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Abstract

In this paper, we investigate the latent geometry of generative diffusion
models under the manifold hypothesis. For this purpose, we analyze the
spectrum of eigenvalues (and singular values) of the Jacobian of the score
function, whose discontinuities (gaps) reveal the presence and dimensionality
of distinct sub-manifolds. Using a statistical physics approach, we derive
the spectral distributions and formulas for the spectral gaps under several
distributional assumptions, and we compare these theoretical predictions
with the spectra estimated from trained networks. Our analysis reveals the
existence of three distinct qualitative phases during the generative process:
a trivial phase; a manifold coverage phase where the diffusion process fits
the distribution internal to the manifold; a consolidation phase where the
score becomes orthogonal to the manifold and all particles are projected on
the support of the data. This ‘division of labor’ between different timescales
provides an elegant explanation of why generative diffusion models are not
affected by the manifold overfitting phenomenon that plagues likelihood-
based models, since the internal distribution and the manifold geometry are
produced at different time points during generation.

1 Introduction

Generative diffusion models have revolutionized the fields of computer vision and generative
modeling, achieving state-of-the-art performance on image generation (Ho et al., 2020; Song
and Ermon, 2019; Yang et al., 2021) and video generation (Ho et al., 2022; Singer et al., 2022;
Blattmann et al., 2023; Tim et al., 2024). Generative diffusion models synthesize images
through a stochastic dynamical denoising process. Experimental and theoretical arguments
suggest that different features such as frequency modes and class labels are generated at
different times during the process. For example, it has been shown that separation between
isolated classes, as in the case of mixture of Gaussian models, happens at critical phase
transition points of spontaneous symmetry breaking (speciation events) (Biroli et al., 2024).
It is also well known that subspaces corresponding to different frequency modes emerge at
different times of diffusion (Kingma and Gao, 2024). This idea has been recently refined by
(Kadkhodaie et al., 2024), who showed that diffusion models give rise to a local decomposition
of the image manifold into a basis of geometry-adaptive harmonic basis functions. These
decomposition phenomena cannot be directly explained in terms of critical phase transitions

∗These authors contributed equally to this work
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Figure 1: (a) Visualization of the gaps in the spectrum of the (negative) Jacobian of the
score for data supported on a latent manifold. Blue line: idealized spectrum of distribution
with uniform internal density; Orange line: spectrum of a more realistic distribution. (b)
Sketch of the local structure of data-manifold with tangent and orthogonal components of
the score function. (c) Sketch of the geometric phases of generative diffusion and their trace
measurable from the eigenspectrum.

as they are fundamentally linear processes. In this paper, we will provide a precise theoretical
analysis of the separation of subspaces for data defined on low dimensional linear manifolds.
Our main contributions are: I) an in-depth theoretical random-matrix analysis of the
distribution of Jacobian spectra in diffusion models on linear manifolds and II) a detailed
experimental analysis of Jacobian spectra extracted from trained networks on linear manifolds
and on image datasets. The analysis of these spectra is important as it provides a detailed
picture of the latent geometry that guides the generative diffusion process. We show that the
linear theory predicts several phenomena that we observed in trained networks. Based on
our result, we divide the generative process into three qualitatively different phases: trivial
phase, manifold coverage phase and manifold consolidation phase. Using these
concepts, we provide a concise explanation of why diffusion models can avoid the manifold
overfitting pathology that characterizes likelihood-based generative models (Loaiza-Ganem
et al., 2022).

2 The manifold hypothesis

The manifold hypothesis states that the distribution on natural data, such as images and
sound recordings, is (approximately) supported on a m−dimensional manifold M embedded
in a larger euclidean ambient space Rd (Peyré, 2009; Fefferman et al., 2016). While a data
probability distribution supported on a m < d manifold M cannot be expressed using a
proper density function, we loosely define such density as

p0(x) = δM(x) ρ(x) , (1)
where δM is the Dirac function for the manifold and such that

∫
Rd δM(x) • dx =

∫
M • dx.

We call ρ(x) the internal density, that is the density restricted to the manifold. The density
p0(x) is zero outside the manifold and diverges on the manifold. The hidden manifold model
proposed by Goldt et al. (2020) is able to reproduce N data yµ that are embedded in a
latent m-dimensional space, as

yµ = Φ (Fzµ) , (2)
where Φ(x) is a non-linear function of the d-dimensional vector x, F ∈ Rd×m is a rectangular
matrix that projects latent vectors zµ on the manifold. In this work we are going to study
generative diffusion while aligning with this modeling frame.

3 Background on generative diffusion models

Here, we will consider a simple variance-exploding forward process where the data x0 ∼ p0(x)
evolves according to the equation

dxt = dZt (3)
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where dZt is a standard Brownian motion. The formal solution of Eq. (3) can be given in

terms of the heat kernel pt(xt) = Ex0∼p0

[
1√
2πt

e−
∥xt−x0∥2

2
2t

]
. The target distribution p0(x)

is then recovered by reversing the diffusion process (Anderson, 1982). We initialize this
reverse process from xtf

∼ N (0, tf Id) at some large time tf , which evolves backward in
time according to

dxt = −∇x log pt(xt)dt + dZt (4)

The function s(x, t) = ∇x log pt(x) is the so-called score function. From a set of training
points {y1, . . . , yN} iid∼ p0, we can train a neural approximation of s(x, t) by learning a
denoising autoencoder ϵ̂θ(x, t), which is trained to recover the standardized noise ϵt from
the noisy state xt = x0 +

√
tϵt (Hyvärinen and Dayan, 2005; Vincent, 2011; Ho et al., 2020).

In order to avoid singularities in neural network output, the learned score is parametrized as
ŝθ(x, t) = − ϵ̂θ(x,t)√

t
.

4 Dynamic latent manifolds and spectral gaps

Consider a generative diffusion model with p0(x) defined on a d-dimensional manifold M
according to Eq. (1). In the course of the diffusion process, we can define a time-dependent
locus of points

Mt = {x∗ | s̃M(x∗, t) = 0, with JM(x∗, t) n.s.d.} , (5)
that we name stable latent set of the process. In Eq. 5 we have used M ≡ M0. The
negative semi-definiteness (n.s.d.) is a stability condition on the Jacobian matrix JM(x, t)
of the support score s̃M(x∗, t), defined as the score function obtained from the uniform data
distribution p̃0(x) = 1

|M| δM(x). Due to the noise, the diffusing particles typically explore
shells of a radius that concentrates on

√
t around each point of the latent stable set. For a

small perturbation p around a point x∗ on the latent manifold at time t, the score function
is well approximated by its linearization:

s(p, t) ≈ J(x∗, t) p = −
∑

j
(vj · p) λj(x∗, t)vj , (6)

where J(x∗, t) is the Jacobian of the score and the vj and λj(x∗, t) are respectively the j-th
eigenvector and the associated eigenvalue of −J(x∗, t). The spectrum of eigenvalues provides
detailed information concerning the local geometry of stable latent set. Perturbations aligned
with the tangent space ofMt correspond to small eigenvalues, while orthogonal perturbations
correspond to high eigenvalues, as the score tends to push the stochastic dynamics towards
its fixed-points. Therefore, we can estimate the dimensionality of the manifold from the
location of a drop (i.e. a sharp change) in the sorted spectrum of eigenvalues (Stanczuk
et al., 2022). This is visualized in Fig. 1, panels (a) and (b). This drop corresponds exactly
to a gap (i.e. a separation) in the eigenvalues spectrum; in the following, we will refer to
both as gaps.

4.1 Subspaces and intermediate gaps

Consider the situation where the internal density ρint(x) is not locally flat around a point
x∗ ∈ M. In this case, at a finite time t the actual score function does not vanish on the
latent stable set Mt as there is a gradient of the log-density along the tangent directions.
This implies that the spectrum of tangent eigenvalues can have a series of sub-gaps with
separate different tangent subspaces with different ‘local variance’. In image generation tasks,
these subspaces are often associated with different frequency modes, as noted in (Kingma
and Gao, 2024). Consequently, we can quantify the sensitivity to the internal density at
time t by studying the statistics and temporal evolution of intermediate gaps

∆GAP
k (x∗, t) = λk+1(x∗, t)− λk(x∗, t) , (7)

where the indices k depend on the dimensionality of the subspaces. Note however that under
realistic data distributions it is unlikely to find sharp intermediate discontinuities since each
subspace will have a different eigenvalue, resulting in a smooth gradient.
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5 Phenomenology of generative diffusion on manifolds

This section contains an intuitive picture that follows from our theoretical results on linear
models, which we will fully outline in the next section. The theory considers the case of a
linear manifold with Gaussian internal distribution. A linear-manifold data-model is made
of a set of points

yµ = Fzµ, (8)
where F and zµ have been introduced in Section 2. While only linear models are theoretically
tractable, we conjecture that their phenomenology captures the main features of subspace
separation in the tangent space of curved manifolds (see Supp. D for further details). We
validated the theory using networks trained on both linear data and highly non-linear data
such as natural images (see Sections 7 and 8). Based on the dynamics of the spectral gaps,
we found that the generative dynamics of xt according to Eq. (4) can be separated into
three distinct phases. The phase separation does not correspond to singularities as there are
cross-over events, not genuine phase transitions. During all our analysis we will exclusively
work with eigenvalues since, in the linear manifold model, the Jacobian of the true score
is symmetric. The same phenomenology is nevertheless fully appreciable when using the
singular values in our experiments with neural approximations of the score.

5.1 Phase I: The trivial phase

In the trivial phase, the diffusing particle moves according to the noise distribution without
strong biases towards the manifold directions. In this dynamic regime, the stable latent set
Mt is a single point surrounded by an isotropic quadratic well of potential. The spectral gaps
are not visible and all eigenvalues have approximately the same value due to the isotropy
of the noise distribution. This trivial phase is analogous to the initial phases described in
(Raya and Ambrogioni, 2024) and (Biroli et al., 2024).

5.2 Phase II: Manifold coverage

The manifold coverage phase begins with the opening of the first of a series of spectral
gaps corresponding to local subspaces. In this phase, different subspaces with different
variances can therefore be identified by intermediate gaps in the spectra, as sketched in
Fig. 1, panel (c). When the intermediate gaps are opened, the diffusing particles spread
across the manifold directions according to their relative variances. In other words, during
this regime of generative diffusion, the process fits the distribution of the data internal to
the manifold.
We assume low-rank covariance Σ = FF ⊤ for the data distribution. In terms of random
matrix theory, the gap-forming phenomenology has two distinct processes: the emergence
of intermediate gaps (i.e. steps in the dimensionality plot) between separated bulks of the
spectrum, and the opening of a final gap that allows to infer the dimensionality of the full
manifold. Our analysis gives us the time scale at which such intermediate gaps are maximally
opened, i.e.

t(k)
max =

√
γ+(σk) γ−(σk+1), (9)

where γ−(σk+1) and γ+(σk) are specific eigenvalues of Σ (see Fig. 8) associated with two
hierarchically consecutive variances (see Supp. A.2 for an exhaustive analysis). In most
cases, when σ2

k+1 ≪ σ2
k, the dependence on the two variances is O(σk · σk+1). This is the

timescale where the score is maximally sensitive to the relative variance of the two subspaces,
which guides the particles toward the correct internal distribution.

5.3 Phase III: Manifold consolidation

Finally, the manifold consolidation phase is characterized by the asymptotic closure
of the intermediate gaps and the sharpening of the total manifold gap, indicating the full
dimensionality of M. In this final regime, the score assumes the form

∇x log pt(x) ≃ 1
t

[
Π− Id

]
x. (10)
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where Π = F (F ⊤F )−1F ⊤ is the projection matrix over the manifold. The component
of the score orthogonal to the manifold diverges proportionally to t−1, while the tangent
components converge to a constant and become therefore negligible in this regime. This
results in the consolidation of the gap corresponding to the manifold dimensionality m and
to the (relative) closure of the intermediate gaps. Therefore, in this final phase the dynamics
of the model simply projects the particles into the manifold Mt →M. In the generative
modeling literature, this phenomenon is also known as manifold overfitting as the terms
corresponding the internal distribution is negligible (Loaiza-Ganem et al., 2022). In the next
section we comment on how these three phases can explain why diffusion models are not
affected by this phenomenon, namely why we claim that the manifold is consolidated rather
than overfitted.

5.4 The geometric phases and manifold overfitting

The probability density of data defined on a manifold is a spiked object δM(x)ρ(x), where
the Dirac-delta δM(x) determines the manifold and ρ(x) determines its internal density.
Likelihood-based generative models are defined by a highly parameterized likelihood function
f(x; θ), whose parameters are trained by minimizing the loss

L(θ) = −Ex∼p0(x)[f(x; θ)] , (11)

which maximizes the probability of the data given the model. This maximum likelihood loss is
minimized if f(x; θ) = p0(x). A trained likelihood-based model can only fit the true density
by having it to diverge to infinity on the manifold. Such a divergence makes it impossible to
correctly model the internal density ρ(x). More problematically, the optimization problem
becomes almost insensitive to the internal density ρ(x). This phenomenon is called manifold
overfitting (Loaiza-Ganem et al., 2022), since the trained model fits the manifold while
ignoring its internal density, resulting in poor generation.
Our analysis suggests that the temporal dynamics of generative diffusion models overcome
this limitation because, for intermediate values of t, the score is still sensitive to the density
internal to the manifold, which can be identified through the differences in the tangent
singular values. During this manifold coverage phase, the score directs the dispersion of
the particles according to these differences, with higher singular values resulting in larger
‘opposing force’ from the score, which results in smaller displacements of the generated
samples along these directions. For t tending to zero, these differences are suppressed due to
the divergence of the likelihood, which results in a score function that is orthogonal to the
manifold and that is insensitive to ρ(x). However, at this stage of generative diffusion the
internal dispersion of the particles have already been affected by the previous coverage phase
and therefore the manifold overfitting of the score does not negatively affect generation.
Instead, the consolidation phase plays the important role of projecting the particles to the
support of the data.

6 Theoretical analysis of the spectral gaps in linear diffusion
models

In this section, we provide our main theoretical results concerning the spectral distribution
for random linear subspaces and the relative spectral gaps formulas. We start by reviewing
diffusion with data supported on linear manifolds, where the exact score function can be
computed.

6.1 Linear manifolds

Normally the distribution p0(x) is unknown. It is however interesting to investigate tractable
special case where the distribution is a multivariate Gaussian defined as in Eq. 8 where
F ∈ Rd×m is an arbitrary projection matrix that implicitly define the structure of the latent
manifold. and zµ ∼ N (0, Im) the latent space vector. In this setting, the distribution can be
explicitly written as p0(x) = Ez∼N (0,Im)δ(x− Fz) = N (x; 0, FF ⊤). Therefore, the density
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of the process at a given time t is again Gaussian and can be computed from

pt(x) = Ez
1√

(2πt)d
e− 1

2t ∥x−F z∥2
. (12)

While linear manifolds are very simple when compared with real data, they still exhibit a
rich and non-trivial phenomenology that elucidate several universal phenomena of diffusion
under the manifold hypothesis. In fact, these linear models capture the structure of tangent
spaces of smooth manifolds (see Supp. D).
The score function of the linear model is solvable analytically since we only have to perform
Gaussian integrals, from which we obtain a quadratic form in x that we can rewrite as

log pt(x) = 1
2t

x⊤Jtx + const. (13)

where the constant does not depend on x and

Jt = 1
t
F

[
Im + 1

t
F ⊤F

]−1
F ⊤ − Id. (14)

The score function is thus derived as ∇x log pt(x) = 1
t Jtx. It is then useful to analyze the

spectrum of the matrix Jt, since Jt is proportional to the Jacobian of the score function. In
fact, since the gradient of the score is orthogonal to the manifold sufficiently close to it, the
number of null eigenvalues of Jt will correspond to the manifold dimension and we should
expect to see a drop in the spectrum.
In the following, we provide an outline of our theoretical results on the distribution of spectral
gaps in the matrix Jt under random linear manifolds. This choice reflects the fact that the
distribution and support of the data are usually not known in advance, and it is therefore
important to quantify the statistical variability induced by this uncertainty. We will consider
two different distributions for the random projection matrices F : an isotropic Gaussian case,
and a multiple-variance one. To ensure tractability, we perform the analysis in the limit of
large d (visible) and m (latent) dimensions while keeping the ratio αm = m/d constant.

6.2 The isotropic case

If the elements of the projection matrix F are sampled as Fij ∼ N (0, σ2/m), we are able to
derive analytically the full expression of the distribution of the eigenvalues of Jt. It is given
by a simple transformation of the distribution of the eigenvalues of F ⊤F , which is known to
be the Marchenko-Pastur distribution reported in Supp. A.1.
In Fig. 7 we show the shape of the spectrum at different times. The bulk of the distribution,
inherited from the density of the eigenvalues of F ⊤F , gradually shifts from left to right in
the support. By measuring the cumulative function of the spectrum, one can isolate a drop
in the effective dimensionality of the manifold, as also plotted in Fig. 7. The step is present
at any time in the process and it is implied by the gap between the left bound of the bulk
and the spike in −1. The width of this gap evolves in time according to

∆GAP
fin (t; σ) = σ2(1 + α

−1/2
m )2

t + σ2(1 + α
−1/2
m )2

. (15)

If we name γ+(σ) the left bound eigenvalue of the bulk in the spectrum of F ⊤F (see Fig. 6),
one can recover a more general expression for the gap, being

γ+(σ)
t + γ+(σ) = ∆. (16)

Hence we can resolve the gap at a scale ∆ at the time

tin = γ+(σ)
(

1−∆
∆

)
. (17)
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6.3 Intermediate gaps and subspaces with different variances

Another relevant case for our study is the one where we consider a manifold having multiple
subspaces with different variances. Here we will focus on the instance of two distinct
variances. This scenario is reproduced by considering a number f ·m of columns of F to
have element Gaussian distributed with zero mean and variance σ2

1/m, and the remaining
(1− f) ·m columns with elements from a Gaussian with variance σ2

2/m. The spectrum of
Jt can be computed also in this case, as explained in Supp. A.2. The density function of
the eigenvalues shows a transient behavior of the spectrum in the form of an intermediate
drop in the estimated dimensionality of the hidden data manifold. This behavior is reported
in Fig. 2. Even though the expression of the spectral density doesn’t have an explicit
analytical form and has to be computed numerically, one can adopt a special assumption on
the behavior of the density of the eigenvalues of F ⊤F to estimate the typical times at which
the intermediate drop occurs. Generally speaking, the spectrum of F ⊤F can be composed of
two separated bulks, as observable in Fig. 8. This happens when σ2

2 and σ2
1 are significantly

different. In analogy with the single variance scenario, we name γ+ the left bound of the
bulk associated with higher eigenvalues, i.e. with the higher variance, and γ− the right
bound of the bulk associated with smaller eigenvalues, i.e. smaller variance. Most commonly,
γ− = γ−(σ2) and γ+ = γ+(σ1). In this case the gap-forming phenomenology provides for
two distinct processes: the emergence of intermediate gaps (i.e. steps in the dimensionality
plot) between separated bulks of the spectrum, the opening of a final gap that allows to
infer the dimensionality of the full manifold. The width of the intermediate gap between two
bulks can be obtained from Eq. (26) as

∆GAP
inter (t; σ1, σ2) = t

t + γ−(σ2) −
t

t + γ+(σ1) . (18)

By imposing ∆GAP
inter (t; σ1, σ2) = ∆ one finds the following quadratic form

∆t2 +
[
(∆− 1)γ− + (∆ + 1)γ+

]
t + ∆γ−γ+ = 0. (19)

Considering ∆≪ 1 and γ+ ≪ γ− the opening time for the intermediate gap can be found by
tin(∆) ≃ ∆−1γ−(σ1), (20)

that is a reference time at which the gap becomes visible. On the other hand, by assuming
the closure time to be close to zero, it can be obtained as

tfin(∆) ≃ ∆γ+(σ2). (21)

Furthermore, the time at which the gap is maximum in width, and so maximally visible, is
located in between tin and tfin. This is the most important time scale for the problem, it is
obtained by imposing ∂∆GAP/∂t = 0 and it measures

tmax =
√

γ−(σ1)γ+(σ2). (22)
Indeed, when σ2

1 ≫ σ2
2 the total spectrum can be approximated by a mixture of two separated

Marchenko-Pastur distributions, with variances σ2
1 and σ2

2 , and parameters αm and γ to be
rescaled with respect to f and (1− f). This approximation becomes exact under a slight
modification of F which does not imply any loss of the quality of the description. Now the
relevant quantities for the gap become

∆GAP
inter (t; σ1, σ2) =

t
[
fσ2

1(1−
√

1
fαm

)2 − (1− f)σ2
2(1 +

√
1

(1−f)αm
)2][

t + (1− f)σ2
2(1 +

√
1

(1−f)αm
)2
][

t + fσ2
1(1−

√
1

fαm
)2
] (23)

tin(∆) ≃ ∆−1f

(
1−

√
1

fαm

)2

σ2
1 , tfin(∆) ≃ ∆(1− f)

(
1 +

√
1

(1− f)αm

)2

σ2
2 , (24)

tmax =
√

f(1− f)
(

1−
√

1
fαm

)(
1 +

√
1

(1− f)αm

)
σ1 · σ2. (25)
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(c) t = 0.01
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(d) t = 5e-4

(e) t = 10 (f) t = 0.1 (g) t = 0.01 (h) t = 5e-4

Figure 2: Spectrum of the eigenvalues of Jt and drop in the dimensionality of the data-
manifold estimated from theory in the double-variance case, with αm = 0.5, σ2

1 = 1, σ2
2 = 0.01,

f = 0.75. Numerical data are generated with d = 100 and collected over 100 realizations of
the F matrix.

This same analysis can be extended to the more general case where the spectral density
is known to be formed by different detached bulks, associated with hierarchically smaller
variances of the data. The evolution of the intermediate gaps in a double-variance diffusion
model is reported in Fig. 2: notice that tmax = O(σ2) is consistent with Fig. 2b and 2f, where
the gap was found to be maximum in width. It is worth noting that subspaces with higher
variances are the first ones to be explored by diffusion, and to be learned by the model. This
point suggests that the model is sensitive to the parameters of the probability distribution
on the manifold, as recently suggested by other works in the literature (see Section 9 for
further details).

7 Experiments with synthetic linear datasets

We first measure the spectrum of the singular values of the Jacobian of a score function
trained through a neural network on a linear manifold data-model generated by two variances
σ2

1 , σ2
2 as described in Section 6.3. Results are reported in Fig. 3 (left and central panels).

The opening of the gaps is consistent with the theory for the exact score: an intermediate
gap associated with the subspace with higher variance first opens; subsequently, the gap
relative to the lower variance subspace, which here corresponds to the final gap, opens.
We can infer the dimensions of the subspaces by subtracting the location of the dashed
vertical lines from d. We underline the fact that higher-variance subspaces are learned first
by repeating the experiment after swapping the values of the variances. Eventually, the right
panel in Fig. 3 reports the same experiments where variances are uniformly generated in
the interval [10−2, 1]: it is evident that the d intermediate gaps is now a continuous line,
as it is expected to be in more realistic natural data-sets. We will now compare the gaps
computed analytically with ones obtained from real neural networks trained on the same
linear data-model. The results of such comparison are presented in Fig. 4, and they show a
good agreement between the ordered distribution of the singular values obtained through
empirical methods, and the relative analytical counterpart, computed through the replica
method. The opening of the predicted intermediate gaps signal the right dimension of the
linear subspaces as verified from the experiments. One can notice from the figure that the
analytical profile shows the shape of a sharp step between the zero value along the x-axis
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Figure 3: Ordered singular values obtained with the trained score model, for different
variances on the subspaces. Data are generated according to the linear-manifold model with
d = 100 and m = 40. Left: σ2

1 = 1, σ2
2 = 0.01, f = 0.75; Center: σ2

1 = 0.01, σ2
2 = 1, f = 0.75;

Right: a progressive number n of variances sampled uniformly between 10−2 and 1 each
one assigned to a fraction f = 1/n of matrix columns. The neural network is trained as
prescribed in Supp. B and spectra are measured according to Supp. C.
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Figure 4: Comparison between spectra obtained with the trained score model and with the
numerical analysis, for different variances on the subspaces. Data are generated according to
the linear-manifold model with d = 100 and m = 40, σ2

1 = 1, σ2
2 = 0.01, f = 0.75; from left

to right, the spectra are evaluated a time t ≈ 0.45, t ≈ 0.3, t ≈ 0.11. The neural network is
trained as prescribed in Supp. B and spectra are measured according to Supp. C.

and the first appearing gap: this shape is related to the Dirac-delta spike that the spectrum
of the eigenvalues presents at −1 (see Supp. A.2 for details about the spectrum); on the
other hand, the numerical profile looks different in the same region, and this behavior is
associated with the absence of the spike in the distribution of the singular values, that leaves
room to a separated bulk from the other ones. This evident discrepancy between theory
and experiment is probably due to the final configuration of the trained neural network and
leaves space for further investigations.

8 Experiments with natural image datasets

While our theoretical analysis is limited to linear random manifold models, several qualitative
aspects of its phenomenology can be observed in networks trained on natural images. Fig. 5
shows the temporal evolution of the spectrum estimated numerically from the Jacobian
of models trained on MNIST, Cifar10 and CelebA. Details about the training process are
provided in Supp. B and Supp. C. In these experiments we can recognize the three geometric
phases of diffusion described above:
Trivial phase: at large times (i.e. from t = 200 to 100) the ordered spectrum of the singular
values appears flat, suggesting the diffusive motion to be Brownian in the ambient space.
Manifold coverage phase: at intermediate times the spectrum shows a clear trace of
multiple simultaneous opening gaps. The shape of the curves is, however, different from the
controlled scenario showed in Section 6, due to two different reasons: similar latent variances
associated to different latent dimensions imply a smoothing of the curve, as displayed by Fig. 3
(right panel); the local eigenspace of the data is complex and hard to model microscopically:
for instance, the pixellated appearance of Cifar10 images might explain the scarce emergence
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Figure 5: Jacobian spectra of diffusion models trained on MNIST, Cifar10 and CelebA. The
neural network is trained as prescribed in Supp. B and spectra are measured according to
Supp. C.

of the gaps, while the larger gap structure showed by CelebA might be due to correlations
among the latent variances.
Manifold consolidation phase: at small times (below t = 2) we finally see only the full
manifold gap open and progressively sharpening, in the sense that many singular values
become exactly zero. The spectra of this phase are the only ones analyzed in Stanczuk et al.
(2022) and used to estimate the manifold dimensionality. For instance, we see from Fig. 5
(left panel), that at the end of the reverse process the network trained on MNIST shows a
latent dimension m ∼ 100 that is coherent with Stanczuk et al. (2022).
We conclude that, although our analysis focuses on the local structure of the data manifold
(or the stable latent set in diffusion time), it is effectively supported by experiments on
real-world complex datasets.

9 Related work & Discussion

The evolution of the fixed-points of the exact score was studied in (Raya and Ambrogioni,
2024) for the analysis of the spontaneous symmetry phenomenon breaking and in (Biroli
and Mézard, 2023) for the analysis of memorization and glassy phase transitions. The use of
spectral gaps to quantify the dimensionality of the manifold was introduced in (Stanczuk
et al., 2022), where the total manifold gap is analyzed. Several recent studies investigated
the local linear structure of trained diffusion models. For example, (Kadkhodaie et al., 2024)
studied the expansion of the Jacobian of trained models and described it as an optimal
geometry-adaptive Harmonic representation. Similarly, (Chen et al., 2024b) characterized
the linear expansion of the Jacobian of trained networks and characterized the resulting
components in terms of their frequency content. Our work can be seen as a theoretical
complement to this more applied line of research, as we provide a comprehensive random-
matrix analysis of the phenomenon in tractable models. The dynamic geometry of diffusion
manifolds was also investigated in (Chen et al., 2024a) using techniques inspired by research
on latent generators such as GANs and autoencoders. Another recent work (Peng et al.,
2024) uses parameterized low-rank score functions to show an equivalence between training
diffusion model and subspace clustering. In our work, we prove results for the exact score for
high-dimensional datasets. Finally, (Sakamoto et al., 2024) studies the dynamic geometry of
tubular neighborhoods of the latent manifold and connect their singularities with spontaneous
symmetry breaking events. Generative diffusion models exhibit rich geometric structures that
have the potential to explain their impressive generative capabilities. Our work introduces
the use of random-matrix theory techniques for the analysis of their dynamic local geometry
and paves the way for the use of advanced statistical physics techniques, which may in the
future unveil more global, topological and non-linear aspects of the dynamic geometry of
diffusion generative models.
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A Analytical derivation of the Spectrum of Jt

A.1 Single variance scenario

We want to compute the spectrum of the matrix in (14). Let us first consider the case in
which F is a d×m matrix with Gaussian entries, and call γ the eigenvalues of FF ⊤.
The function that gives the eigenvalues r of Jt as function of γ is

rj = 1
t

γj

1 + 1
t γj

− 1 = − t

t + γj
(26)

Thus, knowing that the distribution of γ is Marchenko-Pastur, we can obtain the distribution
of r

ρt(r) = −αm

2π

1
r(1 + r)

√
(r+ − r) (r − r−) + (1− αm) δ (r + 1) θ

(
α−1

m − 1
)

(27)

for r ∈ [r−(t), r+(t)], with r±(t) = − t(
1± 1√

αm

)2
+t

.

One could ask whether the bulk of Jt separates from r = −1 at a discrete time. This
separation corresponds to a drop in the histogram of eigenvalues. According to Eq. (27), the
bulk is always separated from the spike at finite time t, because (1 + α

−1/2
m )2 + t for every t,

and the width of the gap is given by ∆GAP(t) = r−(t) + 1

∆GAP(t) = (1 + α
−1/2
m )2

t + (1 + α
−1/2
m )2

. (28)

With respect to the starting spectrum of F ⊤F , this condition reads

γ+

t + γ+
= ∆ (29)

so the time when we see the drop at a scale ∆ is t = γ2
+

(1−∆)
∆ .
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Figure 6: Spectrum of the eigenvalues of F ⊤F as obtained from random matrix theory with
eigenvalue γ+ indicated by red arrow. γ+ is provided by the Marchenko-Pastur density
function. Control parameters are chosen to be αm = 0.5, σ2 = 1.
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Figure 7: Spectrum of the eigenvalues of Jt and drop in the dimensionality of the data-
manifold estimated from theory in the single-variance case, with αm = 0.5, σ2 = 1. Numerical
data are generated with d = 100 and collected over 100 realizations of the F matrix.
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A.2 Double variance scenario

We want to compute the spectrum of Jt when Fiµ ∼ N (0, σ2
1) for µ < fm/2 and Fiµ ∼

N (0, σ2
2) for µ > (1 − f)m/2, with f ∈ [0, 1]. We use the replica method to compute the

spectrum of A = 1
m FF ⊤, then with a transform we obtain the spectrum of Jt. In order

to obtain the spectrum we need to compute the expectation of the resolvent of A in the
d→ +∞ limit, and to do this we will rely on the replica method

E [gA(z)] = −2
d

∂

∂z
E

[
log 1√

det (zId −A)

]
(30)

= −2
d

∂

∂z
lim
n→0

E
[

Zn − 1
n

]
(31)

with

Zn = det (zId −A)−n/2 (32)

=
∫ n∏

a=1

d∏
i=1

dϕa
i√

2π
e

− 1
2

∑n

a=1

∑d

i,j=1
ϕa

i

(
zδij− 1

m

∑
µ

FiµFjµ

)
ϕa

j (33)

and taking the expectation

E [Zn] =
∫ ∏

a,i

dϕa
i√

2π
e− z

2

∑
a

∑
i

(ϕa
i )2

E
[
e

1
2m

∑
a

∑
µ

(
∑

i
ϕa

i Fiµ)2
]

(34)

=
∫ ∏

a,µ

dηa
µ√

2π
e

− 1
2

∑
a

∑
µ

(ηa
µ)2
∫ ∏

a,i

dϕa
i√

2π
e− z

2

∑
a

∑
i

(ϕa
i )2 ∏

µ

E
[
e

1√
m

∑
a
(
∑

i
ϕa

i Fiµ)ηa
µ

]
(35)

where in the last step we have used the independence of the rows of F and applied a
Hubbard-Stratonovic transform.
We can separate the product over µ and integrate over the distribution of F

E [Zn] =
∫ ∏

a,µ

dηa
µ√

2π
e

− 1
2

∑
a,µ

(ηa
µ)2
∫ ∏

a,i

dϕa
i√

2π
e

− z
2

∑
a,i

(ϕa
i )2

(36)

×
fm−1∏
µ=1

E
[
e

1
2

√
m

∑
a
(
∑

i
ϕa

i Fiµ)ηa
µ

] m∏
µ=fm

E
[
e

1
2

√
m

∑
a
(
∑

i
ϕa

i Fiµ)ηa
µ

]
(37)

=
∫ ∏

a,µ

dηa
µ√

2π
e

− 1
2

∑
a,µ

(ηa
µ)2
∫ ∏

a,i

dϕa
i√

2π
e

− z
2

∑
a,i

(ϕa
i )2

(38)

× e
σ2

1
2m

∑
i

∑
µ<fm

(
∑

a
ϕa

i ηa
µ)2+

σ2
2

2m

∑
i

∑
µ≥fm

(
∑

a
ϕa

i ηa
µ)2

(39)

=
∫ ∏

a,µ

dηa
µ√

2π
e

− 1
2

∑
a,µ

(ηa
µ)2

∫ ∏
a,i

dϕa
i√

2π
e

− z
2

∑
a,i

(ϕa
i )2

) (40)

× e
σ2

1
2m

∑
ab

(
∑

i
ϕa

i ϕb
i)
(∑

µ<fm
ηa

µηb
µ

)
+

σ2
2

2m

∑
ab

(
∑

i
ϕa

i ϕb
i)
(∑

µ>fm
ηa

µηb
µ

)
. (41)

Introducing qab = 1
d

∑
i ϕa

i ϕb
i
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E [Zn] =
∫ ∏

a,b

dqabdq̂ab

2π

∫ ∏
ai

dϕa
i√

2π
e−
∑

ab

1
2 q̂ab(dqab−

∑
i

ϕa
i ϕb

i)− z
2
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(ϕa
i )2

(42)

×
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dηa
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2π

e− 1
2
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1
2αm
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qabηaηb

]fm

(43)
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dηa
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2π

e− 1
2
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(ηa)2+
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2
2αm
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ab

qabηaηb

](1−f)m

(44)

=
∫ ∏

a,b

dqabdq̂ab

2π
endΦ(q,q̂) (45)

with

Φ(q, q̂) = − 1
2n

∑
a,b

qabq̂ab + GS(q̂) + fαmGE(q, σ1) + (1− f)αmGE(q, σ2) (46)

where

GS(q̂) = 1
n

log
∫ n∏

a=1

dϕa

√
2π

e− z
2

∑
a

(ϕa)2+ 1
2

∑
ab

q̂abϕaϕb

(47)

GE(q, σ) = 1
n

log
∫ n∏

a=1

dηa

√
2π

e− 1
2

∑
a

(ηa)2+ σ2
2αm

∑
ab

qabηaηb

(48)

Using the replica symmetric ansatz qab = δabq, q̂ab = −δabq̂

GS(q̂) = −1
2 log(z + q̂) (49)

GE(q, σ) = −1
2 log(1− σ2q

αm
). (50)

Putting all together we have

Φ(z) = 1
2 q̂q − 1

2 log(z + q̂)− f
αm

2 log
(

1− σ2
1q

αm

)
− (1− f)αm

2 log
(

1− σ2
2q

αm

)
. (51)

The integral can be evaluated by the saddle point method

q = 1
z + q̂

(52)

q̂ = −f
αmσ2

1
αm − σ2

1q
− (1− f) αmσ2

2
αm − σ2

2q
. (53)

We can find the Stieltjes transform

E[gA(z)] = −2αm
∂Φ(z)

∂z
(54)

= αmq∗(z) (55)
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where q∗ is found by solving the saddle point equation

zq3 + q2
(

αm − 1− zαm

σ2
1
− zαm

σ2
2

)
+

+ q

(
α2

m

σ2
1σ2

2
(z − fσ2

1 − (1− f)σ2
2) + αm

σ2
1

+ αm

σ2
2

)
− α2

m

σ2
1σ2

2
= 0. (56)

The asymptotic distribution of eigenvalues can be obtained from the Stieltjes transform as

ρ(γ) = 1
π

lim
ϵ→0+

Im (gA(γ − iϵ)) (57)

= 1
π

lim
ϵ→0+

ImΦ′(γ − iϵ) (58)

= 1
π

αm lim
ϵ→0+

Im[q∗] (59)
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Figure 8: Spectrum of the eigenvalues of F ⊤F as obtained from random matrix theory
with eigenvalues γ− and γ+ indicated by red arrows. Control parameters are chosen to be
αm = 0.5, f = 0.5, σ2

1 = 1, σ2
2 = 0.1.

Once the density of the eigenvalues is computed one can perform the same change of variables
described in Supp. A.1 for the case of single variance, and obtain the density ρt(r) for the
eigenvalues of Jt.
Fig. 2 reports the evolution in time of the spectral density, as well as its cumulative
function f = 0.75. The cumulative function has been used to estimate the formation of the
intermediate gaps to compare with the experiments for the estimation of the data-manifold
dimension.

B Network training and Model Architecture Details

Dataset Image Size Latent Dim. Channel Mult. Param. Count Batch size Iterations
Cifar10 32 128 (1, 2, 2, 2) 35.7M 128 500,000
MNIST 28 128 (1, 2, 2) 24.5M 128 400,000
CelebA 64 64 (1, 1, 2, 2, 4, 4) 27.4M 64 800,000

Table 1: Table displaying both model and training configurations for each dataset.

For the image datasets, we used the diffusion setting in (Ho et al., 2020). We use the variance
scheduler with βmin = 10−4 and βmin = 2 × 10−2, T = 1000 time steps, and score model
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Figure 9: Comparison between the standard SVD method employed by Stanczuk et al. (2022)
(left) and the new orthogonalized method for the visualization of the intermediate gaps
(right) for a neural network trained on the CelebA and MNIST data-set as described in
Section B. Spectra are measured according to Supp. C.

backbone (PixelCNN++ (Salimans et al., 2017)). Furthermore, for each of the datasets, we
adjusted the partameters to account for the different complexity (see Table 1). For each
data-set, the number of used training data-points amounts to the full set of data available.
For the linear models, we used a Variance Exploding continuous score model trained with
2M steps (batch size 128). The model had a Residual architecture with size 128 hidden
channels in each layer, two residual blocks comprised by two linear layers with SiLu. In
this case, the number of used training-data amounts to 2 · 105 synthetic examples generated
according to Section 6.1.
For all experiments we primarily utilized NVIDIA Tesla V100 GPUs with 32 GB of memory.

C Experimental methodology: Computing the Singular Values
of the Jacobian of the Score Function

For computing the singular values, we used an improved version of the procedure from
(Stanczuk et al., 2022) that is reported in Algorithm 1. As a difference from the methodology
described in the literature, we perturb the position x0 where we compute the score function
sθ along strictly orthogonal directions. Such orthogonal perturbations result from a Gaussian
sampling of d vectors that are subsequently orthogonalized: these perturbed images are
not far from other examples present in the training-set. Choosing orthogonal perturbations
instead of random ones significantly reduces the anomalous slope appearing when plotting
the ordered singular values that can hide some intermediate gaps (see Fig. 5 in Stanczuk
et al. (2022)). Fig. 9 compares the standard SVD method from the literature with our
technique by applying it on model trained through from the CelebA and MNIST data-set.
Moreover, for the linear models and MNIST models we used a symmetrized version which
we empirically found to be more stable, reported in algorithm 2.
Once the SVs have been obtained through the algorithms, they will be normalized by the
highest value in the set and subsequently ordered in a decreasing fashion. In most cases,
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the very first singular value is removed from the set, due to a divergent behaviour that is
intrinsic to the neural network training.

Algorithm 1 Estimate singular values at x0

Require: sθ - trained diffusion model (score), t0 - sampling time.
1: Sample x0 ∼ p0(x) from the data set
2: d← dim(x0)
3: S ← empty matrix
4: for i = 1, ..., d do
5: Sample x

(i)
t0
∼ N (xt0 |x0, σ2

t0
I) perturbations

6: end for
7: (x(i)

t0
)d
i=1 ← (x̃(i)

t0
)d
i=1 orthogonalized perturbations.

8: for i = 1, ..., d do
9: Append sθ(x̃(i)

t0
, t0) as a new column to S

10: end for
11: (si)d

i=1, (vi)d
i=1, (wi)d

i=1 ← SVD(S)

Algorithm 2 Estimate singular values at x0 with central difference
Require: sθ - trained diffusion model (score), t0 - sampling time.
1: Sample x0 ∼ p0(x) from the data set
2: d← dim(x0)
3: S ← empty matrix
4: for i = 1, ..., d do
5: Sample x

+(i)
t0
∼ N (xt0 |x0, σ2

t0
I) right perturbations

6: Sample x
−(i)
t0
∼ N (xt0 |x0, σ2

t0
I)

7: x
−(i)
t0
← 2x0 − x

−(i)
t0

left perturbations
8: end for
9: (x+(i)

t0
, x

−(i)
t0

)d
i=1 ← (x̃+(i)

t0
, x̃

−(i)
t0

)d
i=1 orthogonalized perturbations

10: for i = 1, ..., d do
11: Append sθ(x̃

+(i)
t0

,t0)−sθ(x̃
−(i)
t0

,t0)
2 as a new column to S

12: end for
13: (si)d

i=1, (vi)d
i=1, (wi)d

i=1 ← SVD(S)

D Linear manifold model Hypothesis

The manifold hypothesis is a fundamental concept in machine learning. It states that
d-dimensional data lie on a lower m-dimensional manifold embedded in the high-dimensional
space, often called the ambient space (Fefferman et al., 2016). Whether it exists, such
manifold is supposed to present a local curvature in the ambient space, i.e. it is not
representable as a d-dimensional hyperplane. The hidden manifold model proposed by Goldt
et al. (2020) is able to reproduce data yµ that are embedded in a latent m-dimensional space,
as

yµ = Φ (Fzµ) , (60)

where Φ(x) is a non-linear function of the d-dimensional vector x, F ∈ Rd×m is a rectangular
matrix that projects latent vectors zµ on the manifold. Nevertheless, in order to apply the
replica method from statistical physics and compute the distribution of the eigenvalues of the
Jacobian of the score-function, we constrain ourselves to the simpler case of a linear-manifold,
i.e. Φ(x) = x (see Section 6.1). Indeed this might sound as a limitation to the reproducibility
of our results to more realistic data-sets, e.g. natural images. However we claim that, for
ordinary diffusive diffusion models in the variance exploding setup, the theory developed for
the linear model still applies to non-linear manifold instances, due to the following reasons:
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Figure 10: Ordered singular value spectrum estimated experimentally from the analysis of a
data-set living on a non-linear manifold built according to Supp. D where parameters are
chosen as in Fig. 3. The neural network is trained as prescribed in Supp. B and spectra are
measured according to Supp. C.

1. The diffusive trajectories at large t, where the trivial phase occurs, are sampled by a
probability distribution that is smooth, due to the Gaussian kernel implied by the
stochastic process in Eq. 4. As a consequence, the stable latent set defined in Eq. 5
will be approximately linear.

2. The diffusive trajectories at small t, where the manifold coverage and manifold con-
solidation phases occur, explore a region contained into a ball of radius proportional
to
√

t, that is supposed to be smaller than then the inverse local curvature of the
manifold.

We now compare the distribution of the singular values of the Jacobian obtained from the
linear manifold model and the non-linear one. Specifically, we will repeat the plot in Fig. 3
(left and central panels) with a toy data-set generated as yµ = F z̃µ, with z̃µ = zµ/∥zµ∥.
As a consequence, the new data will now live on a (d− 1)-dimensional ellipsoid inscribed in
the original d-dimensional hyperplane. The results are reported in Fig. 10 and they show no
evident discrepancy between the linear and non-linear case, as predicted by our argument.
The only small difference consists of a slight delay in time of the gap phenomenology that
is present in the non-linear manifold data which impedes the final gap to fully open at the
smallest observable time.

E Additional Experiments

We provide here additional results regarding the disposition of the ordered singular values
of the Jacobian of the score function of models trained according to B and C. Specifically,
each plot represents the jacobian measured with respect to one single image in the training
data-set. We conclude that all images present the same three-phase phenomenology, as a
general feature of the data-sets.
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Figure 11: Spectrum of the ordered SVs of the Jacobian for a model trained on MNIST.
Each panel is relative to a different data-point in the full set.

0 500 1000 1500 2000 2500 3000
ordered singular values

0.0

0.2

0.4

0.6

0.8

1.0

no
rm

al
ize

d 
sin

gu
la

r v
al

ue
s

Cifar10 singular values for different diffusion time

t = 0
t = 1
t = 2
t = 5
t = 10
t = 15
t = 20
t = 25
t = 50
t = 100
t = 200

0 500 1000 1500 2000 2500 3000
ordered singular values

0.0

0.2

0.4

0.6

0.8

1.0

no
rm

al
ize

d 
sin

gu
la

r v
al

ue
s

Cifar10 singular values for different diffusion time

t = 0
t = 1
t = 2
t = 5
t = 10
t = 15
t = 20
t = 25
t = 50
t = 100
t = 200

0 500 1000 1500 2000 2500 3000
ordered singular values

0.0

0.2

0.4

0.6

0.8

1.0

no
rm

al
ize

d 
sin

gu
la

r v
al

ue
s

Cifar10 singular values for different diffusion time

t = 0
t = 1
t = 2
t = 5
t = 10
t = 15
t = 20
t = 25
t = 50
t = 100
t = 200

0 500 1000 1500 2000 2500 3000
ordered singular values

0.0

0.2

0.4

0.6

0.8

1.0

no
rm

al
ize

d 
sin

gu
la

r v
al

ue
s

Cifar10 singular values for different diffusion time

t = 0
t = 1
t = 2
t = 5
t = 10
t = 15
t = 20
t = 25
t = 50
t = 100
t = 200

0 500 1000 1500 2000 2500 3000
ordered singular values

0.0

0.2

0.4

0.6

0.8

1.0

no
rm

al
ize

d 
sin

gu
la

r v
al

ue
s

Cifar10 singular values for different diffusion time

t = 0
t = 1
t = 2
t = 5
t = 10
t = 15
t = 20
t = 25
t = 50
t = 100
t = 200

0 500 1000 1500 2000 2500 3000
ordered singular values

0.0

0.2

0.4

0.6

0.8

1.0

no
rm

al
ize

d 
sin

gu
la

r v
al

ue
s

Cifar10 singular values for different diffusion time

t = 0
t = 1
t = 2
t = 5
t = 10
t = 15
t = 20
t = 25
t = 50
t = 100
t = 200

0 500 1000 1500 2000 2500 3000
ordered singular values

0.0

0.2

0.4

0.6

0.8

1.0

no
rm

al
ize

d 
sin

gu
la

r v
al

ue
s

Cifar10 singular values for different diffusion time

t = 0
t = 1
t = 2
t = 5
t = 10
t = 15
t = 20
t = 25
t = 50
t = 100
t = 200

0 500 1000 1500 2000 2500 3000
ordered singular values

0.0

0.2

0.4

0.6

0.8

1.0

no
rm

al
ize

d 
sin

gu
la

r v
al

ue
s

Cifar10 singular values for different diffusion time

t = 0
t = 1
t = 2
t = 5
t = 10
t = 15
t = 20
t = 25
t = 50
t = 100
t = 200

0 500 1000 1500 2000 2500 3000
ordered singular values

0.0

0.2

0.4

0.6

0.8

1.0

no
rm

al
ize

d 
sin

gu
la

r v
al

ue
s

Cifar10 singular values for different diffusion time

t = 0
t = 1
t = 2
t = 5
t = 10
t = 15
t = 20
t = 25
t = 50
t = 100
t = 200

Figure 12: Spectrum of the ordered SVs of the Jacobian for a model trained on Cifar10.
Each panel is relative to a different data-point in the full set.
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Figure 13: Spectrum of the ordered SVs of the Jacobian for a model trained on CelebA.
Each panel is relative to a different data-point in the full set.
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