
A Convergence Proofs570

As an exercise to support our larger point about the irrelevance of this type of result when comparing571

LAMB and Adam, below we derive a convergence bound for Adam in a similar manner to the572

LAMB optimizer convergence bound in You et al. [2019]. We note that all of these bounds are loose573

upper bounds on the worst case behavior of the algorithms, so there is no reason that comparing574

them reflects the relative behaviors of optimizers in reality. For example in Equation 3 below, we575

follow similar operations as the LAMB bound derivation and simply switch a − to a + for algebraic576

convenience.577

We define the following as our optimization objective578

min
x∈Rd

f(x) := Es∈P[`(x, s)] +
λ

2
‖x‖2, (1)

with an optimal solution(s) x∗. x ∈ Rd are the neural network parameters, ` a smooth and possibly579

nonconvex loss function, P a data distribution, and λ the regularization strength.580

Let T be the number of training steps, h the number of neural network layers, b the batch size, η the581

learning rate, n the mini-batch size, and φ(v) : R+ → R+ a function that is layerwise multiplied by582

the learning rate in LARS and LAMB updates. Let L be a vector of the layerwise Lipschitz constants583

for the neural network, and Lavg the mean of L. Let s be a training step uniformly sampled from584

{1, 2, ..., T}.585

We define the stochastic minibatch estimate of the true gradient as E[g(i)] = ∇if(x) and assume that586

its variance is bounded by E
[
g(i) −∇if(x)

]2 ≤ σ2
i layerwise for a vector of standard deviations587

σ :=
[
σ(1), . . . σ(h)

]
and elementwise for σ̃ :=

[
σ̃(1), . . . σ̃(h)

]
.588

Next, let ηt = η =
√

2(f(x1)−f(x∗))
α2

u‖L‖1T
∀t ∈ [T], b = T , αl ≤ φ(v) ≤ αu ∀v > 0, αl, αu > 0.589

Crucially, additionally let b = T, β1 = 0, λ = 0. Under these conditions You et al. [2019] show the590

convergence rate for LARS is591 (
E

[
1√
h

h∑
i=1

‖∇if(xs)‖

])2

≤ O
(
(f(x1)− f(x∗))Lavg

T
+
‖σ‖21
Th

)
.

They also derive the convergence rate of LAMB as592

E[‖∇f(xa)‖2] ≤ O

(√
G2d

h(1− β2)
×

[√
2(f(x1)− f(x∗))‖L‖1

T
+
‖σ̃‖1√
T

])
.

Additionally, for β2 = 0, the convergence rate of LAMB can be derived as593 (
E
[

1√
d
‖∇f(xa)‖1

])2

≤ O
(
(f(x1)− f(x∗))Lavg

T
+
‖σ̃‖21
Th

)
,

Below we derive a similar bound for the β2 > 0 case for Adam updates. We note that the β2 = 0594

case where the bound depends on Lavg instead of ||L||1 can be very similarly derived for Adam, but595

is also a very unrealistic condition in practice.596

Proof. Under the assumption β1 = 0, λ = 0, one could write the Adam update rule as follows:597

x
(i)
t+1 = x

(i)
t − ηt

√
1− βt2

g
(i)
t√
v
(i)
t

,

where vt = β2vt−1 + (1− β2)g2t for all i ∈ [h].598

13

Since the function f is L-smooth, we have the following:599

f(xt+1) ≤ f(xt) + 〈∇if(xt), x(i)t+1 − x
(i)
t 〉+

h∑
i=1

Li
2
‖x(i)t+1 − x

(i)
t ‖2

≤ f(xt)−ηt
h∑
i=1

di∑
j=1

[∇if(xt)]j
√
1− βt2

g
(i)
t,j√
v
(i)
t,j︸ ︷︷ ︸

T1

+

h∑
i=1

Liη
2
t d

2(1− β2)
(2)

Where the last term comes from the fact that 1− βt2 ≤ 1. We bound term T1 in the following manner,600

in line with [You et al., 2019]:601

T1 = −ηt
h∑
i=1

di∑
j=1

[∇if(xt)]j
√
1− βt2

g
(i)
t,j√
v
(i)
t,j

≤ −ηt
h∑
i=1

di∑
j=1

√
1− β2
G

[∇if(xt)]jg(i)t,j

− ηt
h∑
i=1

di∑
j=1

[∇if(xt)]j
√

1− βt2
g
(i)
t,j√
v
(i)
t,j

1(sign([∇if(xt)]j) 6= sign(g
(i)
t,j))

Relying on the following inequalities:
√
vt ≤ G and 1− βt2 > 1− β2.602

Taking expectation, we have the following:603

E[T1] ≤ −ηt
h∑
i=1

di∑
j=1

√
1− β2
G

E
[
[∇if(xt)]jg(i)t,j

]

− ηt
h∑
i=1

di∑
j=1

√
1− β2
G

E
[(

[∇if(xt)]jg(i)t,j
)
1(sign([∇if(xt)]j) 6= sign(g

(i)
t,j))

]

E[T1] ≤ −ηt
h∑
i=1

di∑
j=1

√
1− β2
G

E
[
[∇if(xt)]jg(i)t,j

]

+ ηt

h∑
i=1

di∑
j=1

√
1− β2E

[
([∇if(xt)]j) |P(sign([∇if(xt)]j) 6= sign(g

(i)
t,j))

]
(3)

similarly what is shown in signsgd, we bound the probability by first relaxing the condition, then604

applying Markov’s and then Jensen’s inequality:605

P(sign([∇if(xt)]j) 6= sign(g
(i)
t,j)) ≤ P

(
|[∇if(xt)]j − g(i)t,j | ≥ |g

(i)
t,j |
)

≤
E
[
|[∇if(xt)]j − g(i)t,j |

]
|[∇if(xt)]j |

≤

√
E
[
([∇if(xt)]j − g(i)t,j)2

]
|[∇if(xt)]j |

=
σ̃t,i

|[∇if(xt)]j |

≤ σ̃i√
n|[∇if(xt)]j |

14

where the last inequality is from the fact that σ̃t,j is the minibatch variance at time t with batch size606

n. Substituting this into our derivation of T1607

E[T1] ≤ −ηt
√
1− β2
G

||∇f(xt)||2 + ηt
√
1− β2

h∑
i=1

di∑
j=1

σ̃i√
n

and replacing this with our definition of T1 in Eq. (2) we get608

E[f(xt+1)] ≤ f(xt)− ηt
√
1− β2
G

||∇f(xt)||2 + ηt
√
1− β2

||σ̃||1√
n

+
||L||1η2t d
2(1− β2)

. (4)

We then arrive at the final bound by summing Eq. (4) to step T and cancelling consecutive terms via609

the telescoping sum, followed by rearranging and then multiplying through by G
Tηt
√
1−β2

610

E[f(xT+1)] ≤ f(x1)−
ηt
√
1− β2
G

T∑
t=1

||∇f(xt)||2 + Tηt
√
1− β2

||σ̃||1√
n

+
T ||L||1η2t d
2(1− β2)

.

ηt
√
1− β2
G

T∑
t=1

||∇f(xt)||2 ≤ f(x1)− f(x∗) + Tηt
√

1− β2
||σ̃||1√
n

+
T ||L||1η2t d
2(1− β2)

1

T

T∑
t=1

||∇f(xt)||2 ≤ G
(
f(x1)− f(x∗)
Tηt
√
1− β2

+
||σ̃||1√
n

+
||L||1ηtd

2(1− β2)
3
2

)

Taking ηt = η =
√

2(f(x1)−f(x∗))
T ||L||1(1−β2)d

and letting n = T as is similarly done in [You et al., 2019], we611

can recover a bound that, up to some constants, is similar to the bound for LAMB:612

E[||∇f(xt)||2] ≤ O

G
 f(x1)− f(x∗)

T
√

2(f(x1)−f(x∗))
T ||L||1(1−β2)d

√
1− β2

+
||σ̃||1√
n

+
||L||1

√
2(f(x1)−f(x∗))
T ||L||1(1−β2)d

d

2(1− β2)
3
2

= O

(
G

(
1

2

√
2(f(x1)− f(x∗))||L||1d

T
+
||σ̃||1√
n

+
1

2(1− β2)2

√
2(f(x1)− f(x∗))||L||1d

T

))

= O

(
G

(
1 +

1

(1− β2)2

)√
2(f(x1)− f(x∗))||L||1d

T
+
G||σ̃||1√

T

)

613

B Additional experiment details614

B.1 ResNet-50 training benchmark615

All experiments were run on Google TPUs [Jouppi et al., 2017]. We typically trained on TPUv2-256616

or TPUv3-128 in order to accommodate the 32,768 batch size. The ResNet-50 experiments used Jax617

[Bradbury et al., 2018] using the Flax library, with code released here. The BERT experiments were618

run using TensorFlow [Abadi et al., 2015] version 1.15. We used the standard train/validation split619

from the previous literature and MLPerf competition.620

For ImageNet, we used the following sequence of TensorFlow functions for pre-processing:18621

t f . image . s a m p l e d i s t o r t e d b o u n d i n g b o x622

t f . image . d e c o d e a n d c r o p j p e g623

t f . image . r e s i z e624

t f . image . r a n d o m f l i p l e f t r i g h t625

t f . image . c o n v e r t i m a g e d t y p e626

18 Full code available at https://git.io/JtgtE

15

https://github.com/anonymized
https://git.io/JtgtE

0 2000 4000 6000 8000 10000
Step

0

MAX

Re
la

tiv
e

St
ep

 S
ize

BERT

Figure 2: An illustration of the sudden drop in the BERT learning rate schedule in the official
codebase.

B.2 BERT pre-training627

We used the same experimental setup as the official BERT codebase19 and the standard train/test628

split from the previous literature. This matches the experimental setup of You et al. [2019]. We629

trained on Google TPUs, using TPUv3-256 or TPUv3-512 for the 32,768 batch size experiments, and630

TPUv3-1024 for the 65,536 batch size experiments.631

We trained the two pretraining objectives on the combined Wikipedia and Books corpus [Zhu et al.,632

2015] datasets (2.5B and 800M words, respectively). We used sequence lengths of 128 and 512,633

respectively, for the pretraining tasks. We ran the fine-tuning phase on the SQuaD v1.1 question634

answering task. In order to match You et al. [2019], we report the F1-score on the dev set as the target635

metric. We followed the fine-tuning protocol described in the LAMB optimizer setup and did not636

perform any additional tuning for fine-tuning.637

We tuned Adam hyperparameters using quasi-random search [Bousquet et al., 2017] in a simple638

search space. Hyperparameters included learning rate η, β1, β2, the polynomial power for the639

learning rate warmup pwarmup, and weight decay λ. We fixed the ε in Adam to 10−11 for all BERT640

experiments. See Appendix D.2 for the search spaces. We selected the best trial using the masked641

language model accuracy over 10k examples from the training set. The number of training steps for642

each of the phases, as well as the warmup steps are identical to You et al. [2019] and are listed in643

Appendix D.2. Each phase of pretraining used completely independent Adam hyperparameters. We644

found the final hyperparameters within 30 trials of random search for each of the phases, except for645

the second phase of 65,536 batch size which used 130 trials.646

C Nesterov ablations647

To explore the sensitivity of our best Nesterov momentum configuration (Configuration A), we ablated648

several elements of the experiment pipeline, one at a time, and tested their impact on performance.649

Figure 4 shows the results of these experiments. “Base” refers to Nesterov momentum Configuration650

A (Table 5). “ResNet version” is the same point as “Base” but with ResNet version 1.0 instead of651

version 1.5. “BN init” is the same point as “Base” but with γ0 = 1.0 instead of 0.4138. “Virtual BN”652

is the same point as “Base” but with a virtual batch size of 256 instead of 64, which is the largest that653

fits in a single TPUv3 core. “BN & LR tuning” is Configuration B (Table 5), the same point as “Base”654

but with pdecay, twarmup, η0, ρ, ε set to their values in the LARS pipeline. Finally, “L2 variables” is655

the same point as “Base” but where the L2 regularization is applied to all variables. The only ablation656

19 https://github.com/google-research/bert

16

https://github.com/google-research/bert

32k
65k-32k 65k

90.25
90.50
90.75
91.00
91.25
91.50

F1
 sc

or
e

Figure 3: 6 finetuning runs starting from the same pretraining checkpoint to show the stability of our
results, at each of the 32,768, mixed 65,536-32,768, and 65,536 batch size settings.

Base

ResNet version
BN init

Virtual BN

BN & LR tuning
L2 variables

0.754

0.756

0.758

0.760

0.762

Ac
cu

ra
cy

Figure 4: Distributions over 50 training runs for each ablation study around our best Nesterov
momentum configuration (Configuration A). The dotted red line is at the target accuracy of 75.9%,
and the boxes show the min, max, and quartiles of the distribution of accuracies over the 50 training
runs.

whose median over 50 seeds continues to beat the target 75.9% accuracy (noted by the dotted red657

line) is “BN & LR tuning”, with the rest having between 0.1%-0.3% drops in median accuracy.658

D Hyperparameter tuning659

D.1 Nesterov momentum training speed on ResNet-50660

We considered two configurations of Nesterov hyperparameters: Configuration A, where we tuned a661

wide set of hyperparameters in the experiment pipeline, and Configuration B, where we reverted the662

less impactful hyperparameters to the same values as the LARS baseline (or in the case of pwarmup,663

a simpler value). We included Configuration B in order to demonstrate the minimal set of changes664

to the baseline necessary to still reach the target accuracy. The hyperparameter values for these665

configurations can be found in Table 5.666

D.2 Adam on BERT667

The search space used to tune Adam on BERT for all phases of the pipeline can be found in Table 6,668

which yielded our best Adam results on BERT in Table 7.669

17

Configuration A Configuration B LARS
twarmup 638 706 706
pwarmup 2.497 2.0 1.0
pdecay 1.955 2.0 2.0
ρ 0.94 0.9 0.9
ε 4× 10−6 10−5 10−5

ηpeak 7.05 7.05 29.0
ηfinal 6× 10−6 6× 10−6 10−4

1− µ 0.02397 0.02397 0.071
λ 5.8× 10−5 5.8× 10−5 10−4

τ 0.15 0.15 0.10
γ0 0.4138 0.4138 0.0

Table 5: Nesterov momentum Configurations A and B.

Hyperparameter Range Scaling
p {1, 2} Discrete
η [10−5, 1.0] Log

1− β1 [10−2, 0.5] Log
1− β2 [10−2, 0.5] Log
λ [10−3, 10] Log

Table 6: The search space used to tune Adam on BERT for all phases of the pipeline. λ refers to
weight decay and p refers to the polynomial power in the learning rate schedule for both the warmup
and decay phases.

Batch size Phase Seq len Warmup Train Learning β1 β2 λ p
steps steps rate

32,768 1 128 3,125 14,063 5.9415× 10−4 0.934271 0.989295 0.31466 1
32,768 2 512 781 1,562 2.8464× 10−4 0.963567 0.952647 0.31466 1
65,536 1 128 2,000 7,037 1.3653× 10−3 0.952378 0.86471 0.19891 2
32,768 2 512 781 1,562 2.8464× 10−4 0.952647 0.963567 0.19891 2
65,536 2 512 390 781 6.1951× 10−5 0.65322 0.82451 0.19891 2

Table 7: Best hyperparameters from tuning Adam on BERT-Large pretraining. λ refers to weight
decay and p refers to the polynomial power in the learning rate schedule for both the warmup and
decay phases. All trials used ε = 10−11.

D.3 Less stringent step budget on ResNet-50670

All trials used a cosine decay learning rate schedule and tuned the initial learning rate η and L2671

regularization or weight decay parameter20 λ according to Table 8. We used 50 or more trials to672

search in the “Initial Range” and then 25 trials to search in the refined “Final Range.” Finally, we673

ran the best point from the latter for 5 random seeds. When LARS or LAMB were used alongside674

a different optimizer for the batch normalization and ResNet-50 bias parameters, we set λ = 0 on675

the batch normalization and ResNet-50 bias parameters. When LAMB was used all parameters, the676

majority of trials diverged during training – it took 67 trials to get 25 trials that did not NaN during677

training. Our trial budgets refer to the number of feasible trials, i.e. trials that do not diverge during678

training.679

20 As suggested in You et al. [2019], we used L2 regularization for LARS and weight decay for LAMB. For
consistency, we used L2 regularization for Nesterov momentum (which is more analogous to LARS) and weight
decay for Adam (which is more analogous to LAMB).

18

Weights Optimizer Bias/BN Optimizer Name Initial Range Final Range Best
Nesterov Nesterov η np.logspace(-.5, .5, 10) [0.8, 3] 1.173
Nesterov Nesterov λ np.logspace(-4, -3, 10) [3× 10−4, 10−3] 3.026× 10−4

LARS Heavy-ball
momentum

η np.logspace(0, 2, 10) [10, 40] 14.49

LARS Heavy-ball
momentum

λ np.logspace(-5, -2, 10) [5× 10−5, 2× 10−4] 1.708× 10−4

LARS LARS η [1, 30] [10, 30] 14.18
LARS LARS λ [10−4, 10−1] [5× 10−5, 5× 10−4] 5.278× 10−5

Adam (ε = 10−8) Adam (ε = 10−8) η [10−3, 1] [4× 10−3, 2× 10−2] 0.004596
Adam (ε = 10−8) Adam (ε = 10−8) λ [10−2, 4] [2× 10−1, 1] 0.6182

Adam (ε = 10−6) Adam (ε = 10−6) η np.logspace(-3, 0, 10) [3× 10−3, 10−2] 3.332× 10−3

Adam (ε = 10−6) Adam (ε = 10−6) λ np.logspace(-2, 0.5, 6) [0.5, 2] 1.055

LAMB LAMB η np.logspace(-4, 0, 30) [4× 10−3, 5× 10−2] 0.01134
LAMB LAMB λ np.logspace(-5, -2, 4) [1× 10−2, 0.1] 0.02657

LAMB Adam (ε = 10−8) η [10−3, 1] [10−2, 8× 10−2] 0.02569
LAMB Adam (ε = 10−8) λ [10−2, 4] [1, 8] 2.500

LAMB Adam (ε = 10−6) η np.logspace(-3, 0, 10) [10−2, 8× 10−2] 0.03378
LAMB Adam (ε = 10−6) λ np.logspace(-2, 0.5, 6) [1, 8] 4.197

Table 8: Search spaces used for the 6,000 step, cosine learning rate schedule experiments. All
hyperparameters were tuned on a logarithmic scale, except for those which define a discrete sequence
of points to evaluate such as “np.logspace”.

Range Scaling
η0 [10−3, 50.0] Log

ηdecay factor {10−4, 10−3, 10−2, 10−1} Discrete
1− µ [10−3, 1.0] Log
λ [10−5, 10−1] Log
τ [10−2, 2× 10−1] Linear

Table 9: First search space of the Nesterov tuning journey. The search spaces were mostly by
informed guesses by the authors. λ refers to weight decay, which is applied to all variables. Tuned for
251 trials. Trained for 2,815 steps (“72 epochs” as defined by MLPerf epoch calculations). We used
a linear learning rate decay schedule that decays for all training steps, starting from η0 and ending at
η0 × ηdecay factor. Virtual batch size 128.

D.4 Nesterov ResNet50 search space chronology680

Below we list the sequence of search spaces we used to arrive at our final values in Table 5. Given681

that the final results reported in papers are rarely found in a single iteration of experiments, we believe682

that it is important to document the full journey to arriving at our results.683

Note that although we tuned a wide range of hyperparameters to match the LARS result with Nesterov684

momentum, we later realized that many of these hyperparameters could be reverted to the values685

from the LARS pipeline (see Table 5). We started tuning with a training budget of 2,815 steps, which686

is the number of steps in the MLPerf 0.6 submission. We sometimes would decrease this to 2,658687

steps to test how decreasing the training budget would affect tuning performance, before eventually688

moving to the 2,512 steps used to generate the results in the main text.689

19

Range Scaling
η0 [10−3, 50.0] Log

ηdecay factor {10−4, 10−3, 10−2, 10−1} Discrete
1− µ [10−3, 1.0] Log
λ [10−5, 10−1] Log
τ [10−2, 2× 10−1] Linear

Table 10: Same as Table 9 but trained for 2,658 steps (“68 epochs” as defined by MLPerf epoch
calculations) for 50 trials.

Range Scaling
η0 [10−1, 20.0] Log

ηdecay factor {10−5, 10−4, 10−3} Discrete
tdecay [2392, 2.658] Linear
1− µ [10−3, 1.0] Log
λ [10−5, 2× 10−1] Log
τ [10−2, 2× 10−1] Linear

Table 11: λ refers to weight decay, which is now not applied to the bias and batch normalization
variables. 50 trials. Trained for 2,658 steps. Linear learning rate decay schedule that decays for tdecay
steps, starting from η0 and ending at η0 × ηdecay factor. Virtual batch size 128.

Range Scaling
ηpeak [10−1, 32.0] Log

ηdecay factor {10−5, 10−4, 10−3} Discrete
tdecay [2392, 2.658] Linear
1− µ [10−4, 10−1] Log
λ [10−4, 10−1] Log
τ [5× 10−2, 0.15] Linear

Table 12: λ refers to weight decay, which is not applied to the bias and batch normalization variables.
50 trials. Trained for 2,658 steps. Linear warmup for 500 steps followed by a quadratic decay, which
decays until step tdecay, and then is constant at the final learning rate η0 × ηdecay factor. Virtual batch
size 128. We increased the max learning rate based off the larger learning rates used by LARS. We
also ran two additional studies which were the same except with 250 and 977 warmup steps.

Range Scaling
ηpeak [10−1, 32.0] Log

ηdecay factor [3× 10−5, 3× 10−4] Log
tdecay [2533, 2.815] Linear
1− µ [10−4, 10−1] Log
λ [10−4, 10−1] Log
τ [5× 10−2, 0.15] Linear

Table 13: λ refers to weight decay, which is not applied to the bias and batch normalization variables.
50 trials. Trained for 2,815 steps. Linear warmup for 500 steps followed by a quadratic decay, which
decays until step tdecay, and then is constant at the final learning rate η0 × ηdecay factor. Virtual batch
size 128.

20

Range Scaling
ηpeak [10−1, 32.0] Log

ηdecay factor [3× 10−5, 3× 10−4] Log
tdecay [2533, 2.815] Linear
1− µ [5× 10−3, 10−1] Log
λ [10−2, 10−1] Log
τ [5× 10−2, 0.15] Linear

Table 14: λ refers to weight decay, which is not applied to the bias and batch normalization variables.
50 trials. Trained for 2,815 steps. Linear warmup for 500 steps followed by a quadratic decay, which
decays until step tdecay, and then is constant at the final learning rate η0 × ηdecay factor. Virtual batch
size 128.

Range Scaling
ηpeak [10−1, 32.0] Log

ηdecay factor [3× 10−5, 3× 10−4] Log
tdecay [2533, 2.815] Linear
1− µ [5× 10−3, 10−1] Log
λ [10−2, 10−1] Log
τ [5× 10−2, 0.15] Linear

Table 15: The same as Table 14 except with virtual batch size 64.

Range Scaling

ηpeak
{{10α, 2× 10α, ..., 9× 10α}
∀α ∈ {−3, ...2}}+ {100, }

Discrete

ηdecay factor 8.144× 10−5 –
tdecay 2250 –
1− µ 0.02397 –
λ 0.009992 –
τ 0.07786 –

Table 16: λ refers to weight decay, which is not applied to the bias and batch normalization variables.
Trained for 2,815 steps. Virtual batch size 64. Using the best hyperparameters from Table 15, we
swept over the peak learning rate in a discrete set of ten values per order of magnitude, each for
three random seeds, to find the max stable learning rate.

Range Scaling
ηpeak 4.118 –

ηdecay factor 8.144× 10−5 –
tdecay 2250 –
1− µ 0.02397 –

λ
{{0.5× 10α, 10α, ...}

∀α ∈ {−3, ...0}}+ {1.0, }
Discrete

τ 0.07786 –
Table 17: λ refers to weight decay, which is not applied to the bias and batch normalization variables.
Trained for 2,815 steps. Virtual batch size 64. Using the best hyperparameters from Table 15, we
swept over the weight decay in a discrete set of twenty values per order of magnitude, to test how
high the regularization has to be in this region of hyperparameter space.

21

Range Scaling
ηpeak 4.118 –

ηdecay factor 8.144× 10−5 –
tdecay 2250 –
1− µ 0.02397 –
λ 0.009992 –
τ 0.07786 –

ρ
{0.0, 0.1, 0.3, 0.5, 0.6, 0.7,
0.8, 0.9, 0.95, 0.995, 0.999}

Discrete

ε
{10−7, 10−6, 10−5, 10−4,

10−3, 10−2, 10−1}
Discrete

Table 18: λ refers to weight decay, which is not applied to the bias and batch normalization variables.
Trained for 2,815 steps. Virtual batch size 64. Using the best hyperparameters from Table 15, we
swept over batch normalization hyperparameters.

Range Scaling
ηpeak [2.0, 8.0] Log

ηdecay factor [4× 10−5, 1.6× 10−4] Linear
tdecay [2100, 2400] Linear
1− µ [0.012, 0.04] Log
λ [7× 10−3, 7× 10−2] Log
τ [0.04, 0.1] Linear
ρ [0.45, 0.55] Linear
ε [5× 10−6, 5× 10−5] Linear

Table 19: λ refers to weight decay, which is not applied to the bias and batch normalization variables.
50 trials. Trained for 2,815 steps. Linear warmup for 500 steps followed by a quadratic decay, which
decays until step tdecay, and then is constant at the final learning rate η0 × ηdecay factor. Virtual batch
size 64. Peak learning rate range was consolidated based off the results of Table 16. The weight
decay range was consolidated based off the results of Table 17.

22

Range Scaling
twarmup [300, 800] Linear
pwarmup [0.7, 2.0] Linear
pdecay 1.8 –
η0 [0.1, 1.0] Log
ηpeak [5.0, 9.0] Log
ηfinal [10−5, 5× 10−5] Log
1− µ 0.02397 –
λ 5× 10−5 –
τ 0.15 –
γ0 [0.0, 0.6] Linear
ρ 0.94 –
ε 4× 10−6 –

Table 20: Here we switched λ to refer to L2 regularization. We also began training for 2,512 steps,
which is the final “64 epochs” used in the Nesterov results reported in the main text. Because of this
more stringent step budget, we focused on the learning rate schedule. tdecay was set to all remaining
steps after the warmup was finished. Tuned for 229 trials. Virtual batch size 64.

Range Scaling
twarmup 638 –
pwarmup [1.5, 3.0] Linear
pdecay [1.5, 2.5] Linear
η0 0.12 –
ηpeak 7.05 –
ηfinal [10−6, 5× 10−4] Log
1− µ 0.02397 –
λ [5× 10−5, 1× 10−3] Log
τ 0.15 –
γ0 [0.4, 1.0] Linear
ρ 0.94 –
ε 4× 10−6 –

Table 21: Here we began focusing more on the shape of the learning rate schedule, as well as retuning
the L2 regularization. λ refers to L2. Several values were picked from the best trial of Table 20.
Trained for 2,512 steps steps. Tuned for 15 trials. Virtual batch size 64.

23

Range Scaling
twarmup 638 –
pwarmup [1.5, 3.0] Linear
pdecay [1.5, 2.5] Linear
η0 0.12 –
ηpeak 7.05 –
ηfinal [10−6, 5× 10−4] Log
1− µ 0.02397 –
λ [1× 10−5, 1× 10−4] Log
τ 0.15 –
γ0 [0.4, 1.0] Linear
ρ 0.94 –
ε 4× 10−6 –

Table 22: Here we focus in more on tuning the L2 regularization. λ refers to L2. Trained for 2,512
steps steps. Tuned for 37 trials. Virtual batch size 64.

Range Scaling
twarmup 638 –
pwarmup [1.5, 3.0] Linear
pdecay [1.5, 2.5] Linear
η0 0.12 –
ηpeak 7.05 –
ηfinal [10−6, 5× 10−4] Log
1− µ 0.02397 –
λ [5× 10−5, 6× 10−5] Linear
τ 0.15 –
γ0 [0.4, 1.0] Linear
ρ 0.94 –
ε 4× 10−6 –

Table 23: Again we dial in more on a tighter tuning range for the L2 regularization. λ refers to L2.
Trained for 2,512 steps steps. Tuned for 37 trials. Virtual batch size 64.

24

