
Published as a conference paper at ICLR 2024

A PROOF OF THEOREM 1: CONVERGENCE OF FEDHYPER

According to theoretical analysis of FEDNOVA (Wang et al., 2020b), an FL framework that follows
the update rule in Eq. (13) will converge to a stationary point, and the optimization error will be
bounded with the following assumptions:

Assumption 1 (Smoothness). Each local objective function is Lipschitz smooth, that is, ∥∇Fm(x)−
∇Fm(y)∥ ≤ L∥x− y∥,∀m ∈ {1, 2, ...,M}.
Assumption 2 (Unbiased Gradient and Bounded Variance). The stochastic gradient at each client
is an unbiased estimator of the local gradient: Eξ[gi(x|ξ)] = ∇Fm(x) and has bounded variance
Eξ[∥gm(x|ξ)−∇Fm(x)∥2] ≤ σ2,∀m ∈ {1, 2, ...,M}, σ2 ≥ 0.

Assumption 3 (Bounded Dissimilarity). Existing constants ψ2 ≥ 1, ρ2 ≥ 0 such that
ΣM

m=1
1
M ∥∇Fm(x)∥2 ≤ ψ2∥ΣM

m=1
1
M∇Fm(x)∥2. If local functions are identical to each other,

then we have ψ2 = 1, ρ2 = 0.

where we adhere to our setting that each client contributes to the global model with the equal weight
1
M . Then we can rewrite the optimization error bound as follows:

min
t∈[T]

E∥∇F (w(t))∥2 ≤ O

(
α(t)

√
MkT

)
+O

(
Aσ2

√
MkT

)
+O

(
MBσ2

kT

)
+O

(
MCρ2

kT

)
, (24)

Where A, B, and C are defined by:

A = α(t)
M∑

m=1

∥am∥22
M∥am∥21

, B =

M∑
m=1

1

M
(∥am∥22−a2m,−1), C = max

m
{∥am∥21−∥am∥1am,−1}. (25)

where am is a vector that can measure the local model update during local SGD, where the number
of k-th value of am is am[k] = β(t,k)

β(t,0) .

Note that we have Bound 1 on global learning rate that α(t) = min{max{αt, 1
γα

}, γα}, so we have
the upper and lower bound for α(t) as follows:

1

γα
≤ α(t) ≤ γα, (26)

For the local learning rate, we have β(t,k) = min{max{β(t,k), 1
γβ

}, γβ}. Therefore, the maximum

value of ratio β(t,k)

β(t,0) is γ2β , when β(t,k) = γβ , and β(t,0) = 1
γβ

. Accordingly, the minimum of β(t,k)

β(t,0)

is 1
γ2
β

. We can derive the upper and lower bound also for ∥am∥1 and ∥am∥2 as follows:

1

γ2β
≤ am,k ≤ γ2β ,

k − 1

γ2β
+ 1 ≤ ∥am∥1 ≤ (k − 1)γ2β + 1,

k − 1

γ4β
+ 1 ≤ ∥am∥2 ≤ (k − 1)γ4β + 1,

∥am∥2
∥am∥1

≤ γ2β ,

(27)

Then, we apply Eq. (26) and (27) to the first item of Eq. (25), and get:

O

(
α(t)

√
MkT

)
≤ O

(
γα√
MkT

)
, (28)

12

Published as a conference paper at ICLR 2024

Then, we apply Eq. (26) and (27) to Eq. (25) and redefine A B and C:

A = αt
M∑

m=1

∥am∥22
M∥am∥21

≤ γα

M∑
m=1

∥am∥22
M∥am∥21

≤ γα

M∑
m=1

γ4β
M
,

(29)

B =

M∑
m=1

1

M
(∥am∥22 − a2m,−1)

<

M∑
m=1

1

M
[[(k − 1)γ4β + 1]2 − 1

γ2β
],

(30)

C = max
m

{∥am∥21 − ∥am∥1am,−1}

< [(k − 1)γ2β + 1]2 − 1

γ2β
[
k − 1

γ2β
+ 1],

(31)

Then, we can combine the first and second items of Eq. (24) and get the new bound:

min
t∈[T]

E∥∇F (W t)∥2 ≤ O

(
P√
MkT

+
Q

kT

)
, (32)

where P is defined by:

P = γα +Aσ2

= (

M∑
m=1

γ4βσ
2

M
+ 1)γα,

(33)

and Q is defined by:

Q =MBσ2 +MCρ2

=

M∑
m=1

[[(k − 1)γ4β + 1]2− 1

γ2β
]σ2 +Mρ2[[(k − 1)γ2β + 1]2 − 1

γ2β
[
k − 1

γ2β
+ 1]].

(34)

Note that we use the upper bound of A,B,C here. Now we have completed the proof of Theorem
1.

B SUPPLEMENTARY EXPERIMENTAL RESULTS

B.1 LEARNING RATE CURVE OF FEDHYPER

As we analyzed in Section 3, FEDHYPER adjusts the learning rates in a way that the learning rates
increase in the former training stages and decrease in the latter stages. It also aligns with our analysis
of the relationship between the convergence and the value of learning rates in Figure 1. To illustrate
this point, we visualize the change in global learning rate through 0-100 epochs in Figure 6. The
global learning rate of FEDHYPER-G increases from round 0 to 15, and starts to decrease. The value
is greater than 1 in the first 50 epochs and less than 1 in the following 50 epochs. As for FEDEXP,
the global learning rate value fluctuates between 1.0 and 1.5.

13

Published as a conference paper at ICLR 2024

Figure 6: Comparison of global learning rate curve between FEDHYPER and FEDEXP.

B.2 THE TIME OVERHEAD OF FEDHYPER

FEDHYPER involves utilizing the inner product of gradients to modify the learning rate. It may
raise concern that FEDHYPER incurs additional computational expenses compared to the more basic
FedAvg. Here we claim that hypergradient computing in FEDHYPER only involves a small amount
of time overhead, which is trivial compared to the original time consumption of FEDAVG. To prove
this, we have included an analysis of the time cost of our three schedulers and baselines. We ran
the experiments on time cost of our three schedulers and baselines. The following results in Table 1
are the time cost (in seconds) of different optimization algorithms when training CIFAR10 for 200
communication rounds:

FedHyper-G FedHyper-CL FedAvg FedExp FedAdam FedAdagrad

44060 45780 44031 45193 44045 43917

Table 1: Total time consumption in second of FEDHYPER and baselines

Different global schedulers have similar running times, however, the schedulers in FEDHYPER can
reach convergence faster than baselines, so we can have less cost than our baselines ultimately.
Specifically, FEDHYPER-CL only increases less than 5% computation cost compared with FE-
DAVG(SGD) but gets convergence up to 3 times faster than SGD. Therefore, FEDHYPER’s faster
convergence offsets this slight increase in computation time.

B.3 THE IMPACT OF NON-IID LEVEL

The data distribution on clients also affects FL performance. In Table 2, we display the final accuracy
of global models with FEDAVG and FEDHYPER in iid and non-iid data, and also different α in non-
iid Dirichlet distribution. We can conclude from the table that FEDHYPER contributes more to non-
iid settings, especially with relatively small α numbers. The accuracy increase of α = 0.25 is 0.80%
in FMNIST and 1.55% in CIFAR10, which is the highest among the three α values. This might be
attributed to the client-side local scheduler we designed that adopts the global updates to restrict the
increasing of local learning rates on some clients that might hinder the global convergence because
of the data heterogi.

14

Published as a conference paper at ICLR 2024

FMNIST CIFAR10
IID 0.75 0.5 0.25 IID 0.75 0.5 0.25

FedAvg 98.62% 96.35% 96.36% 97.00% 67.14% 56.71% 57.14% 53.55%
FedHyper 98.92% 97.03% 96.97% 97.80% 67.45% 57.18% 58.42% 55.10%

Table 2: Accuracy on FedHyper in different α values

Figure 7: Cooperation of FEDHYPER-G and FEDHYPER-CL.

B.4 COMBINATION OF FEDHYPER-G AND FEDHYPER-CL

We show the results of FEDHYPER-G, FEDHYPER-SL, and FEDHYPER-CL work alone in Figure 3
and show that they can both outperform baselines that optimize the global or local training from the
same dimension (e.g. both work on the server). However, FEDHYPER has another advantage over
baselines, that is, the ability to adjust both global and local learning rates in one training process.
To support this, we run experiments on CIFAR10 and Shakespeare by applying both FEDHYPER-G
and FEDHYPER-CL, called FEDHYPER-G+CL. We display the results in Figure 7 and compare it
with FEDHYPER-G and FEDHYPER-CL. The results show that FEDHYPER-G+CL is still able to
outperform both of the single adjusting algorithms, which indicates that the performance of FED-
HYPER algorithms can superpose each other. This makes FEDHYPER more flexible and can be
suitable for different user needs. Here we do not show the results of combining FEDHYPER-G and
FEDHYPER-SL because they use the same hypergradient to adjust different learning rates. So the
superposition effect is not obvious.

B.5 HOW TO USE FEDHYPER IN REAL FL PROJECTS

We have three schedulers in FEDHYPER framework. However, not all of them are needed in real FL
projects. We highly recommend FL trainers select suitable algorithms according to their needs and
budgets. Here we provide some suggestions on the algorithm selection in specific scenarios.

FedHyper-G only when the trainer has a tight budget of computational resources on clients, e.g.,
when performing FL on edge devices, mobile terminal devices, or low-memory GPUs.

FedHyper-SL only has a similar scenario with FEDHYPER-G only. One thing difference is that it
adds some extra communication costs in sending the local learning rates. Therefore, if the trainer
does not have a bottleneck in communication cost, she can choose freely between FEDHYPER-G
only and FEDHYPER-G only while considering the features of the specific task (i.e., more sensitive
to global or local learning rates).

FedHyper-CL only when the trainer has a tight budget of computational resources on the server but
a loose budget on clients, e.g., FL service providers.

FedHyper-G and FedHyper-CL when the trainer has loose budgets of computational resources on
both server and clients, e.g. distributed large model training.

15

Published as a conference paper at ICLR 2024

Algorithm 1 Workflow of FEDHYPER

Input: Initial Global Model W 0, Number of Communication Rounds T , Number of Selected
Clients each RoundM , Initial Global Learning Rate α0, Initial Local Learning Rate each Round
β0 = β1 = β0 = ... = βT−1, Local Epoch number K, Local batches ξ;

Output: Trained Global Model WT ;
1: for t in 0, 1, ..., T − 1 do
2: Server send W t and βt to all selected clients.
Clients: FedHyper-CL
3: Compute global model update ∆t−1 =W t −W t−1

4: βt,0
m = βt

5: for k in 0, 1, ...,K − 1 do
6: Compute gm(W t,k) on W t,k and ξ,
7: Update local learning rate: βt,k

m = βt,k−1
m + gm(W t,k) · gm(W t,k−1) · (1 + ε ·

gm(W t,k)·∆t−1

|gm(W t,k)·∆t−1|)

8: Clip: βt,k
m = min{max{βt,k

m , 1
γβ

}, γβ}
9: Local model update: W k+1

m =W k
m − βt,k

m · gm(W t,k)
10: end for
11: Send ∆t

m =W t,K
m −W t to server.

Server: FedHyper-G
12: Compute global model update: ∆t = ΣPm∆t

m
13: Update global learning rate: αt = αt−1 +∆t ·∆t−1

14: Clip: αt = min{max{αt,
1
γα

}, γα}
15: Update global model: W t+1 =W t − αt ·∆t

16: end for

We do not encourage other combinations because we do not observe an obvious performance im-
provement on them. We believe that FEDHYPER-G + FEDHYPER-CL can achieve the best perfor-
mance in our framework if the trainer has a generous budget.

C ALGORITHM OF FEDHYPER

We obtain the full FEDHYPER algorithm and show the cooperation of FEDHYPER-G and
FEDHYPER-CL in Algorithm 1. Note that FEDHYPER-SL uses the same hypergradient as
FEDHYPER-G so it is not applied in order to simplify the algorithm.

16

	Introduction
	Related Work
	Proposed Method: FedHyper
	FedHyper-G: Using Hypergradient for the Global Learning Rate
	FedHyper-SL & FedHyper-CL: Using HyperGradient for the Client Learning Rate

	Convergence Guarantee
	Experiments
	FedHyper Comprehensively Outperforms FedAvg and baselines
	Discussion and Ablations of FedHyper

	Conclusion
	Proof of Theorem 1: Convergence of FedHyper
	Supplementary Experimental Results
	Learning Rate Curve of FedHyper
	The Time Overhead of FedHyper
	The Impact of Non-iid Level
	Combination of FedHyper-G and FedHyper-CL
	How to Use FedHyper in Real FL Projects

	Algorithm of FedHyper

