GO names to IDs, (ii) schema evidence
checks, and (iii) evaluation alignment.

Statistics. We report: #unique phrases, #GO IDs (BP/MF), mean parents per child, and size of M
(name→id entries).

D HOMOLOGY-RAG IMPLEMENTATION DETAILS

BLAST database. We use SwissProt (date: yyyy-mm-dd); run makeblastdb once:

Listing 4: Building a BLASTP database (example).
1 makeblastdb -in uniprot_sprot.fasta -dbtype prot -out uniprot_sprot

Retrieval parameters. Defaults: k=3, θid=30%, θE=10−5. We select unique accessions by (best
e-value, then identity), discard the query accession, and inlinedly fetch UniProt FUNCTION text for
each hit.

Context formatting. We render homologs as a bullet list with identity and E-value. Include an
example block here (anonymized).

E AGENTIC LOOP: PROMPTS AND CASCADE POLICY

Prompt library overview. We store each prompt template explicitly; below we reproduce the core
variants.

Synth (Normal)

You are a scientific writer. Write ONE paragraph (≤120 words) summarizing protein func-
tion from the JSON. Be precise and do NOT invent facts. Prefer canonical phrases present
in the input.
Input: Schema JSON + optional homolog context Output: Concise summary paragraph

3
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Synth (GO-rich)

Using ONLY the JSON, write ONE compact paragraph (≤120 words) that enumerates as
many Biological Process (BP) and Molecular Function (MF) terms as possible. Do NOT
invent facts.

Synth (Constrained)

Using ONLY the JSON fields, produce ≤90 words. Use ONLY words/phrases from the
ALLOWED TERMS and glue words. Prefer BP, then MF, then domains/interactions. Do
NOT invent facts.

GO List Extractor

Extract ALL distinct GO term NAMES present in the JSON for BP and MF. Output: a single
line, comma-separated list. If none, output EMPTY.

GO-Constrained Selector

From the JSON, select the MOST RELEVANT GO terms, choosing ONLY from the al-
lowlist. Output: comma-separated list of terms.

Judge

You are a strict fact-checker. Flag any spans not supported by JSON values. Rewrite if
needed. Output strictly:
SCORE: <1–10> SUMMARY: <final one-paragraph summary ≤100 words>

Fallback (Rule-based)

If no candidate exceeds threshold τ , output a slot-filled template: (gene, organism, top
BP/MF terms, domains, interactors).

F GO SELECTION AND PRUNING — FULL SPECIFICATION

Candidate sources. Ybase = Extract(s⋆;L), Yrich, Ylist, Ycons from the three GO agents.

Support function. Each predicted term g receives w(g) = 2 · 1[g in schema BP/MF] + 1[g ∈
Ycons] (capped at 2). Optionally require w(g) > 0.

Specificity preference. Define depth d(g) as the size of the ancestor closure (or a graph-theoretic
depth); sort by (w(g)↓, d(g)↓), then drop any ancestor when a child is present.

Per-aspect quotas. Apply (K,KBP,KMF) to form Y ⋆; compute closure Y ↑ for evaluation.

4
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Algorithm 1: Precision-Oriented GO Pruning (full)

Input: Ỹ , schema x, homologyH(q), lexicon L, budgets (K,KBP,KMF)
Output: Y ⋆

1 for g ∈ Ỹ do
2 w(g)← 2 · 1[g∈schemaBP/MF] + 1[g∈Ycons]
3 end
4 if REQUIRESUPPORT then
5 Ỹ ← {g ∈ Ỹ : w(g) > 0}; if Ỹ = ∅ then
6 return ∅
7 end
8 end
9 compute d(g) via closure size; order Ŷ by (w(g)↓, d(g)↓)

10 Y ′ ← ∅; for g ∈ Ŷ do
11 if ∄h ∈ Y ′ s.t. g ∈ Anc(h) then
12 Y ′ ← Y ′ ∪ {g}
13 end
14 end
15 Y ⋆ ← apply aspect quotas and total cap to Y ′

16 return Y ⋆

G BASELINE METHODS

G.1 SINGLE-LLM (FREE-FORM) BASELINE AND RUNNER

This baseline isolates the contribution of a single backbone LLM that writes a free-form function
summary from the parsed UniProt schema, without cascades, judges, or retrieval. GO terms are
then decoded from the generated text using the same ontology tools as in our main pipeline. A
lightweight runner orchestrates generation and evaluation consistently across data splits.

Setting. For each accession a with parsed schema σ(a) (genes, organism, UniProt FUNCTION
text, GO cross-refs, domains, etc.), we prompt a backbone LLM Pθ to produce a concise free-form
summary

s⋆(a) = argmax
s∈T

Pθ

(
s
∣∣σ(a)),

under a shortness/style instruction but without lexical fencing, homology context, or self-judging.
This captures the “pure LLM” behavior on our task.

Ontology decoding. From s⋆(a) we extract a candidate set of GO identifiers by lexicon matching
(names + synonyms) and map-to-ID:

Ỹ (a) = Extract
(
s⋆(a);L

)
,

followed by aspect-aware pruning with budgets (kBP, kMF) and a total cap ktot:

Y leaf(a) =
(
Ỹ (a) ∩ BP

)
[:kBP]

∪
(
Ỹ (a) ∩MF

)
[:kMF]

,
∣∣Y leaf(a)

∣∣ ≤ ktot.

For hierarchical metrics we compute ancestor closure in the GO DAG GGO (restricted to BP/MF):

Y ↑(a) = Ancestors
(
Y leaf(a);GGO

)
∪ Y leaf(a).

Outputs and evaluation. Per accession we return the triple
(
s⋆(a), Y leaf(a), Y ↑(a)

)
. The runner

executes this pipeline split-by-split (dev, test, unchar, etc.) and evaluates with the same metrics
used throughout the paper:

• Text: ROUGE-L and BERTScore-F1 computed on non-empty pairs after clamping reference
length.

• GO flat (leaves): micro/macro P/R/F1 on Y leaf(a).

• GO hierarchical: micro/macro P/R/F1 on Y ↑(a).

5
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• Ontology consistency: graded score in [0, 1] reflecting ancestor completeness (roots disallowed).
• K-sweep PR: micro P/R/F1 as we truncate the predicted order to K (fixed points per split).

The runner ensures reproducibility by (i) consuming the canonical parsed schemas, (ii) writing per-
split predictions to a fixed location, and (iii) invoking the same evaluator and K-sweep used for the
other baselines and our full agentic system.

Why this baseline matters. This variant represents the best case for a single generative model that
reads only the schema and writes a summary in one pass. It tests whether fluent generation alone
can (i) align with gold-standard text and (ii) implicitly surface ontology terms that the lexicon can
capture. Unlike the constrained baseline, it has no lexical guardrails; unlike the homology baseline,
it has no sequence-level evidence; and unlike ProtFunAgent, it has no self-verification, cascades, or
ontology-constrained selection at generation time.

Limitations. Free-form generation is prone to (i) hallucination—phrases that are fluent yet un-
supported by the schema; (ii) phrase drift: valid biology phrased in ways that miss lexicon matches,
harming GO recall; and (iii) lack of calibration: no judge or acceptance threshold. Empirically,
we observe that while a single-LLM baseline can attain reasonable GO performance on familiar
patterns, its text faithfulness and structured recall lag behind our agentic, homology-aware, and
ontology-constrained pipeline.

G.2 HOMOLOGY-ONLY BASELINE

A long-standing heuristic in protein function prediction is homology-based transfer, where anno-
tations are inferred from close sequence neighbors. We implemented a homology-only baseline
that leverages BLASTP alignment against the SwissProt database, followed by ontology-aware term
extraction and pruning.

Method. Given a query protein sequence q, we retrieve its top-k homologs
H(q) = {h1, h2, . . . , hk},

filtered by sequence identity ρ(hj , q) ≥ θid and alignment e-value E(hj , q) ≤ θE . From the as-
sociated UniProt entries of these homologs, we extract functional text descriptions f(hj). Each
description is scanned for lexical matches to Gene Ontology terms using a precompiled lexicon L
of names and synonyms. This yields a candidate set of GO identifiers:

Ỹ (q) =

k⋃
j=1

Extract(f(hj);L).

Ontology Expansion and Pruning. To ensure hierarchical coverage, we expand the predictions
by computing the ancestor closure of Ỹ (q) in the GO DAG:

Y ↑(q) = ExpandAncestors
(
Ỹ (q);G

)
,

where G denotes the GO ontology graph with edges defined by is_a and part_of relations.

We then prune this set to maintain interpretability and avoid generic terms. Specifically, we allocate
a budget of kBP terms to biological process and kMF terms to molecular function:

Y ⋆(q) = Prune
(
Y ↑(q), kBP, kMF, ktot

)
.

Output. The final output is a structured summary and ontology-consistent GO term set:
ŷ(q) =

(
Y ⋆(q), Summary(Y ⋆(q))

)
,

where Summary(·) produces a short textual rationale listing the predicted functions.

This reflects the conventional paradigm of annotation transfer by sequence similarity, augmented
here by an ontology lexicon for consistency. Its strengths lie in high precision when close homologs
exist, but limitations include poor coverage for low-identity queries, susceptibility to annotation
propagation errors, and lack of free-text rationalization beyond templated summaries. We there-
fore treat it as a lower-bound comparator against which agentic LLM pipelines can demonstrate
improvements in generalization and interpretability.

6
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G.3 TEMPLATE BASELINE

This baseline produces a fully deterministic annotation directly from the parsed UniProt record
(schema) without invoking any LLM. It serves as a strong non-neural reference because it exploits
the curated fields already present in many entries.

Inputs. From the schema we read: accession a, primary/synonym gene names G, organism o,
free-text functional note u (if present), and GO seed names per aspect SBP and SMF extracted from
the record’s GO cross-references.

Deterministic summary. We form a short natural-language synopsis by stitching fixed clauses
from the schema:

Summary(a) = NameBlock(a,G, o)︸ ︷︷ ︸
identity

+ BP-clause(SBP)︸ ︷︷ ︸
process

+ MF-clause(SMF)︸ ︷︷ ︸
function

,

where each clause lists up to a small, fixed number of unique terms (e.g., top 4 BP and top 3 MF
after de-duplication). This yields stylized but fluent text with zero stochasticity.

Ontology mapping and quotas. We map each GO seed name to its identifier using a lexicon L of
canonical names and synonyms:

Ỹ = {map(s;L) : s ∈ SBP ∪ SMF }.
To avoid aspect imbalance and overly long lists, we apply simple per-aspect budgets

Y leaf =
(
Ỹ ∩ BP

)
[:kBP]

∪
(
Ỹ ∩MF

)
[:kMF]

, |Y leaf | ≤ ktot.

Hierarchical closure. For evaluation that requires ontology consistency, we compute the ancestor
closure under the GO DAG GGO using is_a/part_of:

Y ↑ = Ancestors
(
Y leaf ; GGO

)
∪ Y leaf ,

optionally restricted to aspects {BP,MF}.

Outputs. The baseline returns the pair

ŷtmpl =
(
Summary(a), Y leaf , Y ↑

)
,

i.e., a templated summary plus leaf and hierarchical GO sets.

The template baseline has three desirable properties: (i) determinism and speed—no inference cost,
making it a robust fallback; (ii) high precision on curated entries—when GO seeds exist, mapping
is exact; (iii) ontology-faithfulness via explicit closure. Its limitations mirror schema sparsity: when
records are incomplete or lack GO seeds, recall is intrinsically capped, and the prose cannot gener-
alize beyond what is present in the schema. Unlike our agentic pipeline, it cannot synthesize new
evidence from homologs nor resolve conflicting hints across fields. Consequently, it provides a con-
servative lower bound for both text metrics (ROUGE/BERTScore) and GO F1, against which gains
from homology-RAG, synthesis–judging, and ontology-constrained decoding can be quantified.

G.4 SCHEMA–GO–COPY BASELINE

This baseline measures the performance obtainable by directly copying GO terms already present
in the parsed UniProt record, without any generation, retrieval, or inference. It therefore acts as
an “oracle–seed” reference: whenever the record carries curated GO cross-references, those are
mapped and scored; otherwise the prediction is empty.

Inputs. From the parsed schema σ(a) of accession a we read the per-aspect GO name lists

SBP(a), SMF(a),

and a GO lexicon L containing canonical names/synonyms and a parent mapping over the GO DAG
GGO.

7
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Name → ID mapping. We convert seed names to identifiers using L:

Ỹ (a) =
{
map(s;L) : s ∈ SBP(a) ∪ SMF(a)

}
.

No lexical expansion, paraphrase, or generation is performed; if a seed lacks a lexicon entry, it is
dropped.

Leaf set and hierarchical closure. Because the intent is to mirror the record, we retain all avail-
able leaves (no budget limits):

Y leaf(a) = Ỹ (a).

For hierarchical metrics and ontology checks, we compute the ancestor closure in GGO (restricted to
BP/MF):

Y ↑(a) = Ancestors
(
Y leaf(a);GGO

)
∪ Y leaf(a).

Outputs. We emit a minimalist textual tag (for bookkeeping) together with the copied GO sets:

ŷcopy(a) =
(
“summary: copied from record”, Y leaf(a), Y ↑(a)

)
.

Strengths: (i) Upper bound on schema-recoverable labels: whenever curated GO is present, this
baseline can match it exactly; (ii) Deterministic and fast: there is no stochasticity or model inference;
(iii) Ontology-faithful after closure.

Limitations: (i) No generalization: it cannot infer functions absent from the record, making recall
zero for entries without GO seeds; (ii) No textual evidence: the “summary” is non-informative and
unsuitable for curatorial workflows; (iii) No reconciliation: conflicting or overly generic seeds (e.g.,
near-root terms) are not filtered by support or specificity. Consequently, Schema–GO–Copy serves
as a conservative reference to quantify the added value of our learned components, homology-guided
retrieval, controlled generation, and agentic Synth→ Judge cascades over merely echoing what is
already curated.

G.5 EXTRACTIVE BASELINE

The extractive baseline is a non-generative reference that (i) truncates the record’s curated function
text to a fixed budget and (ii) derives GO terms by lexicon matching on that same text, followed by
ontology-aware post-processing. It represents an upper bound on what can be recovered from the
given UniProt note without synthesis.

Inputs. From the parsed schema we use only the free-text function description u ∈ T and a GO
lexicon L (canonical names, synonyms, and parent map).

Extractive summary. We form a deterministic synopsis by hard-truncation at the word level:

Summext(u;W ) = Join
( (

Tok(u)
)
[:W ]

)
,

where Tok(·) tokenizes on whitespace and W is a small budget (e.g., W=120). This preserves
curator phrasing while eliminating verbosity.

Lexicon match for GO candidates. We scan the lower-cased text for lexicon phrases and map to
GO identifiers:

Ỹ =
{
map(p;L)

∣∣∣ p ∈ Phrases(L), p ⊆ lower(u)
}
.

This yields a high-precision but recall-limited candidate set tied strictly to what appears in the note.

Aspect-aware pruning and hierarchical closure. To keep predictions concise and balanced
across aspects, we apply simple quotas:

Y leaf =
(
Ỹ ∩ BP

)
[:kBP]

∪
(
Ỹ ∩MF

)
[:kMF]

, |Y leaf | ≤ ktot.

For hierarchical evaluation and ontology faithfulness, we compute ancestor closure on the GO DAG
GGO using is_a/part_of relations, restricted to BP/MF:

Y ↑ = Ancestors
(
Y leaf ; GGO

)
∪ Y leaf .

8
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Outputs. The baseline returns

ŷext =
(
Summext(u;W ), Y leaf , Y ↑

)
,

i.e., a truncated extractive summary and corresponding leaf/hierarchical GO sets derived solely from
the curated text.

This method leverages the strongest available prior—the curator’s own wording—yielding (i) de-
terministic, high-precision GO matches when canonical phrases occur, and (ii) faithful summaries
that reflect existing annotations. However, its recall is inherently capped: any function not explicitly
mentioned in u cannot be recovered, and synonym/phrase mismatches degrade coverage even with
a rich lexicon. Moreover, unlike the agentic pipeline, it neither integrates homology evidence nor
reconciles conflicting cues across fields. We therefore use the extractive baseline as a conservative
reference that isolates the contribution of synthesis (LLM-generated text) and retrieval (Homology-
RAG) in ProtFunAgent.

G.6 CONSTRAINED (ALLOWLIST) BASELINE

This baseline generates a concise function synopsis by prompting an LLM under a hard lexical
constraint (an allowlist) derived deterministically from the record. GO terms are then extracted
from the constrained prose and post-processed with ontology rules. The goal is to isolate the effect
of controlled generation without external retrieval or free-form paraphrase.

Inputs. From the parsed UniProt record (schema) we read identifier a, gene/name tokens G, or-
ganism token o, the function note u, and GO seed names per aspect SBP,SMF. We also assume a
GO lexicon L containing canonical names, synonyms, and a parent map over the GO DAG GGO.

Allowlist construction. We deterministically assemble a finite vocabulary V from schema tokens:

V = Tok(G) ∪ {o}︸ ︷︷ ︸
identity

∪ Tok(u)︸ ︷︷ ︸
curator text

∪
⋃

s∈SBP∪SMF

Tok(s)︸ ︷︷ ︸
GO seeds

,

followed by normalization and length filtering (e.g., alphanumerics, |w|≤30). This yields a record-
specific vocabulary that (i) carries factual anchors and (ii) strongly curbs hallucination.

Constrained summarization. We query an LLM with a prompt that (i) instructs a short (≤ 120
words) factual summary, (ii) forbids inventing facts, and (iii) restricts the output token set to V (plus
numerals and punctuation). Denote the resulting summary by

s∗V = argmax
s∈T

Pθ(s | schema) s.t. Tok(s) ⊆ V ∪ Σnum/punc.

This “lexically fenced” decoding preserves fluency while acting as a content filter aligned to the
schema.

GO extraction, pruning, closure. We match lexicon phrases inside the constrained summary to
generate candidate GO identifiers:

Ỹ =
{
map(p;L) : p ∈ Phrases(L), p ⊆ lower(s∗V)

}
.

To ensure concision and aspect balance, we apply budgets (BP first, then MF):

Y leaf =
(
Ỹ ∩ BP

)
[:kBP]

∪
(
Ỹ ∩MF

)
[:kMF]

, |Y leaf | ≤ ktot.

For hierarchical consistency we compute ancestor closure on the GO DAG (restricted to BP/MF):

Y ↑ = Ancestors
(
Y leaf ; GGO

)
∪ Y leaf .
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Outputs. The baseline returns

ŷconstr =
(
s∗V , Y

leaf , Y ↑),
i.e., a concise allowlisted summary together with ontology-consistent GO predictions.

The constrained baseline offers three advantages over purely extractive or free-form generation:
(i) faithfulness—the allowlist tightly couples the summary to schema evidence, sharply reducing
hallucination; (ii) coverage beyond exact string match—the LLM can recombine allowed tokens,
surfacing lexicon phrases that a strict extractive matcher might miss; and (iii) compatibility with
ontology post-processing. Its chief limitations are sensitivity to allowlist quality (over-restrictive
vocabularies can harm recall) and lack of external grounding (no homology or literature retrieval).
In our results, it serves as a mid-point baseline: stronger than extractive when schema text is rich,
but generally outperformed by the agentic pipeline with homology-augmented prompts and multi-
source ontology decoding.

G.7 RANDOM–GO BASELINE

As a lower-bound control we include a purely random baseline that samples GO terms directly from
the lexicon without regard to sequence or schema content. Specifically, we uniformly shuffle the set
of BP and MF identifiers, then select up to kBP and kMF terms (capped at ktot overall). The chosen
identifiers

Y leaf = Sample
(
LBP, kBP

)
∪ Sample

(
LMF, kMF

)
are then closed under ontology ancestors

Y ↑ = Ancestors
(
Y leaf ; GGO

)
∪ Y leaf .

Each record is paired with a generic placeholder summary (“Random GO control”), ensuring that
evaluation focuses exclusively on GO prediction quality.

This provides a sanity check: (i) it establishes a chance-level expectation for recall and precision
under ontology-constrained random sampling; (ii) it verifies that higher-performing methods derive
signal from data rather than from lexicon size or metric artifacts. Unsurprisingly, Random–GO
yields very low F1 and consistency, but it helps contextualize the magnitude of improvements ob-
served with homology-aware, constrained, or agentic approaches.

H EVALUATION PROTOCOL: FULL DETAILS

Ground-truth mapping. GO names are mapped to IDs using a consolidated name→id table an-
chored in L; IDs are normalized to GO:NNNNNNN.

Hierarchical vs flat metrics. We report micro/macro P,R, F1 for hierarchical (Y ↑ vs G) and flat
(Y ⋆ vs G) sets. Text metrics: ROUGE-L (stemming on), BERTScore-F1 (baseline rescaling on
unless noted).

Ontology consistency and empty handling. OC is graded as 1− |Anc(Y ⋆)\Y ⋆|
|Anc(Y ⋆)| ; score 0 if Y ⋆ = ∅

or root terms occur. Text scoring ignores empty candidate/reference pairs; counts reported.

K-sweep. Top-K truncation respects predicted order; K ∈ {4, 6, 8, 10, 12}.

Reproducibility knobs. Document –drop-empty, –no-bert-rescale, –max-ref-words, and
any random seeds.
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I SYSTEM, COMPUTE, AND RUNTIME

Table 2: Environment and runtime for the ablation run (250 proteins).
Item Value
GPU NVIDIA Tesla P40 (24 GB), Driver 535.261.03, CUDA 12.2
CPU (fill with lscpu output, e.g., Intel Xeon, N cores)
RAM (fill with free -h, e.g., 64 GB)
BLAST DB SwissProt (uniprot_sprot), size: (fill from du -sh)
Homology filters identity ≥ 30%, E-value ≤ 10−5, top-k = 3 unique hits
LLM backend Ollama (keep-alive 30 min), temperature 0.0 (unless noted)
Cascade synth → judge (same model if JUDGE_MODEL unset); constrained GO decoding enabled
Total runtime ≈ 1200 s for 250 accessions
Median time / accession ≈ 4.8 s (1200/250)
#Accessions per split Dev (tuning): fill, Test (reporting): fill, Ablation: 250

J QUALITATIVE CASE STUDIES: AGENTIC VS. SINGLE-LLM ON
UNCHARACTERIZED PROTEINS

Case 1: P0A6A3 (E. coli K-12; gene ackA)

Agentic summary (ours).

This protein, encoded by the ackA gene in Escherichia coli (K-12), forms acetyl phosphate
from acetate and ATP (acetate kinase activity) and contributes to ATP production during anaer-
obic growth. (Judge removed an unsupported sentence about the reverse reaction in an earlier
draft.)

Single-LLM summary (no judge/constraints).

This enzyme, encoded by the ackA gene in Escherichia coli K12, catalyzes the formation
of acetyl phosphate from acetate and ATP. It also participates in the reverse reaction and is
involved in the synthesis of most ATP formed catabolically during anaerobic growth. The
enzyme’s activity is associated with magnesium ion binding, zinc ion binding, and acetate
kinase activity, and it is localized to both the cytosol and membrane compartments.

GO predictions (ours). GO:0008776 acetate kinase activity , GO:0005524 ATP binding ,

GO:0019413 acetyl–CoA biosynthesis , GO:0019542 propionate biosynthesis

GO predictions (single-LLM). GO:0000287 Mg2+ binding , GO:0004096 catalase activity ,

GO:0004314 ACP S–malonyltransferase , GO:0031578 spindle checkpoint ,

GO:0070914 UV excision repair , GO:0009058 biosynthetic process , GO:0040007 growth
Analysis. The single-LLM injects multiple off-pathway GO terms (catalase, malonyltransferase, UV
repair, spindle checkpoint), none of which are consistent with acetate kinase function. The agentic
pipeline’s judge removes unsupported claims; the ontology decoder selects the correct MF and specific
biosynthesis processes, yielding an ontology-faithful, mechanism-centered summary.

Case 2: O97422 (GlcAT-I; glycosaminoglycan biosynthesis)

Agentic summary (ours).
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Galactosylgalactosylxylosylprotein 3-β-glucuronosyltransferase I participates in L2/HNK-1
epitope formation and is involved in chondroitin and heparan sulfate proteoglycan biosynthesis
at the Golgi membrane.
(Judge trimmed over-claims about substrate breadth.)

Single-LLM summary (no judge/constraints).

The Galactosylgalactosylxylosylprotein 3-beta-glucuronosyltransferase I (GlcAT-I) enzyme is
involved in the biosynthesis of L2/HNK-1 carbohydrate epitope on glycolipids and glycopro-
teins, specifically targeting Gal-β1,3-Gal-β1,4-Xyl substrates. This process occurs within the
Golgi membrane. The enzyme’s activity is also linked to carbohydrate metabolic processes,
including chondroitin sulfate proteoglycan and heparan sulfate proteoglycan biosynthesis.

GO predictions (ours). GO:0050650 chondroitin sulfate PG biosynthesis ,

GO:0015012 heparan sulfate PG biosynthesis , GO:0009058 biosynthetic process

GO predictions (single-LLM). GO:0000271 polysaccharide biosynthesis ,

GO:0004096 catalase activity , GO:0004586 ornithine decarboxylase ,

GO:0015012 heparan sulfate PG biosynthesis , GO:0031578 spindle checkpoint ,

GO:0043879 glycolate transporter , GO:0009058 biosynthetic process ,

GO:0005975 carbohydrate metabolism
Analysis. Although the single-LLM mentions the right pathways, it adds catalase, ornithine de-
carboxylase, spindle checkpoint, and a glycolate transporter, which are biologically implausible
for GlcAT-I. The agentic pipeline restrains outputs to proteoglycan biosynthesis with correct cellular
context via constrained decoding.

Case 3: V6CLJ5 (C. elegans Lag-1/CSL; Notch axis)

Agentic summary (ours).

Lag-1 is a CSL-family regulator acting in lin-12/Notch and glp-1/Notch signaling to control
cell–cell communication, germline stem cell division, and reproductive system development.

Single-LLM summary (no judge/constraints).

The Lag-1 protein is a transcriptional regulator central to lin-12/Notch and glp-1/Notch
signaling pathways. It binds specific DNA sequences and can act as repressor or activator with
Notch proteins. It is involved in germline stem cell division, reproductive system development,
and left-right asymmetry induction.

GO predictions (ours). GO:0005112 Notch binding ,

GO:0007219 Notch signaling , GO:0000978 Pol II cis-reg. DNA binding ,

GO:0045944 positive regulation of transcription by Pol II

GO predictions (single-LLM). GO:0003904 photolyase activity , GO:0004096 catalase activity ,

GO:0004586 ornithine decarboxylase , GO:0006351 DNA-templated transcription ,

GO:0007154 cell communication , GO:0007165 signal transduction ,

GO:0007219 Notch signaling , GO:0007601 visual perception
Analysis. The single-LLM correctly references Notch signaling but introduces photolyase, catalase,
ornithine decarboxylase, and visual perception, none expected for CSL/Notch TFs. The agentic
pipeline surfaces specific transcriptional and Notch-binding GO terms via ontology-aware selection,
avoiding generic or irrelevant functions.
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K EXTENDED ERROR ANALYSIS

Qualitative examples: (1) Synth hallucination caught by Judge; (2) GO ancestor inconsistency fixed
by pruning; (3) edge cases with synonym mapping.

Example. Input schema (abridged) → Synth candidate → Judge score → Final summary; GO
candidates and pruned set with reasons.

Figure 1: Worked example with intermediate artifacts.

L REPRODUCIBILITY CHECKLIST

• Data: accession lists per split (URLs or file hashes), UniProt snapshot date.
• Lexicon: OBO version and date; saved L checksum.
• Homology-RAG: BLASTP version, DB snapshot date, parameters.
• Models: exact model IDs/tags, temperature, token caps, judge threshold τ , cascade order.
• Seeds and non-determinism notes; retry policy.
• Command lines for all main runs and ablations.
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