
Published as a conference paper at ICLR 2025

SINGLE HIDDEN LAYER DIFFUSION MODELS PROVABLY
LEARN SIMPLE LOW-DIMENSIONAL STRUCTURE

Nicholas M. Boffi
Carnegie Mellon University
nboffi@andrew.cmu.edu

Arthur Jacot
New York University
arthur.jacot@nyu.edu

Stephen Tu
University of Southern California
stephen.tu@usc.edu

Ingvar Ziemann
University of Pennsylvania
ingvarz@seas.upenn.edu

ABSTRACT

Diffusion-based generative models provide a powerful framework for learning to
sample from a complex target distribution. The remarkable empirical success of
these models applied to high-dimensional signals, including images and video,
stands in stark contrast to classical results highlighting the curse of dimensionality
for distribution recovery. In this work, we take a step towards understanding
this gap through a careful analysis of learning diffusion models over the Barron
space of single hidden layer neural networks. In particular, we show that these
shallow models provably adapt to simple forms of low-dimensional structure, such
as an unknown linear subspace or hidden independence, thereby avoiding the
curse of dimensionality. We combine our results with recent analyses of sampling
with diffusions to provide an end-to-end sample complexity bound for learning
to sample from structured distributions. Importantly, our results do not require
specialized architectures tailored to particular latent structures, and instead rely on
the low-index structure of the Barron space to adapt to the underlying distribution.

1 INTRODUCTION

Generative models learn to sample from a target probability distribution given a dataset of examples.
Applications are pervasive, and include language modeling (Li et al., 2022), high-fidelity image
generation (Rombach et al., 2022), de-novo drug design (Watson et al., 2023), and molecular
dynamics (Arts et al., 2023). Recent years have witnessed extremely rapid advancements in the field
of generative modeling, particularly with the development of models based on dynamical transport of
measure (Santambrogio, 2015), such as diffusion-based generative models (Ho et al., 2020; Song
et al., 2021), stochastic interpolants (Albergo et al., 2023), flow matching (Lipman et al., 2023),
and rectified flow (Liu et al., 2023) approaches. Yet, despite their strong empirical performance
and well-grounded mathematical formulation, a theoretical understanding of how and why these
large-scale generative models work is still in its infancy.

A promising line of recent research has shown that the problem of sampling from an arbitrarily
complex distribution can be reduced to unsupervised learning: for diffusion models, if an accurate
velocity or score field can be estimated from data, then high-quality samples can be generated via
numerical simulation (Chen et al., 2023d; Lee et al., 2023). While deeply insightful, these works
leave open the difficulty of statistical estimation, and therefore raise the possibility that the sampling
problem’s true difficulty is hidden in the complexity of learning the score.

In this work, we address this fundamental challenge by presenting an end-to-end analysis of sampling
with score-based diffusion models. To balance tractability of the analysis with empirical relevance, we
study the Barron space of single hidden layer neural networks (E et al., 2019; Bach, 2017). This space
contains important features of models used in practice – most importantly, parametric nonlinearity
– while retaining well-studied theoretical properties that we can adapt to the generative modeling
problem. As paradigmatic examples of the widely-held belief that real-world datasets contain hidden
low-dimensional structure (Tenenbaum et al., 2000; Weinberger & Saul, 2006), we focus on two
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idealized settings in which the target data density is concentrated on an unknown low-dimensional
linear manifold, or consists of groups of independent low-dimensional variables. We show that for
learning to sample from a target distribution with either of these structures, diffusion models backed
by Barron networks enjoy a sample complexity bound that only depends exponentially on the intrinsic
dimension of the structure rather than on the ambient dimension. Our results highlight that diffusion
models based on one hidden layer networks without specific architectural modifications can adapt
to hidden structure and sidestep the curse of dimensionality; in this way, they give insight into the
empirical performance of more complex architectures on real-world high-dimensional datasets.

2 RELATED WORK

Sampling bounds for diffusion models. Much of the recent work on analyzing diffusion models
has focused on the accuracy of sampling from a discretized backwards diffusion process, assuming
access to L2 accurate score functions. This includes work on discretized stochastic differential
equations (Lee et al., 2022; Chen et al., 2023d; Lee et al., 2023; Chen et al., 2023a; Benton et al.,
2024) and more recently, discretized probability flows (Chen et al., 2023e;c; Li et al., 2024; Liang
et al., 2024; Gao & Zhu, 2024). Recent work by Li & Yan (2024) shows that the DDPM sampler (Ho
et al., 2020) can be tuned so that in the presence of low dimensional structure, the discretization
error only depends polynomially on the intrinsic dimension (in addition to the score error). However,
these works assume the existence of an ε-accurate score function in L2, and thereby leave open the
question of the sample complexity of learning such a model.

Sample complexity of score matching. Several works have considered the statistical complexity of
learning a score function. Block et al. (2020) and Koehler et al. (2023) use the standard Rademacher
complexity framework to bound the error of empirical risk minimization (ERM) for learning the
score, but leave open the question of which function class to learn over. Han et al. (2024) and Wang
et al. (2024) consider optimizing the denoising score matching loss over neural network models, and
show that gradient descent on overparameterized models finds quality ERM solutions. Wibisono et al.
(2024), Zhang et al. (2024), Oko et al. (2023), and Dou et al. (2024) study the minimax optimality
of diffusion modeling under various functional assumptions regarding the target density and its
corresponding score function. While together these works show that diffusion modeling is both nearly
optimal for learning to sample and also computationally efficient, they simultaneously highlight the
curse of dimensionality that arises without more structure. To address this issue, both Oko et al.
(2023) and Chen et al. (2023b) impose a latent subspace assumption on the data distribution, which
they show avoids exponential dependence on the ambient dimension. Our work is directly inspired
by these results, and we defer a detailed comparison to Section 3. Another related work is Bortoli
(2022), which studies diffusion models under a manifold hypothesis, proving a bound that depends
exponentially on the diameter of the manifold. Finally, Cole & Lu (2024) show that under the
assumption that the target log-relative density (w.r.t. a standard Gaussian) can be approximated by a
network with low path norm, score estimation can be performed with a sample complexity bound that
does not depend explicitly on the ambient dimension.1 However their absolute continuity assumption
rules out examples such as target distributions supported on low dimensional manifolds.

Learning in Barron spaces. Even though the implicit bias of deep networks remains largely an
open question, there is now strong consensus that the implicit bias of shallow networks with large
width is accurately captured by the Barron norm (E et al., 2019) or variational F1 norm (Bach, 2017).
Such networks can avoid the curse of dimensionality by capturing low-index structure (i.e., when the
target f(x) = f(Px) for a low-dimensional projection P ∈ Rd×D), leading to generalization bounds
that depend on the intrinsic dimension d rather than the ambient dimension D (Bach, 2017). Several
recent results have also studied the (sometimes modified) gradient descent dynamics of shallow
networks, and how this low-index structure emerges in the network (Abbe et al., 2022; Bietti et al.,
2022; Ben Arous et al., 2022; Glasgow, 2024; Lee et al., 2024). While most of this literature focuses
on supervised training problems, some work has shown that this type of analysis can be extended to
the unsupervised case, in particular to learn energy-based models (Domingo-Enrich et al., 2021).

1However, there are still O(1)D pre-factors in the final rate.
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3 PROBLEM FORMULATION AND MAIN RESULTS

Our goal in this work is to study the statistical complexity of learning to sample from a target
probability measure p0(x0) defined on RD given a dataset of n iid examples xi0 ∼ p0 for i = 1, . . . , n.
In particular, we consider the use of a diffusion model (Sohl-Dickstein et al., 2015; Song et al., 2021;
Ho et al., 2020) to learn a stochastic process that maps random noise to a new sample from the data
distribution. We assume that the target p0 contains hidden latent structure – either a low-dimensional
subspace or independent components – and our primary goal will be to show that a single hidden layer
network can learn this hidden structure efficiently, in the sense that the statistical rates are governed
primarily by the underlying latent dimension d, as opposed to the ambient dimension D ≫ d.

Diffusion models. We consider diffusion-based generative models based on stochastic differential
equations (Song et al., 2021). These models construct a path in the space of measures between the
target p0 and a standard Gaussian N(0, ID) by defining a forward process that converges to Gaussian
data over an infinite horizon. For simplicity, we consider the Ornstein-Uhlenbeck (OU) process,

dxt = −xtdt+
√
2dBt, t ∈ [0, T ], (3.1)

though our results straightforwardly generalize to the time-scaled OU processes commonly used in
practice (Song et al., 2021). In (3.1), (Bt)t⩾0 denotes a standard Brownian motion on RD. Due to
the linear nature of the OU process, for w ∼ N(0, ID) drawn independently of x0, xt is equivalent in
distribution to the stochastic interpolant (Albergo et al., 2023)

xt
d
= mtx0 + σtw, mt := exp(−t), σt :=

√
1− exp(−2t). (3.2)

Let the marginal distributions of xt be denoted as (pt)t∈[0,T ]. The reverse process is the process of
yt := xT−t for t ∈ [0, T ]. A classic result (Anderson, 1982) shows that the reverse process satisfies

dyt = (yt + 2∇ log pT−t(yt))dt+
√
2dBt, y0 ∼ pT (·), t ∈ [0, T ]. (3.3)

Thus, assuming knowledge of the time-dependent score function ∇ log pt, sampling from p0(·) can
be accomplished by (a) setting T large enough so that pT (·) is approximately an isotropic Gaussian,
(b) sampling y0 ∼ N(0, ID), and (c) running the reverse SDE (3.3) until time T .

To implement this scheme in practice, the score function must be learned, and the reverse process
must be discretized. Assuming access to a learned score function ŝ ≈ ∇ log p, we now consider
discretizing (3.3). In this work we make use of the exponential integrator (EI), which fixes a sequence
(to be specified) of reverse process timesteps 0 = τ0 < τ1 < · · · < τN = T and implements

dỹt = (ỹt + 2ŝT−τk(ỹτk))dt+
√
2dBt, t ∈ [τk, τk+1], k ∈ {0, . . . , N − 1}. (3.4)

Recently, building off of the works by Chen et al. (2023d) and Lee et al. (2023), Benton et al.
(2024) showed that it suffices to control the score approximation error in L2(pt) to guarantee that the
process (3.4) yields a high quality sample from p0.2

Score function estimation. To estimate the score function ∇ log pt over the interval [0, T ], one
would ideally minimize the least-squares objective over a model ŝ,

R(ŝ) :=

∫ T

0

Rt(ŝt) dt, Rt(ŝt) := Ext
∥ŝt(xt)−∇ log pt(xt)∥2. (3.5)

While direct minimization is not possible because ∇ log pt is not observed, minimizing R(s) is
equivalent to minimizing the following denoising score matching (DSM) loss (Vincent, 2011)

L(ŝ) :=
∫ T

0

Lt(ŝt) dt, Lt(ŝt) := E(w,xt)∥ŝt(xt) + w/σt∥2, (3.6)

as can be shown by Tweedie’s identity ∇ log pt(x) = − 1
σt
E[w | xt = x] (Efron, 2011). In

practice, (3.6) is typically approximated via Monte-Carlo by generating samples xiti = mtix
i
0+σtiw

i

using the dataset of samples from p0, iid random draws of Gaussian noise wi, and random time points

2Technically, Benton et al. (2024) guarantees a high quality sample from pT−τN−1(·) instead of p0(·).
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ti drawn from [0, T ]. This empirical risk can then be minimized to estimate a time-dependent score
function ŝ : [0, T ]× RD → RD.

In this work, to simplify the mathematical analysis, we consider a stylized variant in which we fix a
sequence of timesteps 0 < t0 < · · · < tN−1 = T and estimate N time-independent score functions
{ŝti}N−1

i=0 of the form ŝti : RD → RD from a family of function classes Ft:

ŝt ∈ argmin
st∈Ft

L̂t(st), L̂t(st) :=
1

n

n∑
i=1

∥st(xit) + wi/σt∥2, t ∈ {ti}N−1
i=0 . (3.7)

In the sequel, we will let Dt := {(xit, wi)}ni=1 denote the training data used in (3.7) for timestep t.

From Wibisono et al. (2024), we know that if the true score ∇ log pt is Lipschitz continuous and pt is
sub-Gaussian, then the minimax rate for estimating ∇ log pt is given by n−2/(D+4).3 Unfortunately,
this type of bound ignores all latent structure, raising the question of whether or not diffusion models
can learn latent structure in a sample efficient way.

The Barron space F1. Consider a single hidden layer network fm with m neurons and mean-field
scaling, fm(x) = 1

m

∑m
i=1 uiσ(⟨x, vi⟩). In the limit as m tends to infinity, the summation may be

replaced by integration f∞(x) =
∫
uσ(⟨x, v⟩) dµ(u, v) against a signed Radon measure µ over the

neuron parameters (u, v). This leads to the Barron space F1 (Bach, 2017; Mhaskar, 2004; Rotskoff
& Vanden-Eijnden, 2019; Mei et al., 2018; Sirignano & Spiliopoulos, 2020), which models single
hidden layer networks in the infinite width limit and feature learning regime (Chizat et al., 2020).

Concretely, given a Radon measure µ on a measurable space V , recall that the total variation norm
(TV) is defined as ∥µ∥tv := supg

∫
V g(v) dµ(v), where the supremum is over continuous functions

g : V 7→ [−1, 1]. Given a basis function φv(x), the TV-norm induces the space of functions F1 :=
{f(x) =

∫
V φv(x) dµ(v) | ∥µ∥tv <∞}. For a function f ∈ F1, its F1-norm is the infimum over all

TV-norms of measures that can represent f , i.e., ∥f∥F1
:= inf{∥µ∥tv | f(x) =

∫
V φv(x) dµ(v)}.

In this work, we will consider the special case V = Sp−1×Sp−1 for p ∈ N+ and φv(x) = uσ(⟨x, v⟩),
where (u, v) ∈ V and σ(·) = max{0, ·} is the ReLU activation. Hence, the induced class F1 consists
of vector-valued maps from Rp → Rp that satisfy ∥f(x)∥ ⩽ ∥f∥F1

∥x∥. In learning the score
functions ŝti via DSM (3.7), we will utilize norm-ball subsets of F1 to model the true score functions
∇ log pti(x). This allows us to leverage the low-index structure of F1 (Bach, 2017) and obtain bounds
for score estimation that scale with the intrinsic, rather than ambient, dimension of the problem.

Finally, while we consider F1 in this paper, we note that any f ∈ F1 can be ε-approximated in L2 by
a finite width fm with m ⩽ O(∥f∥2F1

/ε2) neurons (Bach, 2017, Section 2). Since we will show that
we can approximate the underlying score function with F1-norm polynomial in D, our results easily
extend to finite width one hidden layer networks with poly(D) width.

Flow matching and interpolant models. Flow matching models (Lipman et al., 2023; Liu et al.,
2023) and stochastic interpolants (Albergo et al., 2023) have also been used recently in the context of
generative modeling. In Appendix B, we relate the Barron norm of the drift vector field in these ODE
based models with the Barron norm of the score function, which implies that our proof techniques
can also be used to prove similar results for learning flow matching and interpolant drift terms.

Notation. We briefly review the (relatively standard) notation used in this work. For a d-dimensional
vector x, the ℓp norm is denoted ∥x∥p; the notation ∥x∥ is reserved for the Euclidean (p = 2) case.
The (closed) ℓ2-ball of radius r in d-dimension is denoted by B2(r, d); when r = 1, we use the
shorthand B2(d). The unit sphere in Rd is denoted Sd−1. The notation Od(·) hides both universal
constants and constants that depend arbitrarily on the variable d. Similarly, Õd(·) hides universal
constants, constants that depend on d, and terms that may depend poly-logarithmically on d, i.e., terms
of the form logO(d)(·). The notation poly(·) indicates a polynomial dependence on the arguments,
whereas polyd(·) indicates that the polynomial degrees are allowed to depend arbitrarily on d. The
notation a ≲ b (resp. a ≳ b) indicates that there exists a universal positive constant c such that a ⩽ cb
(resp. a ⩾ cb), and a ≍ b means that a ≲ b and a ≳ b. Finally, we use a ∨ b to denote max{a, b}.

3Interestingly, this rate is slower than the n−2/(D+2) rate for learning Lipschitz functions (Tsybakov, 2008).
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3.1 LEARNING LATENT SUBSPACE STRUCTURE

We first consider a setting in which x0 is supported on a d-dimensional (d≪ D) linear subspace:

x0 = Uz0, z0 ∼ π0(·), U ∈ O(D, d), (3.8)

where z0 is a d-dimensional random vector and O(D, d) := {U ∈ RD×d | UTU = Id} denotes the
d-dimensional orthogonal group in RD. Note that both the subspace dimension d and the embedding
matrix U are unknown to the learner.

Recently, both Chen et al. (2023b) and Oko et al. (2023) consider learning diffusion models under the
subspace structure (3.8). The main takeaway from both works is that the latent subspace dimension
d, rather than the ambient dimension D, can govern the complexity of learning to sample from p0
if the network used for learning satisfies various architectural assumptions. While insightful, these
architectural assumption are difficult to satisfy in practice. Chen et al. (2023b) utilize a function class
that is specifically tailored to the linear structure (3.8), in the sense that a linear autoencoder with
prior knowledge of the latent dimension d is used to reduce the learning problem to the latent space.
The situation is improved in Oko et al. (2023), which considers fully-connected neural networks
with bounded weight sparsity. Though closer to real-world architectures, optimizing networks with
bounded sparsity constraints is computationally challenging in practice.

Our first result further closes the gap between theory and practice: we show that by optimizing
over F1, the space of infinite-width single hidden layer networks, the latent subspace is adaptively
learned without requiring prior latent dimension knowledge or difficult to impose sparsity constraints.
We note that from a computational perspective, sufficiently wide shallow networks trained with
gradient descent (GD) and weight decay will converge to the minimal F1-norm solution (Chizat &
Bach, 2018). While control on the number of neurons required in the worst case is not available
(optimizing over F1 is unfortunately NP-hard (Bach, 2017)), recent results have shown that under
various assumptions on the data and task, this hardness can be avoided and GD can indeed learn
low-index functions with a number of neurons that scales polynomially with an exponent that depends
only on the intrinsic dimension (Abbe et al., 2022; Dandi et al., 2023; Lee et al., 2024). The fact
that an exponential width might be required for GD to converge to the optimal solution is not in
contradiction with the fact that a polynomial width is sufficient to approximate the optimal solution
(cf. beginning of Section 3), since approximation is a weaker guarantee than convergence of GD.

Towards stating our first result, we begin with a few standard regularity assumptions.
Assumption 3.1. The latent variable z0 ∼ π0(·) is β-sub-Gaussian4 (with β ⩾ 1), i.e.,

E exp(λ(∥z0∥ − E∥z0∥)) ⩽ exp(λ2β2/2), ∀λ ∈ R.

Our next assumption concerns the regularity of the score function of the latent distribution πt, which
denotes the marginal distribution of zt := UTxt.
Assumption 3.2. The latent score ∇ log πt is L-Lipschitz (with L ⩾ 1) on Rd for all t ⩾ 0.

We emphasize that Assumption 3.2 concerns the Lipschitz regularity of the latent measure πt and not
the ambient measure pt; due to the subspace structure (3.8), the Lipschitz constant of the ambient
score diverges as t→ 0. Finally, we define some shorthand notation for t ∈ [0, T ],

µt,x := µ0 ∨ σt
√
D, µt,z := µ0 ∨ σt

√
d, L̄ := cL(µ0 +

√
d+ ∥∇ log π0(0)∥),

where µ0 := (E∥z0∥2)1/2 and c ⩾ 1 is a universal constant. Since σt → 1 as t→ ∞, these constants
are uniformly bounded above. Hence, we define µx := limt→∞ µt,x and µz := limt→∞ µt,z .
Theorem 3.3. Suppose that p0 follows the latent structure (3.8), and that both Assumption 3.1 and
Assumption 3.2 hold. Fix a t > 0 and define

Ft := {s : RD 7→ RD | ∥s∥F1
⩽ Rt}, Rt := R̄tn

d+1
2(d+5) +

D

σ2
t

, (3.9)

where R̄t does not depend on n.5 Suppose that n satisfies

n ⩾ n0(t) := poly(D, 1/σt, µt,x ∨ β) · polyd(L̄, µt,z ∨ β). (3.10)

4This definition is also referred to as norm-sub-Gaussian in the literature (see e.g. Jin et al., 2019).
5The explicit dependence of R̄t on the other problem parameters is detailed in the proof.
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Then, the empirical risk minimizer ŝt ∈ argmins∈Ft
L̂t(s) satisfies:

EDt [Rt(ŝt)] ⩽ Õd(1)

[
D2

σ2
t n

(L̄(µt,z ∨ β))d+3(µt,x ∨ β)2
] 2

d+5

+ Õd(1)

√
D3

σ6
t n

(µt,x ∨ β)2.

Focusing on the factors n, d,D, Theorem 3.3 states that the score matching risk scales as
EDt

[Rt(ŝt)] ⩽ Õd(1)(poly(D)/n)2/(d+5), demonstrating that exponential dependence enters only
through the latent subspace dimension d and not the ambient dimension D. Some further remarks
regarding Theorem 3.3 are in order. First, we can obtain a high-probability bound with minor
modifications to the proof; we omit these details in the interest of brevity. Second, our n−2/(d+5)

rate nearly matches the minimax optimal rate of score matching from Wibisono et al. (2024), but
with the subspace dimension d replacing the ambient dimension D; we leave showing a n−2/(d+4)

rate to future work. Last, as noted before, Chen et al. (2023b, Theorem 2) proves a related result
for learning score functions under the subspace structure (3.8). However, Theorem 3.3 substantially
improves their result in the following ways. First, as already mentioned, our result does not require
any specialized architectures, but instead applies to learning directly in the Barron space F1 of single
hidden layer neural networks. Additionally, our result also provides several technical improvements:
(a) our leading dependence on n is improved to n−2/(d+5) from n−(2−o(1))/(d+5),6 and (b) our
dependence on σt is improved to σ−4/(d+5)

t instead of σ−2
t in the regime as t→ 0.

We now use Theorem 3.3 to provide an end-to-end sample complexity bound for sampling from p0.
Corollary 3.4. Fix ε, ζ ∈ (0, 1). Suppose that p0 follows the latent structure (3.8), and that both
Assumption 3.1 and Assumption 3.2 hold. Consider the exponential integrator (3.4) with:

T = c0 log

(√
D ∨ µ0

ε

)
, N = 2

⌈
c1
D ∨ µ2

0

ε2

[
log2

(√
D ∨ µ0

ε

)
+ log2

(
1

ζ

)]⌉
, (3.11)

and reverse process discretization timesteps {τi}Ni=0 defined as:

τi =

{
2(T − 1) i

N if i ∈ {0, . . . , N/2},
T − ζ2i/N−1 if i ∈ {N/2 + 1, . . . , N}. (3.12)

Next, define the forward process timesteps {ti}N−1
i=0 by ti := T − τN−i. Suppose the exponential

integration scheme is run with score functions {ŝti}N−1
i=0 , where ŝti ∈ argmins∈Fti

L̂ti(s) with Ft

as defined in (3.9). Suppose furthermore that n satisfies:

n ⩾ Õd(1)max

{
D2

ζ
(L̄(µz ∨ β))d+3(µx ∨ β)2 · ε−(d+5),

D3

ζ3
(µx ∨ β)2 · ε−4, n0(ζ)

}
,

where n0(·) is defined in (3.10). With constant probability (over the randomness of the training
datasets {Dti}N−1

i=0 ), we have that KL(pζ ∥ Law(ŷT−ζ)) ⩽ ε2, where Law(ŷT−ζ) refers to the
distribution of the random vector ŷT−ζ .

Treating L̄ and β as constants, Corollary 3.4 prescribes a rate of n ⩾ Õd(1)
poly(D)

ζ ε−(d+5) (after
a burn-in on n) to obtain a sampler that satisfies KL(pζ ∥ Law(ŷT−ζ)) ⩽ ε2. To the best of our
knowledge, this is the first end-to-end sample complexity bound for learning a diffusion model
over single hidden layer neural networks that adapts to the intrinsic dimensionality of the problem.
Note that as Corollary 3.4 controls the KL-divergence between the true data distribution pζ and the
distribution Law(ŷT−ζ) of the final iterate of the exponential integrator (3.4), by Pinsker’s inequality
this also implies control on the TV-distance ∥pζ − Law(ŷT−ζ)∥tv. Furthermore, we can upgrade
Corollary 3.4 to a high probability guarantee by utilizing a high probability variant of Theorem 3.3.

The parameter ζ > 0 is the early stopping parameter often found in practical implementations of
diffusion models (cf. Karras et al. (2022)). Note that this is necessary since p0 is supported on
a lower-dimensional manifold and hence ∇ log p0 is not smooth on all of RD. We remark that
bounds comparing the original p0 to Law(ŷT−ζ) are possible in Wasserstein distance by adopting
the techniques from e.g. Chen et al. (2023d, Section 3.2); we omit these calculations.

6However, their logarithmic dependence on n is only through logO(1)(n) terms instead of our logO(d)(n).
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Compared to Chen et al. (2023b, Theorem 3), who obtain a n ⩾ Õd(1)(ε
√
ζ)−(d+5)/(1−o(1)) rate in

the case of a latent subspace-aware architecture, we see that our bound also improves the dependency
on ζ. This is important, because ultimately ζ will be chosen to decay to zero as n → ∞. We do
remark, however, that Chen et al. (2023b, Theorem 3) only depends polylogarithmically on the
ambient dimension D instead of polynomially. This can be traced back in their analysis to imposing
the constraint that their score functions are uniformly bounded, i.e., supz,t∥s(z, t)∥ ⩽ K, which
allows truncation arguments to avoid picking up extra poly(D) factors. We choose to not impose
such constraints in our model class, as this adds another hyperparameter that must be tuned in practice.
We leave open the question of whether or not these poly(D) pre-factors in the sample complexity
can be removed without further modifications (e.g., clipping) of the F1 hypothesis class.

Compared to Oko et al. (2023, Theorem 6.4), Corollary 3.4 also relaxes a few technical assump-
tions, including a uniformly lower bounded density π0, and a requirement that π0 be C∞ near the
boundary [−1, 1]d. On the other hand, their work obtains a sharper rate on W1(p0,Law(ŷT−ζ)) ≲
n−(3−δ)/(d+4) for any δ > 0. We also leave open the question of whether these extra assumptions
can be used to strengthen our guarantees for learning over F1.

3.2 LEARNING LATENT INDEPENDENCE

We now consider a different kind of latent structure – here generated by independence – as opposed to
the low-dimensional subspace setting just studied. Specifically, we suppose that for some K ∈ [D],

x0 = Uz0, z0 ∼ (z
(1)
0 , . . . , z

(K)
0 ), z

(i)
0 ∼ π

(i)
0 (·), (3.13)

where U ∈ O(D) := {U ∈ RD×D | UTU = ID}, z(i)0 ∈ Rdi with
∑K

i=1 di = D, and where z(i)0 is
independent of z(j)0 for i ̸= j. This setting differs from the previous case in that the latent structure
considered is probabilistic and not geometric; it is possible for z0 to satisfy (3.13) but still be fully
supported on RD. Similar to the linear subspace setting, we assume that the orthonormal matrix U ,
the number of components K, and the dimensionality of each component {di}Ki=1 are all unknown to
the learner, and we study the adaptive properties of F1 in the presence of this latent structure. We
begin by imposing a similar set of assumptions as in the subspace case (cf. Section 3.1).

Assumption 3.5. For all i ∈ [K], we have that π(i)
0 is βi-sub-Gaussian (for βi ⩾ 1), i.e.,

E exp(λ(∥z(i)0 ∥ − E∥z(i)0 ∥)) ⩽ exp(λ2β2
i /2), λ ∈ R.

Our next assumption again deals with the latent measure πt, defined as the marginal distribution of
zt := UTxt. We decompose zt = (z

(1)
t , . . . , z

(K)
t ) into coordinate groups as for z0, and we define

π
(i)
t as the marginal distribution of z(i)t .

Assumption 3.6. For all i ∈ [K], ∇ log π
(i)
t is Li-Lipschitz (for Li ⩾ 1) on Rdi for all t ⩾ 0.

As before, we define some shorthand notation for t ∈ [0, T ] and i ∈ [K]:

µ
(i)
t,x := µ

(i)
0 ∨ σt

√
di, L̄i := cLi(µ

(i)
0 +

√
di + ∥∇ log π

(i)
0 (0)∥),

where µ(i)
0 := (E∥z(i)0 ∥2)1/2 and c ⩾ 1 is a universal constant. Furthermore, we combine the

individual constants together as µ0 :=

√∑K
i=1(µ

(i)
0 )2, β :=

√∑K
i=1 β

2
i , and µt,x := µ0 ∨ σt

√
D.

Finally, as before, we let µ(i)
x := limt→∞ µ

(i)
t,x and µx := limt→∞ µt,x. Mirroring Theorem 3.3, we

first bound the error on the learned score functions under the latent independent structure (3.13).
Theorem 3.7. Suppose that p0 follows the latent structure (3.13), and that both Assumption 3.5 and
Assumption 3.6 hold. Fix a t > 0 and define

Ft := {s : RD 7→ RD | ∥s∥F1
⩽ Rt}, Rt :=

K∑
i=1

R̄
(i)
t n

di+1

2(di+5) , (3.14)

where R̄(i)
t does not depend on n. Suppose that n satisfies

n ⩾ n0(t) := poly(D, 1/σt, µt,x ∨ β) · max
i∈[K]

polydi
(L̄i, µ

(i)
t,x ∨ β(i)). (3.15)
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Then, the empirical risk minimizer ŝt ∈ argmins∈Ft
L̂t(s) satisfies:

EDt [Rt(ŝt)] ⩽
K∑
i=1

Õdi(1)

[
D2K

σ2
t n

(L̄i(µ
(i)
t,x ∨ βi))di+3(µt,x ∨ β)2

] 2
di+5

+ Õ(1)

√
D2

σ4
t n

(µt,x ∨ β)2.

Ignoring all parameters other than K and n, Theorem 3.7 states that the score matching risk
EDt [Rt(ŝt)] scales as EDt [Rt(ŝt)] ≲

∑K
i=1(K/n)

2/(di+5), which again captures the intrinsic
dimensionality of the problem. To the best of our knowledge, this is the first result establishing a
score function error bound in the setting (3.13) that depends primarily on the latent di’s. Our final
result mirrors that of Corollary 3.4 and establishes an end-to-end sampling guarantee for this setting.
Corollary 3.8. Fix ε, ζ ∈ (0, 1). Suppose that p0 follows the latent structure (3.13), and that both
Assumption 3.5 and Assumption 3.6 hold. Consider the exponential integrator (3.4) with (N,T ) as
in (3.11) and reverse process discretization timesteps {τi}Ni=0 defined as in (3.12). Next, define the
forward process timesteps {ti}N−1

i=0 by ti := T − τN−i. Suppose the exponential integration scheme
is run with score functions {ŝti}N−1

i=0 , where ŝti ∈ argmins∈Fti
L̂ti(s) with Ft as defined in (3.14).

Suppose that n ⩾ n0(ζ) satisfies:

n ⩾ (µx ∨ β)2 max

{
max
i∈[K]

{
Õdi(1)D

2

ζ
K(di+7)/2(L̄i(µ

(i)
x ∨ β))di+3 · ε−(di+5)

}
,
Õ(1)D2

ζ2
· ε−4

}
.

where n0(·) is defined in (3.15). With constant probability (over the randomness of the training
datasets {Dti}N−1

i=0 ), we have that KL(pζ ∥ Law(ŷT−ζ)) ⩽ ε2.

Corollary 3.8 states that n ⩾ poly(D)/ζ ·maxi∈[K] polydi
(K)ε−(di+5) samples (ignoring µx, β, Li)

suffice to ensure that KL(pζ ∥ Law(ŷT−ζ)) ⩽ ε2. We note that, unlike the latent subspace setting of
Section 3.1, given Assumption 3.6 it is possible to prove a bound on KL(p0 ∥ Law(ŷT−ζ)) directly,
since ∇ log pt is uniformly Lipschitz for all t ⩾ 0. This can be done by using Chen et al. (2023d,
Theorem 2) to analyze the backwards exponential integrator process (3.4) instead of the results
of Benton et al. (2024). We elect to utilize the latter’s analysis in the interest of consistency with
Section 3.1 where it is required.

3.2.1 NON-ORTHOGONAL INDEPENDENT COMPONENTS

Section 3.2 shows that a diffusion model based on a single hidden layer network can adapt to hidden
independent component structure. A natural question is whether this extends to the non-orthogonal
case, similar to independent component analysis (ICA) (Herault et al., 1985). Here, we explain why a
direct extension of our argument works at t = 0 case, but breaks whenever t > 0 since the addition
of noise breaks the independence structure. We then use data whitening to address the issue.

Recall from (3.13) that z0 = (z
(1)
0 , . . . , z

(K)
0 ) where x(i) ∈ Rdi for d1 + · · · + dK = D, and

where each of the K components are sampled independently. Now, let us assume that x0 = Az0,
where A ∈ RD×D is invertible, but not necessarily orthonormal. Note that for t = 0, the score
function ∇ log p0 can be expressed as ∇ log p0(x) =

∑K
i=1A

−TPT
i ∇ log π

(i)
0 (PiA

−1x), where
Pi ∈ Rdi×D selects the di coordinates that correspond to the i-th variable group. Hence, the score
function has the structure of a sum of low-index functions, and the F1 norm of the score can be
bounded in terms of the sum of F1 norms of each component. However, once isotropic noise is
added, this structure is lost in general because the isotropy is not preserved in the latent space
(zt = A−1(mtx0 + σtw) = mtz0 + σtA

−1w).

A possible fix for this issue is to first whiten the data, and then to apply the results of Section 3.2 to
the whitened data. Specifically, write Cov(x0) = AΣAT, where Σ is a block diagonal matrix with
K blocks Σ(1), . . . ,Σ(K). Now consider the transform x̄0 := Σ− 1

2A−1x0, which orthogonalizes
the components and whitens each of them independently. Indeed, x̄0 follows the latent structure
(3.13), and hence the results from Section 3.2 directly apply to x̄0. However, one caveat with this
approach is that the whitening factor Σ−1/2A−1 must be learned from the data samples xi0 ∼ p0(·).
Standard results in covariance estimation (see e.g., Wainwright, 2019, Chapter 6) allow us to learn
Σ−1/2A−1 (modulo rotation) up to n−1/2 accuracy. It is an interesting question that we leave to
future work to study how the associated estimation error propagates through both the learning and
sampling procedures when obtaining a final sample complexity bound.
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Figure 1: Hidden linear structure. Experimental results comparing the performance of a single hidden layer
neural network, a two hidden layer neural network, and a random feature model in the presence of a hidden
linear structure. The target is an eight-mode Gaussian mixture model in d = 2 dimensions embedded into a D
dimensional space via an unknown orthogonal transformation; this transformation is used to project generated
samples down to R2. The Barron model continues to perform well in moderately high dimension which is
consistent with our theory, whereas the random feature model struggles to identify the orthogonal transform and
performs significantly worse than the other two models.

4 EXPERIMENTAL RESULTS

In this section, we present experimental results that verify our theoretical claims. To this end, we
compare the performance of a single hidden layer (Barron) neural network with a random feature
network (Bach, 2015; Rahimi & Recht, 2007) and a two hidden layer neural network as a function of
the ambient dimension D on two synthetic tasks that isolate the hidden structures we analyzed. To
make the comparison as fair as possible, all networks are trained with gradient descent for 2.5× 105

steps. We use a cosine decay schedule that initializes the learning rate from 5× 10−4 and ends at
0. The single hidden layer neural network has a hidden layer width of 1024 neurons; to keep the
number of parameters fixed, the corresponding random feature model has 2048 neurons. To avoid
an unnatural reduction in width for the two hidden-layer neural network, we keep the width fixed
at 1024 rather than fixing the number of parameters. We sample from each learned diffusion model
using 1024 evenly-spaced timesteps on the horizon t ∈ [0, 5].

Hidden linear structure. We consider data points x ∈ RD given by x = Uz where z ∈ Rd

with d = 2 is drawn from the Gaussian mixture model ρ = 1
N

∑N
i=1 N(µi,Σi) with N = 8. Here,

U ∈ RD×d is a random orthogonal matrix that we keep fixed across all networks for constant
D. We take Σi =

1
2I for all i and µi = r

(
cos
(
2πi
N

)
, sin

(
2πi
N

))⊤
, which leads to an eight-mode,

narrowly-spaced mixture evenly distributed on the circle of radius r = 5. We study the performance
of each network architecture as a function of D ranging from D = 2 to D = 64 in powers of two.
Results are shown in Figure 1, where we visualize 5× 104 samples ẑ = U⊤x̂ from each model. In
each case, performance degrades as D increases, reflective of the increasing difficulty of the learning
problem. Notably, performance degrades significantly more rapidly for the random feature model
than for the Barron model despite the fact that both models have the same number of parameters;
in particular, for D = 32 and D = 64, samples do not lie within the visualized frame because the
model becomes unstable. This is consistent with our theory, which predicts that sample complexity
guarantees for Barron will depend exponentially on d = 2 rather than D, whereas the random feature
model does not adapt to the latent structure Bach (2017). Unsurprisingly, given its extra parameters
and additional nonlinear layer, the two-layer network maintains the highest performance for all D.
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Figure 2: Product of hidden independent components. Experimental results comparing the performance
of a random feature model, a single hidden layer network, and a two hidden layer network for a dataset with
hidden independence structure. The target is a product of K four mode Gaussian mixtures in R2 forming a
randomly rotated square, so that D = 2K; each mixture has a different random rotation. Approximate samples
are generated in RD and only the first mixture is visualized. Similar to Figure 1, the single hidden layer (and
two hidden layer) network is able to detect the hidden independence structure, while the performance of the
random feature model rapidly breaks down.

Hidden independent components. We now consider data points x = (x1, x2, . . . , xK)⊤ ∈ RD

where D = Kd and each xk ∈ Rd. We again take d = 2 for visualization, and we draw each xk
from the Gaussian mixture model ρk = 1

N

∑N
i=1 N(µ

k
i ,Σi) with N = 4. Similar to the previous

experiment, we take Σi = 1
2I for all i and µk

i = r
(
cos
(
2πi
N + ϕk

)
, sin

(
2πi
N + ϕk

))⊤
where

ϕk ∼ Unif(0, 2π) is fixed across all network architectures for fixed D. This construction ensures
that each block xk ∈ Rd is drawn from a Gaussian mixture with four modes placed on the corners
of a square of side length

√
2r that has been randomly rotated by an angle ϕk in the plane. Results

are shown in Figure 2, where we visualize 5 × 104 samples of x̂1 ∈ R2. Similar to the previous
experiment, Barron networks significantly outperform random feature models, while the two hidden-
layer network outperforms Barron.

5 CONCLUSION

In this work, we showed that diffusion models based on single hidden layer neural networks applied
to data from distributions that contain low dimensional structure – specifically, linear subspace and
hidden independent component structure – exhibit favorable sample complexity bounds that primarily
depend on the latent dimensionality of the problem, thereby avoiding the curse of dimensionality. We
accomplish this by leveraging the low-index structure of the Barron space, which allows us to avoid
specific latent-aware architectural modifications and computationally intractable sparsity constraints,
both of which have been used to obtain similar results in earlier work.

Several exciting future research threads arise directly from our study. The most pertinent direction
is to increase the scope of the latent structures covered by our analysis, to include, for example,
non-linear manifolds. Another related question is whether or not favorable results that avoid the
curse of dimensionality can be shown for latent diffusion models (Rombach et al., 2022), which
first learn an autoencoder before learning a diffusion model in the autoencoder’s latent space. On
the algorithmic front, an interesting open question is whether or not gradient-based optimization
algorithms can efficiently learn the low-index structure associated with the latent models studied
in this paper. Finally, improving our rates to match the minimax optimal score estimation rates
of Wibisono et al. (2024) – with the latent dimension playing the role of the ambient dimension – is
another exciting area for future work.
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A PROOF IDEAS

Here, we outline the key proof ideas behind the results in Section 3.1 and Section 3.2. We focus
our discussion exclusively on bounding the error of the score function estimate, as translating
score error into sample quality bounds is already well-established in the literature (cf. Section 2).
For this discussion, we fix a specific value of t > 0, noting from our discussion in Section 3
(specifically Equation (3.7)) that we learn separate score models for a fixed sequence of forward
process timesteps {ti}N−1

i=0 .

A.1 BASIC INEQUALITY

Recall that st ∈ argmins∈Ft
L̂t(s) is the empirical risk minimizer (ERM) of the empirical denoising

loss L̂t over the function class Ft = {s : RD 7→ RD | ∥s∥F1
⩽ Rt}, where the norm bound Rt

will be determined. Our first step uses the link between the L2(pt) score error Rt(s) and the DSM
loss Lt(s) in addition to standard arguments from the analysis of ERM to show the following basic
inequality for all ε ⩾ 0:

EDt
[Rt(ŝt)] ⩽ (1 + ε) inf

s∈Ft

Rt(s) + EDt
sup
s∈Ft

[Lt(s)− (1 + ε)L̂t(s)] + ε · Ct, (A.1)

where Ct := E tr Cov(σ−2
t (mtx0 − xt) | xt). The basic inequality (A.1) contains three key

terms: an approximation-theoretic term T1 := (1 + ε) infs∈Ft
Rt(s) which measures how well

the F1-norm bounded subset Ft approximates the true score, a uniform convergence term T2 :=

EDt
sups∈Ft

[Lt(s)− (1 + ε)L̂t(s)] over the function class Ft, and a third offset term T3 := ε · Ct

which trades off a fast rate for T2 (controlled via ε) with the constant offset Ct between the score
error and the DSM loss. In addition, the first two terms are in tension with each other, and must be
carefully balanced to achieve the desired rate.

A.2 APPROXIMATION OF STRUCTURED MODELS WITH F1

Our analysis is based on careful control of the approximation error term T1 in (A.1) of the structured
models we consider in a way such that the requisite F1-norm Rt does not depend exponentially on
the ambient dimension D. This is accomplished by first understanding the low-dimensional structure
present in the score functions ∇ log pt, and then arguing that this low-dimensional structure can be
approximated with a norm bound Rt that depends reasonably on D.

Subspace structure. We first consider the low dimensional subspace from Section 3.1. Under this
model, we have the following expression relating the score ∇ log pt to the score ∇ log πt of the latent
zt.
Proposition A.1 (see e.g., Chen et al. (2023b, Lemma 1)). The following decomposition holds under
the subspace model (3.8):

∇ log pt(x) = U∇ log πt(U
Tx)− 1

σ2
t

(I − UUT)x. (A.2)

Independent components. We next consider the independent structure from Section 3.2. Under
this model, we have the following decomposition for the score.
Proposition A.2. The following holds under the independent components model (3.13):

∇ log pt(x) =

K∑
i=1

UPT
i ∇ log π

(i)
t (PiU

Tx), (A.3)

where Pi ∈ Rdi×D selects the coordinates corresponding to the i-th variable group.

Note that the proof of Proposition A.2 follows directly from the standard change of variables formula,
and the fact that the distribution of w is unchanged when pre-multiplied by UT.

The score function decompositions (A.2) and (A.3) both exhibit similar structure, where latent score
functions are embedded into a score function in the ambient space via a linear encoding/decoding
process. Fortunately, this embedding preserves the F1-norm of the underlying function.
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Fact A.3. Let f : Rd 7→ Rd have bounded F1-norm, and let U ∈ O(D, k). Consider g : RD 7→ RD

defined as g(x) = Uf(UTx). We have that ∥g∥F1
= ∥f∥F1

.

Hence, if the latent function f : Rd → Rd can be approximated well in F1, then the embedded
function is also approximated well with the same F1 norm. This is the key observation that enables our
results. Concretely, suppose that f̂ : Rd 7→ Rd has bounded F1 norm and approximates f : Rd → Rd

via supz∈B2(d,M)∥f(z)− f̂(z)∥ ⩽ ε. Then, ĝ(x) = Uf̂(UTx) approximates g(x) = Uf(UTx) via
supx∈B2(D,M)∥g(x)− ĝ(x)∥ ⩽ ε, and ∥ĝ∥F1

= ∥f̂∥F1
.

It remains to argue that F1 can approximate low dimensional functions well. Fortunately, the
approximation properties of F1 functions over various function classes is well-understood (Bach,
2017; Jacot et al., 2024). In particular, we utilize the following F1 approximation result for Lipschitz
continuous functions, adopted from Bach (2017, Proposition 6).

Lemma A.4. Let f : Rd → Rd be L-Lipschitz and B-bounded on B2(d,M). Define K := B ∨LM .
For any ε ∈ (0,K/2), there exists an fε ∈ F1 such that supx∈B2(d,M)∥f(x)− fε(x)∥ ⩽ ε and:

∥fε∥F1
⩽ Od(1)K

(
K

ε

)(d+1)/2

log(d+1)/2

(
K

ε

)
.

A.3 UNIFORM CONVERGENCE OF THE DSM LOSS

With the approximation result in place, we turn to the analysis of uniform convergence term T2
in (A.1). Since the DSM loss is a least-squares regression problem, we can utilize existing results
for analyzing generalization error with smooth losses (Srebro et al., 2010). However, the main
technical hurdle here is dealing with the fact that the data tuples (x0, xt) are not uniformly bounded,
which is a technical assumption needed in many of these arguments.7 While this can be handled
straightforwardly for a fixed time t via standard truncation arguments, one challenge is ensuring that
the resulting high probability bounds degrade nicely as t→ 0. The reason this is necessary is because
the smallest timescale t0 used will ultimately scale with the number of datapoints n.

To highlight the class of issues that arise in our truncation arguments, consider the latent score
function ∇ log πt arising from the subspace structure setting (3.8). In order to apply a trunca-
tion argument for analyzing T2, we need to argue that ∥∇ log πt(z)∥ is bounded uniformly over
a high-probability truncation set z ∈ B2(d,M). By the continuity of ∇ log πt, we know that
supz∈B2(d,M)∥∇ log πt(z)∥ = At <∞. However, we need to control the behavior of At as t→ 0.
By leveraging the perturbation analysis of Lee et al. (2023), we show that for all t ⩾ 0, under our
assumptions, the inequality ∥∇ log πt(z)∥ ⩽ L̄(1 + ∥z∥) holds for all z ∈ Rd. Hence, we can bound
At ⩽ L̄(1 +M) for all t ⩾ 0.

B EXTENSION TO STOCHASTIC INTERPOLANTS

In this section, we describe how our approach can be extended to learning the drift field entering in
flow matching models (Lipman et al., 2023; Liu et al., 2023), stochastic interpolants (Albergo et al.,
2023), and probability flow ODE-based samplers in diffusion models. To this end, we observe that
every method can be viewed as building a stochastic interpolant with linear coefficients

xt = α(t)x0 + β(t)x1,

α(0) = 1, α(1) = 0,

β(0) = 0, β(1) = 1,

(B.1)

where x0 ∼ N(0, I) and x1 ∼ ρ∗ is drawn from the target data density. A common choice is given by
α(t) = 1− t and β(t) = t. In this section, we use the convention of interpolants and flow matching
models, which exactly interpolate on [0, 1] rather than doing so on [0,∞) like diffusions. Moreover,
we fix the base density at t = 0 and the target density at t = 1, which is opposite from the convention

7As an alternative to boundedness, one could also rely on small-ball arguments (Mendelson, 2015). In the
interest of keeping our assumptions minimal as possible, we do not pursue this approach.
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considered in the main text; see (3.2) for how this construction works in the diffusion model setup.
Given (B.1), the drift field entering the probability flow equation is given by

b(x, t) = E [ẋt | xt = x] , (B.2)

while the score field is given by

s(x, t) = − 1

α(t)
E [x0 | xt = x] . (B.3)

The following argument is also given in Albergo et al. (2023). We first observe that ẋt = α̇(t)x0 +

β̇(t)x1, and then solve (B.1) for x1 to find that

x1 =
1

β(t)
(xt − α(t)x0) . (B.4)

Hence, plugging in to (B.2), we find that

b(x, t) = E
[
α̇(t)x0 + β̇(t)x1 | xt = x

]
,

= E
[
α̇(t)x0 + β̇(t)

(
1

β(t)
(xt − α(t)x0)

)
| xt = x

]
,

= E

[(
α̇(t)− β̇(t)α(t)

β(t)

)
x0 +

β̇(t)

β(t)
xt | xt = x

]
,

=

(
α̇(t)− β̇(t)α(t)

β(t)

)
E [x0 | xt = x] +

β̇(t)

β(t)
x,

= α(t)

(
β̇(t)α(t)

β(t)
− α̇(t)

)
s(x, t) +

β̇(t)

β(t)
x,

(B.5)

so that b(x, t) can be entirely re-written in terms of the score s(x, t). This shows that the F1-norm of
b(x, t) is the same as the F1-norm of s(x, t) up to time-scaling and an additive O(D) term coming
from the linear term. Hence, similar sample complexity bounds which we derive in Section 3 for
learning score models can also be shown for learning the drift field b(x, t).

C PRELIMINARY RESULTS

We first make explicit the relation between the score matching error Rt and the denoising loss Lt. In
the sequel, we will make frequent use of Tweedie’s formula (see e.g. Efron, 2011):

∇ log pt(xt) = E [∇ log qt(xt | x0) | xt] , ∇ log qt(xt | x0) :=
mtx0 − xt

σ2
t

.

Fact C.1 (DSM loss minimizes score). We have that for all sufficiently regular s : RD 7→ RD:

Rt(s) = Lt(s)− Ct, (C.1)

where the offset constant Ct is given by:

Ct := E tr Cov

(
mtx0 − xt

σ2
t

| xt
)
.

Furthermore, we can bound Ct by:
Ct ⩽ D/σ2

t .

Proof. The standard proof for denoising score matching (see e.g. Vincent, 2011, Section 4.2) shows
that for all s:

Rt(f) = Lt(f) + E(x0,xt)[∥∇ log pt(xt)∥2 − ∥∇ log qt(xt | x0)∥2].
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Hence,

E(x0,xt)[∥∇ log pt(xt)∥2 − ∥∇ log qt(xt | x0)∥2]

= E(x0,xt)

[∥∥∥∥E [mtx0 − xt
σ2
t

| xt
]∥∥∥∥2 − ∥∥∥∥mtx0 − xt

σ2
t

∥∥∥∥2
]

= −EE

[∥∥∥∥mtx0 − xt
σ2
t

∥∥∥∥2 − ∥∥∥∥E [mtx0 − xt
σ2
t

| xt
]∥∥∥∥2 | xt

]

= −E tr Cov

(
mtx0 − xt

σ2
t

| xt
)

= −Ct.

To bound Ct, we observe:

Ct = E tr Cov

(
mtx0 − xt

σ2
t

| xt
)

= E tr Cov

(
w

σt
| xt
)

⩽ E∥w/σt∥2 = D/σ2
t .

We next state a result from Benton et al. (2024) regarding the quality of the samples generated via the
exponential integrator scheme (3.4).
Lemma C.2 (Sampler quality from L2 score bounds (Benton et al., 2024, Theorem 2)). Fix a T ⩾ 1
and ζ ∈ (0, 1). Also fix an N ∈ N+ which is even and satisfies N ⩾ 2 log(1/ζ). Define a sequence
of strictly increasing backwards process times {τi}Ni=0:

τi =

{
2(T − 1) i

N if i ∈ {0, . . . , N/2},
T − ζ2i/N−1 if i ∈ {N/2 + 1, . . . , N}. (C.2)

Let γi := τi+1 − τi for i ∈ {0, . . . , N − 1}. Suppose we have N score functions ŝt(x) for
t ∈ {T − τi}N−1

i=0 which satisfy:
N−1∑
i=0

γiEpT−τi
∥ŝT−τi −∇ log pT−τi∥2 ⩽ ε2score. (C.3)

Then, we have the following guarantee for the exponential integrator (3.4):

KL(pζ ∥ Law(ŷT−ζ)) ≲ ε2score + κ2DN + κ(DT + µ2
0) + (D + µ2

0)e
−2T ,

where κ, µ0 are defined as:

κ :=
2(T − 1) + 4 log(1/ζ)

N
, µ0 := E∥x0∥2.

Proof. In order to apply Benton et al. (2024, Theorem 2), we need to compute a κ such that:

γk ⩽ κmin{1, T − tk+1}, ∀k ∈ {0, . . . , N − 1}.
To do this, we follow the proof of Benton et al. (2024, Corollary 1). First, for k ∈ {0, . . . , N/2− 1},
we have that tk+1 ⩽ T − 1, and hence T − tk+1 ⩾ T − (T − 1) = 1. Hence, we can simply take
κ ⩾ 2(T − 1)/N . Now, for k ∈ {N/2, . . . , N − 1}, we have that tk+1 ⩾ T − 1, and therefore
T − tk+1 ⩽ T − (T − 1) = 1. Hence we need a κ such that γk ⩽ κ(T − tk+1). We therefore
compute:

ζ2k/N−1 − ζ2(k+1)/N−1 = γk ⩽ κ(T − tk+1) = κζ2(k+1)/N−1.

From this we see that κ ⩾ ζ−2/N − 1 is required. A sufficient condition takes:

ζ−2/N − 1 = exp

(
2

N
log(1/ζ)

)
− 1

⩽ 1 + (e− 1)
2

N
log(1/ζ)− 1 since ex ⩽ 1 + (e− 1)x for x ∈ [0, 1]

⩽
4 log(1/ζ)

N
.
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Hence, in total we can set:

κ =
2(T − 1) + 4 log(1/ζ)

N
.

The result now follows from invoking Benton et al. (2024, Theorem 2).

Note that an immediate consequence of Lemma C.2 is the following observation: for any ε ∈ (0, 1),
setting

T = c0 log

(√
D ∨ µ0

ε

)
, N = 2

⌈
c1
D ∨ µ2

0

ε2

[
log2

(√
D ∨ µ0

ε

)
+ log2

(
1

ζ

)]⌉
,

for some universal positive constants c0, c1, we have that

KL(pζ ∥ Law(ŷT−ζ)) ≲ ε2score + ε2.

Next, we state a technical lemma regarding a perturbation result for Gaussian mollifications at small
scale.

Lemma C.3 (Score function perturbation (Lee et al., 2023, Lemma C.12)). Suppose that p(x) is
a density on Rd such that ∇ log p(x) is L-Lipschitz on Rd. For α ⩾ 1, define the corresponding
density pα(x) := αdp(αx). Let γσ2 denote an N(0, σ2Id) distribution. If L ⩽ 1/(2α2σ2), then we
have the following bound for all x ∈ Rd:

∥∇ log p(x)−∇ log pα ∗ γσ2(x)∥

⩽ 6α2Lσ
√
d+ (α+ 2α3Lσ2)(α− 1)L∥x∥+ (α− 1 + 2α3Lσ2)∥∇ log p(x)∥.

The previous mollification lemma is next used to bound the score functions uniformly over time.

Proposition C.4. Consider a forward diffusion process zt
d
= mtz0 + σtw on Rd. Let πt denote the

marginal distribution of zt for all t ⩾ 0. Suppose that ∇ log πt is L-Lipschitz (for L ⩾ 1) on Rd for
all t ⩾ 0. Defining L̄ := cL(E∥z0∥+

√
d+ ∥∇ log π0(0)∥) where c ⩾ 1 is an universal constant,

we have that for all t ⩾ 0 and z ∈ Rd,

∥∇ log πt(z)∥ ⩽ L̄(1 + ∥z∥).

Proof. Define π̄t(z) := m−d
t π0(m

−1
t z), which is the density of the random variable mtz0. Hence,

we have that πt = π̄t ∗ γσ2
t
. By Lemma C.3, whenever L ⩽ m2

t/(2σ
2
t ), we have that:

∥∇ log πt(0)∥ ⩽ 6m−2
t Lσt

√
d+ (m−1

t + 2m−3
t Lσ2

t )∥∇ log π0(0)∥.

We now compute the range of t’s for which L ⩽ m2
t/(2σ

2
t ) holds. Using the specific form of mt, σt,

2L ⩽
m2

t

σ2
t

=
exp(−2t)

1− exp(−2t)
=

1

exp(2t)− 1
⇐⇒ t ⩽

1

2
log

(
1 +

1

2L

)
=: t⋆.

First, note that since we assume L ⩾ 1, then we have that t⋆ is bounded by a universal constant.
Hence, for t ⩽ t⋆,

∥∇ log πt(0)∥ ≲ L(
√
d+ ∥∇ log π0(0)∥).

Hence for any z,

∥∇ log πt(z)∥ ⩽ L∥z∥+ ∥∇ log πt(0)∥

⩽ L∥z∥+ cL(
√
d+ ∥∇ log π0(0)∥)

⩽ cL(
√
d+ ∥∇ log π0(0)∥)(1 + ∥z∥).

On the other hand, when t ⩾ t⋆, more work is needed. When t ⩾ t⋆, we first bound:

σ−1
t ⩽ σ−1

t⋆ =
√
2L+ 1.
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Define two events:

E1 :=
{
E[∥w∥/σt | zt] ⩾ 4

√
d/σt

}
, E2 :=

{
∥zt∥ ⩾ 4(E∥z0∥+ σt

√
d)
}

By Markov’s inequality we have that:

Pzt {E1} ⩽ 1/4, Pzt {E2} ⩽ 1/4.

Now suppose that Ec
1 ⊆ E2. Then, we have a contradiction, since:

1− 1/4 ⩽ Pzt{Ec
1} ⩽ Pzt{E2} ⩽ 1/4.

Hence, there must exists an ω ∈ Ec
1 such that ω ̸∈ E2. Hence, there exists a z̄t satisfying:

∥∇ log πt(z̄t)∥ ⩽ E[∥w∥/σt | zt = z̄t] ⩽ 4
√
d/σt, ∥z̄t∥ ⩽ 4(E∥z0∥+ σt

√
d).

Hence for any z,

∥∇ log πt(z)∥ ⩽ L∥z − z̄t∥+ ∥∇ log πt(z̄t)∥

⩽ L∥z∥+ 4L(E∥z0∥+ σt
√
d) + 4

√
d/σt

⩽ L∥z∥+ 4L(E∥z0∥+
√
d) + 4

√
(2L+ 1)d

⩽ c′L(E∥z0∥+
√
d)(1 + ∥z∥).

Next, we state a L∞ approximation result for scalar-valued Lipschitz function from Bach (2017).
Lemma C.5 (L∞ approximation of scalar Lipschitz functions (Bach, 2017, Proposition 6)). Let
f : Rd 7→ R. Suppose that f is L-Lipschitz and B-bounded on B2(d,M). Set K := B ∨ LM . For
any γ ⩾ Od(1) ·K there exists an fγ ∈ F1 such that ∥fγ∥F1

⩽ γ and:

sup
x∈B2(d,M)

|f(x)− fγ(x)| ⩽ Od(1)K

(
K

γ

)2/(d+1)

log
( γ
K

)
.

Our next result is a simple technical fact which we will utilize in our truncation analysis.
Proposition C.6. Let S, Š be two X-valued random variables over the same probability space. Let
f : X 7→ R be a measurable function. We have:

E[f(S)] ⩽ E[f(Š)] + (
√

E[f2(S)] +
√
E[f2(Š)])

√
P{S ̸= Š}.

Note if f is non-negative, then we have the simpler bound:

E[f(S)] ⩽ E[f(Š)] +
√

E[f2(S)]P{S ̸= Š}.

Proof. We have:

E[f(S)] = E[f(S)1{S = Š}] + E[f(S)1{S ̸= Š}]
= E[f(Š)1{S = Š}] + E[f(S)1{S ̸= Š}]
= E[f(Š)] + E[f(S)1{S ̸= Š}]− E[f(Š)1{S ̸= Š}]

⩽ E[f(Š)] +
√

E[f2(S)]P{S ̸= Š}+
√
E[f2(Š)]P{S ̸= Š}.

The next result is a simple algebraic fact which will be useful for solving for implicit inequalities
involving logarithms.
Proposition C.7 (Log dominance rule, (see e.g. Du et al., 2021, Lemma F.2)). Let a, b, ν be positive
scalars. Put ν̄ := (1 + ν)ν . Then,

m ⩾ ν̄a logν(ν̄ab) =⇒ m ⩾ a logν(bm).

20



Published as a conference paper at ICLR 2025

Next, we have an intermediate result to bound the Rademacher complexity of F1-norm bounded
functions.
Proposition C.8. Let ∥xi∥ ⩽ 1 for i ∈ [n]. We have:

E{εi} sup
u,v∈B2(D)

∣∣∣∣∣ 1n
n∑

i=1

⟨u, εi⟩σ(⟨v, x⟩)

∣∣∣∣∣ ⩽ c

√
D

n
,

where the εi ∈ {±1}d are independent Rademacher random vectors8 and c > 0 is a universal
constant.

Proof. Define Xu,v := 1
n

∑n
i=1⟨u, εi⟩σ(⟨v, x⟩). Observe that for ui, vi ∈ B2(D) for i ∈ {1, 2},

Xu1,v1 −Xu2,v2 =
1

n

n∑
i=1

[σ(⟨v1, xi⟩)− σ(⟨v2, xi⟩)]⟨u1, εi⟩+
1

n

n∑
i=1

σ(⟨v2, xi⟩)⟨u1 − u2, εi⟩

=: T1 + T2.

First, we recall that a Rademacher random variable is 1-sub-Gaussian, and therefore ⟨ui, εi⟩ is also
1-sub-Gaussian since ∥ui∥ ⩽ 1. Using the fact that ReLU is 1-Lipschitz followed by Cauchy-Schwarz
and the assumption that ∥xi∥ ⩽ 1,

|σ(⟨v1, xi⟩)− σ(⟨v2, xi⟩)| ⩽ |⟨v1 − v2, xi⟩| ⩽ ∥v1 − v2∥.
Hence, [σ(⟨v1, xi⟩) − σ(⟨v2, xi⟩)]⟨u1, εi⟩ is ∥v1 − v2∥-sub-Gaussian. Consequently, T1 is ∥v1 −
v2∥/

√
n-sub-Gaussian. Similarly, since |σ(⟨v2, xi⟩)| ⩽ 1, we also have that T2 is ∥u1 − u2∥/

√
n-

sub-Gaussian. Hence, the sum T1 + T2 is sub-Gaussian with constant:√
2(∥v1 − v2∥2 + ∥u1 − u2∥2)/

√
n.

Letting ω = (u, v), we consider the following metric on Ω := B2(D)×B2(D):

d((u1, v1), (u2, v2)) =
√

∥u1 − u2∥2 + ∥v1 − v2∥2.

Hence for any ω1, ω2 ∈ Ω, the difference Xω1
−Xω2

is
√

2/n · d(ω1, ω2)-sub-Gaussian. Therefore
we can use Dudley’s inequality (see e.g. Vershynin, 2018, Chapter 8) to bound:

E sup
ω∈Ω

Xω ⩽ cn−1/2

∫ ∞

0

√
logN(ε; Ω, d) dε = cn−1/2

∫ √
2

0

√
logN(ε; Ω, d) dε.

Next, fix an ε > 0 and let {ui}, {vi} be ε/
√
2-covers of B2(D). Let [u] (resp. [v]) denote the closest

point in the cover to u (resp. v). Given (u, v) ∈ Ω, we have:

d((u, v), ([u], [v])) =
√
∥u− [u]∥2 + ∥v − [v]2∥ ⩽ ε.

Using the standard volume estimate of the covering of B2(D) (see e.g. Vershynin, 2018, Chapter 4),

logN(ε; Ω, d) ⩽ 2D log(1 + 2
√
2/ε).

Consequently,

E sup
ω∈Ω

Xw ⩽ cn−1/2
√
2D

∫ √
2

0

√
log(1 + 2

√
2/ε) dε = c′

√
D/n.

Our final preliminary result translates the previous bound Proposition C.8 to a bound on the
Rademacher complexity of F1-norm balls.
Proposition C.9. Let F = {s : Rd 7→ Rd | ∥s∥F1

⩽ R}. For any x̌i ∈ B2(D,M), i ∈ [n], we
have:

E{εi} sup
f∈F

n−1

∣∣∣∣∣
n∑

i=1

⟨εi, f(x̌i)⟩

∣∣∣∣∣ ⩽ cRM

√
D

n
,

where the εi ∈ {±1}d are independent Rademacher random vectors and c > 0 is a universal
constant.

8That is, each coordinate of εi ∈ {±1}d is an independent Rademacher random variable.
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Proof. For any {εi} and f ∈ F , observe that by the definition of F1:

n−1

∣∣∣∣∣
n∑

i=1

⟨εi, f(x̌i)⟩

∣∣∣∣∣ = n−1

∣∣∣∣∣
n∑

i=1

〈
εi,

∫
uσ(⟨v, x̌i⟩) dµ(u, v)

〉∣∣∣∣∣
=

∣∣∣∣∣
∫ [

1

n

n∑
i=1

⟨εi, u⟩σ(⟨v, x̌i⟩)

]
dµ(u, v)

∣∣∣∣∣
⩽ R sup

u,v∈SD−1

∣∣∣∣∣ 1n
n∑

i=1

⟨εi, u⟩σ(⟨v, x̌i⟩)

∣∣∣∣∣ .
Hence,

E{εi} sup
f∈F

n−1

∣∣∣∣∣
n∑

i=1

⟨εi, f(x̌i)⟩

∣∣∣∣∣ ⩽ R · E{εi} sup
u,v∈SD−1

∣∣∣∣∣ 1n
n∑

i=1

⟨εi, u⟩σ(⟨v, x̌i⟩)

∣∣∣∣∣ ,
from which the claim follows by Proposition C.8 and using homogeneity of ReLU to scale the data
points x̌i to B2(D).

D F1 APPROXIMATION THEORY FOR LIPSCHITZ CONTINUOUS FUNCTIONS

Here we develop the necessary results to establish that F1 functions can approximate structured
score functions in an efficient way. Our first result is a preliminary result that allows us to translate
L∞ approximation bounds to L2 bounds. For what follows, let the notation P(X) denote the set of
subsets of X.

Proposition D.1. Let M : (0, 1) 7→ P(RD) be such that:

∀ δ ∈ (0, 1), Pxt∼pt{xt ∈M(δ)} ⩾ 1− δ.

Suppose that R(ε, δ) satisfies the following condition: for any positive ε > 0 and δ ∈ (0, 1) there
exists a function ŝ : RD 7→ RD such that

∥ŝ∥F1
⩽ R(ε, δ), sup

x∈M(δ)

∥ŝ(x)−∇ log pt(x)∥ ⩽ ε. (D.1)

Suppose there exists a δ ∈ (0, 1) satisfying:

R4(ε/2, δ) · δ ⩽ c0ε
4/E∥xt∥4, δ ⩽ c1(εσt)

4/D2. (D.2)

Above, both c0, c1 are universal positive constants. Then, there exists an ŝ : RD 7→ RD such that:

∥ŝ∥F1 ⩽ R(ε/2, δ), ∥ŝ−∇ log pt∥L2(pt) ⩽ ε. (D.3)

Proof. Let EG := {xt ∈ M(δ)}. By assumption, we have that P(EG) ⩾ 1− δ. Put s⋆ := ∇ log pt
and let ŝ : RD 7→ RD be as guaranteed by the assumption such that:

∥ŝ∥F1
⩽ R(ε/2, δ), sup

x∈M(δ)

∥ŝ(x)− s⋆(x)∥ ⩽ ε/2.

Hence,

Ext∥ŝ− s⋆∥2 = Ext∥ŝ− s⋆∥21{EG}+ Ext∥ŝ− s⋆∥21{Ec
G}

⩽ sup
x∈M(δ)

∥ŝ(x)− s⋆(x)∥2 +
√
Ext∥ŝ− s⋆∥4 ·

√
δ

⩽ (ε/2)2 +
√
Ext

∥ŝ− s⋆∥4 ·
√
δ.

Consequently, by taking square root of both sides:

∥ŝ− s⋆∥L2(pt) ⩽ ε/2 + ∥ŝ− s⋆∥L4(pt) · δ
1/4.
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Let us now control ∥ŝ− s⋆∥L4(pt). By triangle inequality and ∥ŝ(x)∥ ⩽ ∥ŝ∥F1
∥x∥ for all x:

∥ŝ− s⋆∥L4(pt) ⩽ ∥ŝ∥L4(pt) + ∥s⋆∥L4(pt)

⩽ ∥ŝ∥F1
∥xt∥L4(pt) + ∥s⋆∥L4(pt)

⩽ R(ε/2, δ)∥xt∥L4(pt) + ∥s⋆∥L4(pt).

To control ∥s⋆∥L4(pt), we use Tweedie’s formula:

∇ log pt(xt) = E
[
mtx0 − xt

σ2
t

∣∣∣∣xt] = −E[w | xt]
σt

.

Hence by Jensen’s inequality and the tower property,

∥s⋆∥4L4(pt)
= E∥∇ log pt(xt)∥4 =

1

σ4
t

E∥E[w | xt]∥4 ⩽
1

σ4
t

E∥w∥4 ⩽
3D2

σ4
t

.

Combining these calculations,

∥ŝ− s⋆∥L4(pt) ⩽ R(ε/2, δ)∥xt∥L4(pt) +
31/4

√
D

σt
.

Hence,

∥ŝ− s⋆∥L2(pt) ⩽ ε/2 +

[
R(ε/2, δ)∥xt∥L4(pt) +

31/4
√
D

σt

]
· δ1/4

Hence, if we set δ such that:

R(ε/2, δ)∥xt∥L4(pt) · δ
1/4 ⩽ ε/4,

31/4
√
D

σt
· δ1/4 ⩽ ε/4,

then we conclude that ∥ŝ− s⋆∥L2(pt) ⩽ ε.

We next turn to our main L∞ approximation result for Lipschitz functions. We proceed in two steps.
First, we extend Lemma C.5 to vector-valued Lipschitz functions in a straightforward way. Then, we
use the log dominance rule to invert the result. For the first step, we have the following result.
Proposition D.2. Let f : Rd 7→ Rd. Suppose that f is L-Lipschitz and B-bounded on B2(d,M). Set
Kd := d · (B ∨ LM). For any γ ⩾ Od(1) ·Kd, there exists an fγ ∈ F1 such that ∥fγ∥F1

⩽ γ and:

sup
x∈B2(d,M)

∥f(x)− fγ(x)∥ ⩽ Od(1)Kd

(
Kd

γ

)2/(d+1)

log

(
γ

Kd

)
. (D.4)

Proof. For i ∈ [d], let fi(x) := ⟨ei, f(x)⟩, where ei ∈ Rd is the i-th standard basis vector. We
will apply Lemma C.5 to each of the fi’s. Note that each fi is also L-Lipschitz and B-bounded on
B2(d,M). Hence, for every i ∈ [d] there exists an fγ,i ∈ F1 with ∥fγ,i∥F1

⩽ γ/d and:

sup
x∈B2(d,M)

|fi(x)− fγ,i(x)| ⩽ Od(1)
Kd

d

(
Kd

γ

)2/(d+1)

log

(
γ

Kd

)
=: ζ.

Choosing fγ := (fγ,1, . . . , fγ,d) yields:

sup
x∈B2(d,M)

∥f(x)− fγ(x)∥ = sup
x∈B2(d,M)

√√√√ d∑
i=1

|fi(x)− fγ,i(x)|2

⩽

√√√√ d∑
i=1

sup
x∈B2(d,M)

|fi(x)− fγ,i(x)|2 ⩽
√
dζ.

To finish the claim, we bound the F1 norm of fγ . Since

fγ(x) =

d∑
i=1

eifγ,i(x),

by triangle inequality ∥fγ∥F1 ⩽
∑d

i=1∥fγ,i∥F1 ⩽ d · (γ/d) = γ.
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We now execute the second step, where we invert the RHS of Proposition D.2 and solve for γ.
Lemma A.4. Let f : Rd → Rd be L-Lipschitz and B-bounded on B2(d,M). Define K := B ∨LM .
For any ε ∈ (0,K/2), there exists an fε ∈ F1 such that supx∈B2(d,M)∥f(x)− fε(x)∥ ⩽ ε and:

∥fε∥F1
⩽ Od(1)K

(
K

ε

)(d+1)/2

log(d+1)/2

(
K

ε

)
.

Proof. Setting the RHS of (D.4) from Proposition D.2 to ε and rearranging terms, we need the
following condition to hold (recall Kd := d ·K):

γ

Kd
⩾

(
Od(1)Kd

ε

)(d+1)/2

log(d+1)/2

(
γ

Kd

)
.

Using Proposition C.7, a sufficient condition is:

γ

Kd
⩾ Od(1)

(
Od(1)Kd

ε

)(d+1)/2

log(d+1)/2

(
Od(1)

(
Od(1)Kd

ε

)(d+1)/2
)
.

The claim now follows by simplifying these expressions with our assumptions.

E UNIFORM CONVERGENCE FOR THE DSM LOSS

Our first step is to establish the claimed basic inequality (A.1).
Proposition E.1 (Basic generalization inequality). Let F be any set of functions mapping RD 7→ RD.
Let f̂t ∈ F denote the DSM empirical risk minimizer:

f̂t ∈ arg min
f∈F

L̂t(f).

Then, we have for any ε ⩾ 0:

EDt
[Rt(f̂t)] ⩽ (1 + ε) inf

f∈F
Rt(f) + EDt

sup
f∈F

[Lt(f)− (1 + ε)L̂t(f)] + ε · Ct.

Proof. For any ε ⩾ 0 and any f ∈ F ,

EDt [Rt(f̂t)] = EDt [Lt(f̂t)− Ct] using Fact C.1

= EDt
[Lt(f̂t)− (1 + ε)L̂t(f̂t) + (1 + ε)L̂t(f̂t)− Ct]

⩽ EDt
[Lt(f̂t)− (1 + ε)L̂t(f̂t) + (1 + ε)L̂t(f)− Ct] since f̂t is an ERM

= EDt [Lt(f̂t)− (1 + ε)L̂t(f̂t)] + (1 + ε)Lt(f)− Ct since EDt [L̂t(f)] = Lt(f)

= EDt
[Lt(f̂t)− (1 + ε)L̂t(f̂t)] + (1 + ε)Rt(f) + ε · Ct using Fact C.1

⩽ EDt sup
f∈F

[Lt(f)− (1 + ε)L̂t(f)] + (1 + ε)Rt(f) + ε · Ct.

The claim now follows by taking the infimum of the RHS over f ∈ F .

The rest of this section will focus on the uniform convergence term in the basic inequality (A.1). We
first define some notation which we will use in our analysis. Let νδ(x̌0, x̌t) denote a distribution over
pairs of truncated vectors, parameterized by δ ∈ (0, 1), defined as follows:

νδ := Law((x0, xt) · 1{Ex(δ)}), P{Ex(δ)} ⩾ 1− δ. (E.1)

Note that in the above definition, the event Ex(δ) lives in the joint probability space of (x0, xt). The
specifics of the event Ex(δ) are left unspecified for now, as they depend on the underlying details of
our latent structure. However, we will require the following properties to hold almost surely for some
µ̌t,x(δ) and µ̌t,q(δ):

(x̌0, x̌t) ∼ νδ =⇒ ∥x̌t∥ ⩽ µ̌t,x(δ) and ∥∇ log qt(x̌t | x̌0)∥ ⩽ µ̌t,q(δ). (E.2)
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Next, define the population denoising loss over νδ as:

Ľt(f ; δ) := E(x̌0,x̌t)∼νδ
∥f(x̌t)−∇ log qt(x̌t | x̌0)∥2. (E.3)

Furthermore, given a dataset D̄t = {(x̄i0, x̄it)}ni=1, the generalized empirical loss is defined as

L̂t(f ; D̄t) :=
1

n

n∑
i=1

∥f(x̄it)−∇ log qt(x̄
i
t | x̄i0)∥2. (E.4)

Note that the above definitions are used only in our truncation argument, and do not appear in the
actual learning procedure.

The main result of this section is the following bound on the uniform convergence term.

Lemma E.2. For Rt ⩾ 1, define Ft := {s : RD 7→ RD | ∥s∥F1 ⩽ Rt}. For ε ∈ (0, 1], we have:

E sup
f∈Ft

[Lt(f)− (1 + ε)L̂t(f)]

⩽ Õ(1)(1 + ε−1)

[
R2

t µ̌
2
t,x(n

−5)D + µ̌2
t,q(n

−5)

n

]
+O(1)

R2
t ∥xt∥2L4(pt)

+D/σ2
t

n2
.

The proof of Lemma E.2 follows immediately from the following two results (invoking them both
with δ = n−4). The first result applies a truncation argument so that it suffices to prove uniform
convergence over truncated data.

Proposition E.3. Fix a δ ∈ (0, 1). Define the truncated random pair (x̌0, x̌t) ∼ νδ/n (cf. (E.1)). Let
the truncated dataset Ďt := {(x̌i0, x̌it)}ni=1 be n iid copies of (x̌0, x̌t), i.e., Ďt ∼ ν⊗n

δ/n. For some
Rt ⩾ 1, define Ft := {s : RD 7→ RD | ∥s∥F1

⩽ Rt}. For all ε ∈ [0, 1], we have that:

E sup
f∈Ft

[Lt(f)− (1 + ε)L̂t(f)]

⩽ E sup
f∈Ft

[Ľt(f ; δ/n)− (1 + ε)L̂t(f ; Ďt)] + c(R2
t ∥xt∥2L4(pt)

+ σ−2
t D) · δ1/2,

where c > 0 is a universal constant.

Proof. Let EG denote the event EG := {Dt = Ďt}. By a union bound, P(EG) ⩾ 1 − δ. Next we
define for a dataset D̄t the random variable:

ψ(D̄t) := sup
f∈Ft

[Lt(f)− (1 + ε)L̂t(f ; D̄t)]. (E.5)

Applying Proposition C.6:

E[ψ(Dt)] ⩽ E[ψ(Ďn)] + (
√
E[ψ2(Dt)] +

√
E[ψ2(Ďn)]) · δ1/2. (E.6)

We next need to upper bound both:

E[ψ2(Dt)], E[ψ2(Ďn)].

To do this, we first derive a few intermediate bounds. We start with:

Lt(f) = E(x0,xt)∥f(xt)−∇ log qt(xt | x0)∥2

⩽ 2E∥f(xt)∥2 + 2E∥∇ log qt(xt | x0)∥2 since (a+ b)2 ⩽ 2(a2 + b2)

⩽ 2R2
tE∥xt∥2 + 2E∥(xt −mtx0)/σ

2
t ∥2 since ∥f∥F1

⩽ Rt

= 2R2
tE∥xt∥2 + 2E∥w/σt∥2

= 2R2
tE∥xt∥2 + 2D/σ2

t .
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Next, we have:

E sup
f∈Ft

L̂2
t (f) = E sup

f∈Ft

(
1

n

n∑
i=1

∥f(xit)−∇ log qt(x
i
t | xi0)∥2

)2

⩽ E

(
2R2

t

n

n∑
i=1

∥xit∥2 +
2

nσ2
t

n∑
i=1

∥wi∥2
)2

since ∥f∥F1 ⩽ Rt

⩽
4R4

t

n

n∑
i=1

E∥xit∥4 +
4

nσ4
t

n∑
i=1

E∥wi∥4 Cauchy-Schwarz

⩽ 4R4
tE∥xt∥4 + 12D2/σ4

t .

Hence,

E[ψ2(Dt)] ⩽ E sup
f∈Ft

[Lt(f)− (1 + ε)L̂t(f)]
2

≲ sup
f∈Ft

L2
t (f) + E sup

f∈Ft

L̂2
t (f)

≲ R4
tE∥xt∥4 +D2/σ4

t .

Now we move on to bounding E[ψ2(Ďn)]. Defining Ex := Ex(δ/n),

x̌t −mtx̌0 = (xt −mtx0) · 1{Ex} = σtw · 1{Ex},

and therefore:

E∥(x̌t −mtx̌0)/σ
2
t ∥4 = E∥w/σt∥41{Ex} ⩽ E∥w/σ4

t ∥ ⩽ 3D2/σ4
t .

Hence:

E sup
f∈Ft

L̂2
t (f ; Ďt) = E sup

f∈Ft

(
1

n

n∑
i=1

∥f(x̌it)−∇ log qt(x̌
i
t | x̌i0)∥2

)2

⩽ E

(
2R2

t

n

n∑
i=1

∥x̌it∥2 +
2

nσ2
t

n∑
i=1

∥(x̌it −mtx̌
i
0)/σ

2
t ∥2
)2

since ∥f∥F1 ⩽ Rt

⩽
4R4

t

n

n∑
i=1

E∥x̌it∥4 +
4

nσ4
t

n∑
i=1

E∥(x̌it −mtx̌
i
0)/σ

2
t ∥4 Cauchy-Schwarz

⩽
4R4

t

n

n∑
i=1

E∥xit∥4 +
4

nσ4
t

n∑
i=1

E∥(xit −mtx
i
0)/σ

2
t ∥4

=
4R4

t

n

n∑
i=1

E∥xit∥4 +
4

nσ4
t

n∑
i=1

E∥wi/σt∥4

⩽ 4R4
tE∥xt∥4 + 12D2/σ4

t .

Therefore, we conclude that:

max{E[ψ2(Dt)],E[ψ2(Ďt)]} ≲ R4
tE∥xt∥4 + σ−4

t D2. (E.7)

Plugging (E.7) into (E.6),

E[ψ(Dt)] ⩽ E[ψ(Ďt)] + c(R2
t ∥xt∥2L4(pt)

+ σ−2
t D) · δ1/2

⩽ E sup
f∈Ft

[Lt(f)− (1 + ε)L̂t(f ; Ďt)] + c(R2
t ∥xt∥2L4(pt)

+ σ−2
t D) · δ1/2

⩽ E sup
f∈Ft

[Ľt(f ; δ/n)− (1 + ε)L̂t(f ; Ďt)] + sup
f∈Ft

[Lt(f)− Ľt(f ; δ/n)]

+ c(R2
t ∥xt∥2L4(pt)

+ σ−2
t D) · δ1/2.
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Next, define:

Vf ((x, x̄)) := ∥f(x̄)−∇ log qt(x̄ | x)∥2.

Observe by Jensen’s inequality we can bound

E[V 2
f ((x0, xt))] ⩽ E sup

f∈Ft

L̂2
t (f) ≲ R4

tE∥xt∥4 +D2/σ4
t .

Therefore, by application of Proposition C.6,

E[Vf ((x0, xt))] ⩽ E[Vf ((x̌0, x̌t))] +
√
E[V 2

f ((x0, xt))] ·
√
δ/n

⩽ E[Vf ((x̌0, x̌t))] + c′(R2
t ∥xt∥2L4(pt)

+ σ−2
t D) ·

√
δ/n.

Hence,

sup
f∈Ft

[Lt(f)− Ľt(f ; δ/n)] = sup
f∈Ft

[E[Vf ((x0, xt))]− E[Vf ((x̌0, x̌t))]]

⩽ c′(R2
t ∥xt∥2L4(pt)

+ σ−2
t D) ·

√
δ/n,

from which the claim follows.

The second result proves uniform convergence over truncated inputs.
Proposition E.4. Fix δ ∈ (0, 1). Define the truncated random vectors (x̌0, x̌t) ∼ νδ/n (cf. (E.1)),
and let Ďt ∼ ν⊗n

δ/n. For some Rt ⩾ 1, define Ft := {s : RD 7→ RD | ∥s∥F1 ⩽ Rt}. For all
ε ∈ (0, 1], we have that:

E sup
f∈Ft

[Ľt(f ; δ/n)− (1 + ε)L̂t(f ; Ďt)]

⩽ Õ(1)(1 + ε−1)

[
R2

t µ̌
2
t,x(δ/n)D + µ̌2

t,q(δ/n)

n

]
+O(1)

R2
t ∥xt∥2L4(pt)

+D/σ2
t

n2
.

Proof. Let µ̌t,x := µ̌t,x(δ/n) and similarly µ̌t,q := µ̌t,q(δ/n). We first observe that the following
holds almost surely:

∥f(x̌t)−∇ log qt(x̌t | x̌0)∥ ⩽ Rt∥x̌t∥+ ∥∇ log qt(x̌t | x̌0)∥
⩽ Rtµ̌t,x + µ̌t,q =: BH.

We consider the hypothesis of functions:

H := {(x, x̄) 7→ ∥f(x̄)−∇ log qt(x̄ | x)∥ | f ∈ Ft},

defined over the support Ž := supp((x̌0, x̌t)), and coupled with the loss function ϕ(z) = z2, which
is 2-smooth. From Srebro et al. (2010, Theorem 1), we have with probability at least 1− δ over Ďt,
for all h ∈ H:9

E[ϕ(h(x̌0, x̌t))] ⩽ (1 + ε)
1

n

n∑
i=1

ϕ(h(x̌i0, x̌
i
t)) + (1 + ε−1)c

[
log3 n ·R2

n(H) +
B2

H log(1/δ)

n

]
,

(E.8)

where c > 0 is a universal constant, and Rn(H) denotes the Rademacher complexity of H:

Rn(H) := sup
z1:n⊂Ž

Eε sup
h∈H

1

n

∣∣∣∣∣
n∑

i=1

h(zi)εi

∣∣∣∣∣ .
We now bound this Rademacher complexity term. Let G denote the shifted function class:

G := {(x, x̄) 7→ f(x̄)−∇ log qt(x̄ | x) | f ∈ Ft}.
9Note that we ignore the labels y in the setup of Srebro et al. (2010, Theorem 1), as they are immaterial.
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Letting g0 ∈ G and zi = (xi, x̄i) ∈ Ž for i ∈ [n] be arbitrary, we have:

Eε sup
h∈H

∣∣∣∣∣
n∑

i=1

h(zi)εi

∣∣∣∣∣
= Eε sup

g∈G

∣∣∣∣∣
n∑

i=1

εi∥g(zi)∥

∣∣∣∣∣
⩽ Eε sup

g∈G

∣∣∣∣∣
n∑

i=1

εi(∥g(zi)∥ − ∥g0(zi)∥)

∣∣∣∣∣+ E

∣∣∣∣∣
n∑

i=1

εi∥g0(zi)∥

∣∣∣∣∣
⩽ Eε sup

g∈G

∣∣∣∣∣
n∑

i=1

εi(∥g(zi)∥ − ∥g0(zi)∥)

∣∣∣∣∣+
√√√√ n∑

i=1

∥g0(zi)∥2 Jensen’s inequality

⩽ Eε sup
g,g′∈G

∣∣∣∣∣
n∑

i=1

εi(∥g(zi)∥ − ∥g′(zi)∥)

∣∣∣∣∣+
√√√√ n∑

i=1

∥g0(zi)∥2 since g0 ∈ G

= Eε sup
g,g′∈G

n∑
i=1

εi(∥g(zi)∥ − ∥g′(zi)∥) +

√√√√ n∑
i=1

∥g0(zi)∥2 since G − G is symmetric

⩽ 2Eε sup
g∈G

n∑
i=1

εi∥g(zi)∥+
√
nBH.

Next, we proceed with Maurer (2016, Corollary 4), which allows to bound, for Rademacher random
vectors γi ∈ {±1}D,

Eε sup
g∈G

n∑
i=1

εi∥g(zi)∥ ⩽
√
2Eγ sup

g∈G

n∑
i=1

⟨γi, g(zi)⟩

=
√
2Eγ sup

f∈Ft

n∑
i=1

⟨γi, f(x̄i)⟩

≲ Rtµ̌t,x

√
Dn,

where the last inequality uses Proposition C.9. Putting the terms together,

Rn(H) ≲ (Rtµ̌t,x

√
D +BH)

1√
n
≲ (Rtµ̌t,x

√
D + µ̌t,q)

1√
n
.

From (E.8), with probability at least 1− 1/n4, for all h ∈ H:

E[ϕ(h(x̌0, x̌t))] ⩽ (1 + ε)
1

n

n∑
i=1

ϕ(h(x̌i0, x̌
i
t)) + (1 + ε−1)c log3 n

[
R2

t µ̌
2
t,xD + µ̌2

t,q

n

]
.

That is, with probability at least 1− 1/n4,

sup
f∈Ft

[Ľt(f ; δ/n)− (1 + ε)L̂t(f ; Ďt)] ⩽ Õ(1)(1 + ε−1)

[
R2

t µ̌
2
t,xD + µ̌2

t,q

n

]
.

Call this event E ′. We have that:

E sup
f∈Ft

[Ľt(f ; δ/n)− (1 + ε)L̂t(f ; Ďt)]

= E sup
f∈Ft

[Ľt(f ; δ/n)− (1 + ε)L̂t(f ; Ďt)]1{E ′}+ E sup
f∈Ft

[Ľt(f ; δ/n)− (1 + ε)L̂t(f ; Ďt)]1{(E ′)c}

≲ Õ(1)(1 + ε−1)

[
R2

t µ̌
2
t,xD + µ̌2

t,q

n

]
+

1

n2

√
E sup

f∈Ft

[Ľt(f ; δ/n)− (1 + ε)L̂t(f ; Ďt)]2.
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To finish the proof, we observe that:

Ľt(f ; δ/n) = E(x̌0,x̌t)∼νδ/n
∥f(x̌t)−∇ log qt(x̌t | x̌0)∥2

⩽ 2E∥f(x̌t)∥2 + 2E∥∇ log qt(x̌t | x̌0)∥2

⩽ 2R2
tE∥x̌t∥2 + 2E∥(x̌t −mtx̌0)/σ

2
t ∥2

⩽ 2R2
tE∥xt∥2 + 2E∥(xt −mtx0)/σ

2
t ∥2

= 2R2
tE∥xt∥2 + 2D/σ2

t .

On the other hand, from (E.7),

E sup
f∈Ft

Ľ2
t (f ; Ďt) ≲ R4

tE∥xt∥4 + σ−4
t D2.

Hence, combining these bounds together,

E sup
f∈Ft

[Ľt(f ; δ/n)− (1 + ε)L̂t(f ; Ďt)]

≲ Õ(1)(1 + ε−1)

[
R2

t µ̌
2
t,xD + µ̌2

t,q

n

]
+
R2

t ∥xt∥2L4(pt)
+D/σ2

t

n2
.

F ANALYSIS OF SUBSPACE STRUCTURE (SECTION 3.1)

We now specialize the previous approximation and uniform convergence results to the subspace
structure setting.
Proposition F.1. Fix an M ⩾ 1. For any ε ∈ (0, L̄M/2), there exists an fε : Rd 7→ Rd such that
supz∈B2(d,M)∥fε(z)−∇ log πt(z)∥ ⩽ ε, and

∥fε∥F1
⩽ Rlin(ε,M) := Od(1)(L̄M)(d+3)/2ε−(d+1)/2 log(d+1)/2(L̄M/ε). (F.1)

Proof. We will invoke Lemma A.4. To do this, we first observe for any z ∈ B2(d,M), using
Proposition C.4,

∥∇ log πt(z)∥ ⩽ L̄(1 + ∥z∥) ⩽ 2L̄M.

On the other hand, we know that ∇ log πt is L-Lipschitz. The claim now follows from Lemma A.4.

Our next task is to upgrade the previous result to an approximation result for the ambient score
∇ log pt, using Proposition D.1.
Proposition F.2. Fix an ε ∈ (0, 1). There exists an ŝ : RD 7→ RD such that:

∥ŝ∥F1
⩽ Õd(1)(L̄(µt,z ∨ β))(d+3)/2ε−(d+1)/2 + 2(D − d)/σ2

t , ∥ŝ−∇ log pt∥L2(pt) ⩽ ε.
(F.2)

Proof. Define

M(δ) :=
{
∥UTxt∥ ⩽ Aδ

}
, Aδ := c0(µt,z + β

√
log(1/δ)).

We note that the condition P{xt ∈M(δ)} ⩾ 1− δ holds for an appropriate choice of c0.

Now, given ε, δ ∈ (0, 1), from Proposition F.1 there exists ĥ : Rd 7→ Rd such that:

∥ĥ∥F1
⩽ Rlin(ε,Aδ), sup

z∈B2(d,Aδ)

∥ĥ(z)−∇ log πt(z)∥ ⩽ ε.

Embed ĥ to a function ŝ : RD 7→ RD by:

ŝ(x) = Uĥ(UTx)− 1

σ2
t

(I − UUT)x,
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and observe that (cf. Proposition A.1):

sup
x∈M(δ)

∥ŝ(x)− s⋆(x)∥ = sup
x∈M(δ)

∥Uĥ(UTx)− U∇ log πt(U
Tx)∥

⩽ sup
x∈M(δ)

∥ĥ(UTx)−∇ log πt(U
Tx)∥

⩽ sup
z∈B2(d,Aδ)

∥ĥ(z)−∇ log πt(z)∥

⩽ ε.

Next, we bound the F1-norm of ŝ. To do this, we first bound the F1-norm of x 7→ (I − UUT)x by
representing it by the following sum of Dirac masses

D−d∑
i=1

δ(ui,ui) + δ(−ui,−ui),

and hence ∥x 7→ (I −UUT)x∥F1
⩽ 2(D− d). Next, recall by Fact A.3 that ∥x 7→ Uĥ(UTx)∥F1

=
∥h∥F1

. Combining these results,

∥ŝ∥F1
⩽ ∥x 7→ Uĥ(UTx)∥F1

+
1

σ2
t

∥x 7→ (I − UUT)x∥F1

⩽ ∥ĥ∥F1
+

2

σ2
t

(D − d) ⩽ Rlin(ε,Aδ) +
2

σ2
t

(D − d) =: R(ε, δ). (F.3)

That is, we have shown that for ε > 0 and δ ∈ (0, 1), there exists a ŝ : RD 7→ RD such that:

∥ŝ∥F1
⩽ R(ε, δ), sup

x∈M(δ)

∥ŝ(x)−∇ log pt(x)∥ ⩽ ε.

This verifies condition (D.1) of Proposition D.1. We now need to solve for a δ⋆ which satisfies the
conditions listed in (D.2). By several applications of Proposition C.7, the conditions listed (D.2) are
satisfied with a δ⋆ ∈ (0, 1) satisfying:

log(1/δ⋆) ⩽ Od(1) log

(
L̄Dµt,xβ

εσt

)
.

Since we do not track the exact form of the leading Od(1) constant, we skip the specific calculations.
The result now follows from Proposition D.1 after estimating R(ε/2, δ⋆). First, we bound,

Aδ⋆ = c0(µt,z + β
√

log(1/δ⋆)) = Õd(1)(µt,z ∨ β).
Hence,

R(ε/2, δ⋆) ⩽ Õd(1)(L̄(µt,z ∨ β))(d+3)/2ε−(d+1)/2.

Therefore, the result follows.

Now we have the tools in place to prove Theorem 3.3, our main score estimation result for this section.

Theorem 3.3. Suppose that p0 follows the latent structure (3.8), and that both Assumption 3.1 and
Assumption 3.2 hold. Fix a t > 0 and define

Ft := {s : RD 7→ RD | ∥s∥F1 ⩽ Rt}, Rt := R̄tn
d+1

2(d+5) +
D

σ2
t

, (3.9)

where R̄t does not depend on n.10 Suppose that n satisfies

n ⩾ n0(t) := poly(D, 1/σt, µt,x ∨ β) · polyd(L̄, µt,z ∨ β). (3.10)

Then, the empirical risk minimizer ŝt ∈ argmins∈Ft
L̂t(s) satisfies:

EDt
[Rt(ŝt)] ⩽ Õd(1)

[
D2

σ2
t n

(L̄(µt,z ∨ β))d+3(µt,x ∨ β)2
] 2

d+5

+ Õd(1)

√
D3

σ6
t n

(µt,x ∨ β)2.

10The explicit dependence of R̄t on the other problem parameters is detailed in the proof.
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Proof. First, by Proposition F.2, we know if we set Rt to be

Rt = Õd(1)(L̄(µt,z ∨ β))(d+3)/2ε−(d+1)/2 + 2(D − d)/σ2
t ,

then, we have infs∈Ft
Lt(s) ⩽ ε2.

Now we need to apply Lemma E.2. To do this, we need to define our auxiliary truncated random
vectors (cf. (E.1)). We choose the definition:

Ex(δ) := {∥z0∥ ⩽ µ0 + β
√
2 log(2/δ), ∥w∥ ⩽

√
D +

√
2 log(2/δ)}, (F.4)

which by sub-Gaussian concentration followed by a union bound satisfies P{Ex(δ)} ⩾ 1− δ. Note
that under this definition of Ex(δ), we can take:

µ̌t,x(δ) ≲ µt,x + β
√
log(1/δ), µ̌t,q(δ) ≲ σ−1

t (
√
D +

√
log(1/δ)). (F.5)

By applying Lemma E.2, we obtain for γ ∈ (0, 1),

E sup
f∈Ft

[Lt(f)− (1 + γ)L̂t(f)] ⩽ Õ(1)(1 + γ−1)
D

n

[
R2

t (µt,x ∨ β)2 + 1/σ2
t

]
.

By the basic inequality Proposition E.1,

EDt [Rt(f̂t)] ⩽ 2ε2 + Õd(γ
−1)

D

n
(L̄(µt,z ∨ β))d+3ε−(d+1)(µt,x ∨ β)2

+ Õd(γ
−1)

D2

nσ4
t

(µt,x ∨ β)2 + γ · Ct.

We now optimize this expression over both ε, γ ∈ (0, 1). We first optimize both expressions ignoring
the constraint that ε, γ < 1. First, optimizing over γ, we set

γ = Õd(1)

√
1

Ct

[
D

n
(L̄(µt,z ∨ β))d+3ε−(d+1)(µt,x ∨ β)2 + D2

nσ4
t

(µt,x ∨ β)2
]
,

and from this we obtain:

EDt
[Rt(f̂t)] ⩽ 2ε2 +

√
Õd(1)

CtD

n
(L̄(µt,z ∨ β))d+3ε−(d+1)(µt,x ∨ β)2 +

√
Õd(1)

CtD2

nσ4
t

(µt,x ∨ β)2.

Now optimizing over ε, we set

ε = Õd(1)

[
CtD

n
(L̄(µt,z ∨ β))d+3(µt,x ∨ β)2

]1/(d+5)

,

and obtain:

EDt [Rt(f̂t)] ⩽ Õd(1)

[
CtD

n
(L̄(µt,z ∨ β))d+3(µt,x ∨ β)2

]2/(d+5)

+ Õd(1)

√
CtD2

nσ4
t

(µt,x ∨ β)2.

The proof concludes by setting n large enough so that both ε, γ < 1.

We now restate and prove Corollary 3.4, our main end-to-end bound for the latent subspace case.
Corollary 3.4. Fix ε, ζ ∈ (0, 1). Suppose that p0 follows the latent structure (3.8), and that both
Assumption 3.1 and Assumption 3.2 hold. Consider the exponential integrator (3.4) with:

T = c0 log

(√
D ∨ µ0

ε

)
, N = 2

⌈
c1
D ∨ µ2

0

ε2

[
log2

(√
D ∨ µ0

ε

)
+ log2

(
1

ζ

)]⌉
, (3.11)

and reverse process discretization timesteps {τi}Ni=0 defined as:

τi =

{
2(T − 1) i

N if i ∈ {0, . . . , N/2},
T − ζ2i/N−1 if i ∈ {N/2 + 1, . . . , N}. (3.12)
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Next, define the forward process timesteps {ti}N−1
i=0 by ti := T − τN−i. Suppose the exponential

integration scheme is run with score functions {ŝti}N−1
i=0 , where ŝti ∈ argmins∈Fti

L̂ti(s) with Ft

as defined in (3.9). Suppose furthermore that n satisfies:

n ⩾ Õd(1)max

{
D2

ζ
(L̄(µz ∨ β))d+3(µx ∨ β)2 · ε−(d+5),

D3

ζ3
(µx ∨ β)2 · ε−4, n0(ζ)

}
,

where n0(·) is defined in (3.10). With constant probability (over the randomness of the training
datasets {Dti}N−1

i=0 ), we have that KL(pζ ∥ Law(ŷT−ζ)) ⩽ ε2, where Law(ŷT−ζ) refers to the
distribution of the random vector ŷT−ζ .

Proof. Using the bounds µt,z ⩽ µz and µt,x ⩽ µx, from Theorem 3.3 we have that the following
ERM bound holds for all t ∈ [0, T ]:

EDt [Rt(f̂t)] ⩽ Õd(1)

[
D2

nσ2
t

(L̄(µz ∨ β))d+3(µ2
x ∨ β2)

]2/(d+5)

+ Õd(1)

√
D3

nσ6
t

(µ2
x ∨ β2).

Furthermore, since e−x ⩽ 1− x/2 for x ∈ [0, 1.59], then for t ⩽ 0.795 we have

σ2
t = 1− exp(−2t) ⩾ t =⇒ 1/σ2

t ⩽ 1/t.

On the other hand, for t > 0.795, we have the bound

σ2
t = 1− exp(−2t) ⩾ 1− exp(−1.59) ⩾ 0.796 =⇒ 1/σ2

t ≲ 1.

Combining these inequalities we have that 1/σ2
t ⩽ 1/σ2

ζ ≲ 1/ζ for all t ⩾ ζ.

Hence, using the choice of T , N from (3.11) and {ti}Ni=0 as specified in Lemma C.2, we have that:
N−1∑
k=0

γkEpT−tk
∥f̂T−tk −∇ log pT−tk∥2

≲ T

[
Õd(1)

[
D2

nζ
(L̄(µz ∨ β))d+3(µ2

x ∨ β2)

]2/(d+5)

+ Õd(1)

√
D3

nζ3
(µ2

x ∨ β2)

]

≲ log

(√
D ∨ µ0

ε

)[
Õd(1)

[
D2

nζ
(L̄(µz ∨ β))d+3(µ2

x ∨ β2)

]2/(d+5)

+ Õd(1)

√
D3

nζ3
(µ2

x ∨ β2)

]
.

Hence, in order to make ε2score ⩽ ε2, we need to take n large enough such that the following
conditions hold:

log

(√
D ∨ µ0

ε

)
Õd(1)

[
D2

nζ
(L̄(µz ∨ β))d+3(µ2

x ∨ β2)

]2/(d+5)

≲ ε2,

log

(√
D ∨ µ0

ε

)
Õd(1)

√
D3

nζ3
(µ2

x ∨ β2) ≲ ε2.

Hence, we need to take n satisfying:

n ⩾ Õd(1)max

{
D2

ζ
(L̄(µz ∨ β))d+3(µ2

x ∨ β2) · ε−(d+5),
D3

ζ3
(µ2

x ∨ β2) · ε−4

}
.

On the other hand we also need to take n ⩾ n0(ζ) (cf. (3.10)). The claim now follows.

G ANALYSIS OF INDEPENDENT COMPONENTS (SECTION 3.2)

We follow a very similar structure as in Appendix F. We first start with an approximation result.
Proposition G.1. For an M ⩾ 1 and i ∈ [K]. For any ε ∈ (0, L̄iM/2), there exists an fε : Rdi 7→
Rdi such that supz∈B2(di,M)∥fε(z)−∇ log π

(i)
t (z)∥ ⩽ ε, and

∥fε∥F1 ⩽ R
(i)
ind(ε,M) := Od(1)(L̄iM)(d+3)/2ε−(d+1)/2 log(d+1)/2(L̄iM/ε). (G.1)

32



Published as a conference paper at ICLR 2025

Proof. The proof is nearly identical to Proposition F.1, and therefore we omit the details.

Next, we upgrade the previous approximation result to approximation in L2(pt).
Proposition G.2. Fix ε1, . . . , εK ∈ (0, 1). There exists an ŝ : RD 7→ RD satisfying:

∥ŝ∥F1 ⩽
K∑
i=1

Õdi(1)(L̄i(µ
(i)
t,x ∨ β))(di+3)/2ε

−(di+1)/2
i , ∥ŝ−∇ log pt∥L2(pt) ⩽

√√√√ K∑
i=1

ε2i .

Proof. Recall that Pi ∈ Rdi×D selects the coordinates corresponding to the i-th variable group
(cf. Proposition A.2). Define the sets M (i)(δ) as:

M (i)(δ) :=
{
x ∈ RD | ∥PiU

Tx∥ ⩽ A
(i)
δ

}
, A

(i)
δ := c0(µ

(i)
t,x + βi

√
log(1/δ)), i ∈ [K].

With appropriate choice of c0, we have that Pxt∼pt
{xt ∈M (i)(δ)} ⩾ 1− δ.

Given ε, δ ∈ (0, 1), from Proposition G.1, there exists ĥi : Rd 7→ Rd for i ∈ [K] such that:

∥ĥi∥F1
⩽ R

(i)
ind(ε,A

(i)
δ ), sup

z∈B2(d,A
(i)
δ )

∥ĥi(z)−∇ log π
(i)
t (z)∥ ⩽ ε.

Now define ŝi := UPT
i ĥi(PiU

Tx). Observe that:

sup
x∈M(i)(δ)

∥ŝi(x)− UPT
i ∇ log π

(i)
t (PiU

Tx)∥ ⩽ sup
x∈M(i)(δ)

∥ĥi(PiU
Tx)−∇ log π

(i)
t (PiU

Tx)∥

⩽ sup
z∈B2(di,A

(i)
δ )

∥ĥi(z)−∇ log π
(i)
t (z)∥

⩽ ε.

Next, observe that ∥ŝi∥F1
= ∥ĥi∥F1

by Fact A.3. Invoking Proposition D.1 as is done in the proof of
Proposition F.2, we have that for all i ∈ [K], ∥ŝi − UPT

i ∇ log π
(i)
t (PiU

T·)∥L2(pt) ⩽ εi and

∥ŝi∥F1
⩽ Õdi

(1)(L̄i(µ
(i)
t,z ∨ βi))(di+3)/2ε

−(d+1)/2
i .

Recall by Proposition A.2 we have:

∇ log pt(x) =

K∑
i=1

UPT
i ∇ log π

(i)
t (PiU

Tx).

Hence, setting ŝ =
∑K

i=1 ŝi, we have that

∥ŝ−∇ log pt∥2L2(pt)

= E

∥∥∥∥∥
K∑
i=1

UPT
i (ĥi(PiU

Txt)−∇ log π
(i)
t (PiU

Txt))

∥∥∥∥∥
2

=

K∑
i=1

E∥UPT
i (ĥi(PiU

Txt)−∇ log π
(i)
t (PiU

Txt))∥2 since PjP
T
i = 0 for i ̸= j

=

K∑
i=1

∥ŝi − UPT
i ∇ log π

(i)
t (PiU

T·)∥2L2(pt)

⩽
K∑
i=1

ε2i .

Furthermore,

∥ŝ∥F1 ⩽
K∑
i=1

∥ŝi∥F1 ⩽
K∑
i=1

Õdi(1)(L̄i(µ
(i)
t,z ∨ βi))(di+3)/2ε

−(d+1)/2
i .
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We now prove Theorem 3.7, our score estimation result for the independent components setting.
Theorem 3.7. Suppose that p0 follows the latent structure (3.13), and that both Assumption 3.5 and
Assumption 3.6 hold. Fix a t > 0 and define

Ft := {s : RD 7→ RD | ∥s∥F1
⩽ Rt}, Rt :=

K∑
i=1

R̄
(i)
t n

di+1

2(di+5) , (3.14)

where R̄(i)
t does not depend on n. Suppose that n satisfies

n ⩾ n0(t) := poly(D, 1/σt, µt,x ∨ β) · max
i∈[K]

polydi
(L̄i, µ

(i)
t,x ∨ β(i)). (3.15)

Then, the empirical risk minimizer ŝt ∈ argmins∈Ft
L̂t(s) satisfies:

EDt
[Rt(ŝt)] ⩽

K∑
i=1

Õdi
(1)

[
D2K

σ2
t n

(L̄i(µ
(i)
t,x ∨ βi))di+3(µt,x ∨ β)2

] 2
di+5

+ Õ(1)

√
D2

σ4
t n

(µt,x ∨ β)2.

Proof. Here we minic the proof of Theorem 3.3. First, by Proposition G.2, we know if we set Rt as

Rt =

K∑
i=1

Õdi(1)(L̄i(µ
(i)
t,x ∨ βi))(di+3)/2ε

−(di+1)/2
i ,

then, we have infs∈Ft
Lt(s) ⩽

∑K
i=1 ε

2
i .

Our next step is to apply Lemma E.2. To do this we need to define auxiliary truncated random vectors
(cf. (E.1)). In this case, we use the definition:

Ex(δ) :=
⋂

i∈[K]

{∥z(i)0 ∥ ⩽ µ
(i)
0 + βi

√
2 log(2K/δ)} ∩ {∥w∥ ⩽

√
D +

√
2 log(2/δ)}, (G.2)

which satisfies P{Ex(δ)} ⩾ 1− δ. We have

µ̌t,x(δ) ≲ µt,x + β
√
log(K/δ), µ̌t,q(δ) ≲ σ−1

t (
√
D +

√
log(1/δ)).

By applying Lemma E.2, we obtain for γ ∈ (0, 1),

E sup
f∈Ft

[Lt(f)− (1 + γ)L̂t(f)]

⩽ Õ(1)γ−1D

n

[
R2

t (µt,x ∨ β)2 + 1/σ2
t

]
⩽ γ−1DK

n

K∑
i=1

Õdi(1)(L̄i(µ
(i)
t,x ∨ βi))di+3ε

−(di+1)
i (µt,x ∨ β)2 + Õ(1)

D

γnσ2
t

By the basic inequality Proposition E.1,

EDt
[Rt(f̂t)] ⩽ 2

K∑
i=1

ε2i + γ−1DK

n

K∑
i=1

Õdi
(1)(L̄i(µ

(i)
t,x ∨ βi))di+3ε

−(di+1)
i (µt,x ∨ β)2

+ Õ(1)
D

γnσ2
t

+ γ · Ct.

We now need to optimize over both εi, γ ∈ (0, 1). We first set γ as:

γ =

√√√√ 1

Ct
·

[
DK

n

K∑
i=1

Õdi
(1)(L̄i(µ

(i)
t,x ∨ βi))di+3ε

−(di+1)
i (µt,x ∨ β)2 + Õ(1)

D

nσ2
t

]
,

from which we obtain:

EDt [Rt(f̂t)] ⩽ 2

K∑
i=1

ε2i +

K∑
i=1

√
Õdi(1)

CtDK

n
(L̄i(µ

(i)
t,x ∨ βi))di+3ε

−(di+1)
i (µt,x ∨ β)2 +

√
Õ(1)

CtD

nσ2
t

.
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We now set εi as:

εi = Õdi
(1)

[
CtDK

n
(L̄i(µ

(i)
t,x ∨ βi))di+3(µt,x ∨ β)2

]1/(di+5)

,

and obtain:

EDt
[Rt(f̂t)] ⩽

K∑
i=1

Õdi
(1)

[
CtDK

n
(L̄i(µ

(i)
t,x ∨ βi))di+3(µt,x ∨ β)2

]2/(di+5)

+

√
Õ(1)

CtD

nσ2
t

.

The proof concludes by setting n large enough so that all of εi, γ < 1.

Finally, we conclude with Corollary 3.8, which provides an end-to-end sampling bound.
Corollary 3.8. Fix ε, ζ ∈ (0, 1). Suppose that p0 follows the latent structure (3.13), and that both
Assumption 3.5 and Assumption 3.6 hold. Consider the exponential integrator (3.4) with (N,T ) as
in (3.11) and reverse process discretization timesteps {τi}Ni=0 defined as in (3.12). Next, define the
forward process timesteps {ti}N−1

i=0 by ti := T − τN−i. Suppose the exponential integration scheme
is run with score functions {ŝti}N−1

i=0 , where ŝti ∈ argmins∈Fti
L̂ti(s) with Ft as defined in (3.14).

Suppose that n ⩾ n0(ζ) satisfies:

n ⩾ (µx ∨ β)2 max

{
max
i∈[K]

{
Õdi

(1)D2

ζ
K(di+7)/2(L̄i(µ

(i)
x ∨ β))di+3 · ε−(di+5)

}
,
Õ(1)D2

ζ2
· ε−4

}
.

where n0(·) is defined in (3.15). With constant probability (over the randomness of the training
datasets {Dti}N−1

i=0 ), we have that KL(pζ ∥ Law(ŷT−ζ)) ⩽ ε2.

Proof. We follow the proof of Corollary 3.4. Using the bounds µ(i)
t,x ⩽ µ

(i)
x and µt,x ⩽ µx, from

Theorem 3.7 we have that the following ERM bound holds for all t ∈ [0, T ]:

EDt [Rt(ŝt)] ⩽
K∑
i=1

Õdi(1)

[
D2K

σ2
t n

(L̄i(µ
(i)
x ∨ βi))di+3(µx ∨ β)2

] 2
di+5

+ Õ(1)

√
D2

σ4
t n

(µx ∨ β)2.

Recalling that 1/σ−2
t ≲ 1/ζ for all t ⩾ ζ , using the choice of T , N from (3.11) and {ti}Ni=0 we have

that:
N−1∑
k=0

γkEpT−tk
∥f̂T−tk −∇ log pT−tk∥2

≲ log

(√
D ∨ µ0

ε

)
K∑
i=1

Õdi(1)

[
D2K

ζn
(L̄i(µ

(i)
x ∨ βi))di+3(µx ∨ β)2

] 2
di+5

+ log

(√
D ∨ µ0

ε

)
Õ(1)

√
D2

ζ2n
(µx ∨ β)2.

Hence, in order to make ε2score ⩽ ε2, we need to take n large enough such that the following
conditions hold:

log

(√
D ∨ µ0

ε

)
K∑
i=1

Õdi
(1)

[
D2K

ζn
(L̄i(µ

(i)
x ∨ βi))di+3(µx ∨ β)2

] 2
di+5

≲ ε2,

log

(√
D ∨ µ0

ε

)
Õ(1)

√
D2

ζ2n
(µx ∨ β)2 ≲ ε2.

Hence, we need to take n satisfying:

n ⩾ (µx ∨ β)2 max

{
max
i∈[K]

{
Õdi(1)D

2

ζ
K(di+7)/2(L̄i(µ

(i)
x ∨ β))di+3 · ε−(di+5)

}
,
Õ(1)D2

ζ2
· ε−4

}
.

On the other hand we also need to take n ⩾ n0(ζ) (cf. (3.15)). The claim now follows.
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