
AI4X 2025, Singapore, 8–11 July 2025

Optimizing Biophysically-Plausible Large-Scale Circuit ModelsWith Deep Neural
Networks

Tianchu Zenga, Fang Tiana, Shaoshi Zhanga, ..., B.T. Thomas Yeoa

a Centre for Sleep & Cognition & Centre for Translational Magnetic Resonance Research, Yong Loo Lin School of
Medicine, NUS, Singapore; Department of Electrical and Computer, NUS, Singapore;... tianchu_zeng@u.nus.edu

* Presenting author

1. Introduction
Large-scale biophysically plausible models of

coupled brain regions are developed to provide in-
sights into brain dynamics[1, 2, 3, 4]. Leveraging
these models to extract biological insights requires
parameter optimization[5, 6].
Traditional parameter optimization methods

for biophysical neural models, including grid
search[1, 7, 8], evolutionary algorithms[5, 6, 9],
EM frameworks[10], and gradient-based
approaches[11, 12], rely on time-consuming nu-
merical integration to simulate time courses before
computing objective functions.
To overcome the limitation, we proposed DELS-

SOME (DEep Learning for Surrogate Statistics Opti-
mization inMEanfieldmodeling), a deep neural net-
work that directly predicts surrogate statistics of the
objective function, bypassing explicit time-course
simulations. By integrating DELSSOME with covari-
ance matrix adaptation evolution strategy (CMA-ES)
[13], we achieve significant computational speed-ups
while maintaining accuracy. Compared to recent
studies[14, 15], DELSSOME supports high-resolution
simulations and requires simpler training by focus-
ing directly on the objective function rather than full
time series.

2. Results
We conducted our study using the feedback inhi-

bition control (FIC) model[1], which is a neural mass
model comprising ordinary differential equations
(ODEs) that capture the dynamics of excitatory and
inhibitory neuronal populationswithin each cortical
region.
In our previous study[6], a FICmodel was fitted to

empirical fMRI data using CMA-ES. The optimized
FICmodelwas thenbeused to generate an excitatory
and inhibitory synaptic gating variable time courses
SE and SI . The E/I ratio estimate was defined as
the ratio of the temporal average of SE and SI (Fig-
ure 1), which is an important biomarker related to
neurodevelopment[6].

2.1 Optimizing FIC model with numerical integration
To optimize the FIC model, CMA-ES samples 100

sets of candidate parameters from a randomly ini-
tialized 10-D Gaussian distribution corresponding to
10 parameters that need to be optimized. Each set
of candidate parameters was then used to compute

Fig. 1: Feedback inhibition control (FIC) model

an evaluation metric that measures the realism of
the resulting FICmodel. The 10 sets of candidate pa-
rameters with the best evaluation metric were then
used to update the sampling distribution for the next
epoch. These steps constitute one epoch of the CMA-
ES algorithm.
For a given set of FIC parameters, neural and

fMRI timecourses are simulated via numerical (Eu-
ler) integration of the FIC differential equations,
which generally needs millions of steps and hence
to be computationally expensive.
FIC parameters with simulated excitatory fir-

ing rate outside the physiologically plausible range
were removed from further consideration. The re-
maining simulated fMRI time courses were then
evaluated by computing a cost function that com-
pared simulated and empirical functional connec-
tivity (FC), as well as simulated and empirical func-
tional connectivity dynamics (FCD)[16], which we
will refer to as FC+FCD cost. The similarity of the
static and empirical FCwas computedbasedonPear-
son’s correlation between static and empirical FC (r)
and absolute difference (d) between the means of
them. Dissimilarity between the FCD matrices was
computed using the Kolmogorov–Smirnov (KS) dis-
tance. The overall FC+FCD loss functionwas defined
as (1 − r) + d +KS. A lower FC+FCD cost indicates
more realistic simulated fMRI time courses.

2.2 DELSSOME yielded over 2000× speed up for evalu-
ating FIC model realism
To avoid computationally intensively numerical

integration, we trained the DELSSOMEwithin-range
classifier to directly predict whether a set of FIC
parameters will lead to within-range firing rates
(Figure A1). For FIC parameters that survived the
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DELSSOME within-range classifier, the DELSSOME
FC+FCD cost predictor will predict the FC+FCD cost
without numerical integration (Figure 2).
WedividedHumanConnectomeProject (HCP)[17,

18] participants into training, validation and test
sets. In the test set, the trained DELSSOME within-
range classifier can reach 90% accuracy compared
to chance accuracy 61% and the trained DELSSOME
FC+FCD cost predictor can give a correlation be-
tween the predicted and ground truth loss at least
0.95. The evaluation speed of DELSSOME is over
2000× faster than Euler integration. (Figure A2)

Fig. 2: DELSSOME neural network architectures

2.3 DELSSOME yielded 50× speed-up in the optimiza-
tion of the FIC model
We tested whether DELSSOME models could re-

place Euler integration in the CMA-ES algorithm. We
only considered the HCP test participants (previous
section). The HCP test participants were further di-
vided into the FIC model inversion training set, vali-
dation set and test set.
Euler CMA-ESwas run on the FICmodel inversion

training set for 100 epochs. The best candidate pa-
rameter set from each epoch was collated, yielding
100 candidate parameter sets. The 100 candidate pa-
rameter sets were then evaluated in the FIC model
inversion validation set. Finally, the top parameter
set from the validation set was evaluated in the FIC
model inversion test set. The same procedure was
repeated with DELSSOME (replacing Euler integra-
tion) in the CMA-ES algorithm.
The results are shown in Figure 3. During the

training phase, DELSSOME CMA-ES was more than
2000 times faster than Euler CMA-ES (42 minutes
compared to 64 days). When we accounted for all

phases, DELSSOME CMA-ES was around 50 times
faster than Euler CMA-ES (33 hours compared to 65
days). On the other hand, FC+FCD costs between
DELSSOMECMA-ES and Euler CMA-ES were similar.

Fig. 3: Comparison of Euler CMA-ES andDELSSOME
CMA-ES

2.4 DELSSOME generalized to a new dataset without
further tunning
We replicated key findings of our previous study

showing that E/I ratio decreases with age during
neurodevelopment in a new dataset (the Philadel-
phia Neurodevelopment Cohort dataset; PNC)[6, 19,
20]. The DELSSOME models trained from the HCP
dataset (previous section) were applied directly to
PNC dataset without any further tuning.
The results are shown in Figure 4. DELSSOME

CMA-ES was around 50 times faster than Euler CMA-
ES. Consistentwith theprevious study[6], bothDELS-
SOME CMA-ES and Euler EMA-ES revealed a de-
crease in mean cortical E/I ratio with age. Pearson’s
correlation between the 29 pairs ofmean cortical E/I
ratio was 0.88. The decrease in E/I ratio was also
more pronounced in sensory-motor regions than as-
sociation cortex for both DELSSOME CMA-ES and
Euler CMA-ES.

Fig. 4: DELSSOME CMA-ES generalized to PNC
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Appendix A. Supplementary figures

Fig. A1: DELSSOME neural network architectures

Fig. A2: Test performance of DELSSOME neural net-
works
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