
Under review as a conference paper at ICLR 2021

APPENDIX A TRAINING DETAILS FOR UNSUPERVISED LEARNING

For the unsupervised learning experiment, We follow previous works (He et al., 2020; Wu et al.,
2018) and perform data augmentation with random crop, random color jittering, random horizontal
flip, and random grayscale conversion. We use SGD as our optimizer, with a weight decay of 0.0001,
a momentum of 0.9, and a batch size of 256. We train for 200 epochs, where we warm-up the
network in the first 20 epochs by only using the InfoNCE loss. The initial learning rate is 0.03, and is
multiplied by 0.1 at 120 and 160 epochs. In terms of the hyper-parameters, we set ⌧ = 0.1, ↵ = 10,
r = 16000, and number of clusters K = {25000, 50000, 100000}. For PCL v2, we follow Chen
et al. (2020a;b) and use a MLP projection layer, stronger data augmentation with additional Gaussian
blur, and temperature ⌧ = 0.2. The clustering is performed per-epoch on center-cropped images. We
find over-clustering to be beneficial. We use the GPU k-means implementation in faiss (Johnson et al.,
2017) which takes less than 20 seconds. Overall, PCL introduces ⇠ 1/3 computational overhead
compared to MoCo.

APPENDIX B ABLATION ON PROTONCE

The proposed loss in eqn.(11) contains two terms: the instance-wise contrastive loss and the proposed
prototypical contrastive loss. Here we study the effect of each term on representation learning.
Table 7 reports the results for low-resource fine-tuning and linear classification on ImageNet. The
prototypical term plays an important role, especially in the fine-tuning experiment. The warm-up also
improves the result by bootstrapping the clustering with better representations.

Method 1% fine-tuning (top-5 acc.) linear classification (top-1 acc.)

instance only 56.9 60.6
proto only (w/o warm-up) 60.7 60.4
proto only (w/ warm-up) 72.3 60.9
instance + proto (w/o warm-up) 74.6 61.3
instance + proto (w/ warm-up) 75.3 61.5

Table 7: Effect of instance-wise contrastive loss and prototypical contrastive loss.

APPENDIX C PSEUDO-CODE FOR PROTOTYPICAL CONTRASTIVE LEARNING

Algorithm 1: Prototypical Contrastive Learning.

1 Input: encoder f✓ , training dataset X , number of clusters K = {km}Mm=1

2 ✓0 = ✓ // initialize momentum encoder as the encoder
3 while not MaxEpoch do

/* E-step */
4 V 0 = f✓0(X) // get momentum features for all training data
5 for m = 1 to M do

6 Cm = k�means(V 0, km) // cluster V 0 into km clusters, return
prototypes

7 �m = Concentration(Cm, V 0) // estimate the distribution concentration
around each prototype with Equation 12

8 end

/* M-step */
9 for x in Dataloader(X) do // load a minibatch x

10 v = f✓(x), v
0 = f✓0(x) // forward pass through encoder and momentum

encoder
11 LProtoNCE(v, v

0, {Cm}Mm=1, {�m}Mm=1) // calculate loss with Equation 11
12 ✓ = SGD(LProtoNCE, ✓) // update encoder parameters
13 ✓0 = 0.999 ⇤ ✓0 + 0.001 ⇤ ✓ // update momentum encoder
14 end

15 end

12



Under review as a conference paper at ICLR 2021

APPENDIX D STANDARD DEVIATION FOR LOW-SHOT CLASSIFICATION

In Table 7, we report the standard deviation for the low-shot classification experiments in Table 1.

Method VOC07 Places205

k=1 k=2 k=4 k=8 k=16 k=1 k=2 k=4 k=8 k=16

PCL 4.06 2.65 2.21 0.49 0.39 0.24 0.23 0.13 0.07 0.05
PCL v2 4.12 2.70 2.17 0.54 0.38 0.26 0.23 0.12 0.08 0.04

Table 8: Standard deviation across 5 runs for low-shot image classification experiments.

APPENDIX E COCO OBJECT DETECTION AND SEGMENTATION

Following the experiment setting in (He et al., 2020), we use Mask R-CNN (He et al., 2017) with C4
backbone. We finetune all layers end-to-end on the COCO train2017 set and evaluate on val2017.
The schedule is the default 2⇥ in (Girshick et al., 2018). PCL outperforms both MoCo (He et al.,
2020) and supervised pre-training in all metrics.

Method APbb APbb
50 APbb

75 APmk APmk
50 APmk

75

Supervised 40.0 59.9 43.1 34.7 56.5 36.9
MoCo (He et al., 2020) 40.7 60.5 44.1 35.4 57.3 37.6
PCL (ours) 41.0 60.8 44.2 35.6 57.4 37.8

Table 9: Object detection and instance segmentation fine-tuned on COCO. We evaluate bounding-box AP
(APbb) and mask AP (APmk) on val2017.

APPENDIX F TRAINING DETAILS FOR TRANSFER LEARNING EXPERIMENTS

For training linear SVMs on Places and VOC, we follow the procedure in (Goyal et al., 2019) and
use the LIBLINEAR (Fan et al., 2008) package. We preprocess all images by resizing to 256 pixels
along the shorter side and taking a 224⇥ 224 center crop. The linear SVMs are trained on the global
average pooling features of ResNet-50.

For image classification with linear models, we use the pretrained representations from the global
average pooling features (2048-D) for ImageNet and VOC, and the conv5 features (averaged pooled
to ⇠9000-D) for Places. We train a linear SVM for VOC, and a logistic regression classifier (a
fully-connected layer followed by softmax) for ImageNet and Places. The logistic regression classifier
is trained using SGD with a momentum of 0.9. For ImageNet, we train for 100 epochs with an initial
learning rate of 10 and a weight decay of 0. Similar hyper-parameters are used by (He et al., 2020).
For Places, we train for 40 epochs with an initial learning rate of 0.3 and a weight decay of 0.

For semi-supervised learning, we finetune ResNet-50 with pretrained weights on a subset of ImageNet
with labels. We optimize the model with SGD, using a batch size of 256, a momentum of 0.9, and a
weight decay of 0.0005. We apply different learning rate to the ConvNet and the linear classifier. The
learning rate for the ConvNet is 0.01, and the learning rate for the classifier is 0.1 (for 10% labels) or
1 (for 1% labels). We train for 20 epochs, and drop the learning rate by 0.2 at 12 and 16 epochs.

For object detection on VOC, We use the R50-FPN backbone for the Faster R-CNN detector available
in the MMdetection (Chen et al., 2019) codebase. We freeze all the conv layers and also fix the
BatchNorm parameters. The model is optimized with SGD, using a batch size of 8, a momentum of
0.9, and a weight decay of 0.0001. The initial learning rate is set as 0.05. We finetune the models for
15 epochs, and drop the learning rate by 0.1 at 12 epochs.

13



Under review as a conference paper at ICLR 2021

20 40 60 80 100 120 140 160 180 200

Epoch

0.0

0.1

0.2

0.3

0.4

0.5

AM
I

K=25000
K=50000
K=100000

Figure 4: Adjusted mutual information score between the clusterings generated by PCL and the ground-truth
labels for ImageNet training data.

APPENDIX G EVALUATION OF CLUSTERING

In order to evaluate the quality of the clusters produced by PCL, we compute the adjusted mutual
information score (AMI) (Nguyen et al., 2010) between the clusterings and the ground-truth labels
for ImageNet training data. AMI is adjusted for chance which accounts for the bias in MI to
give high values to clusterings with a larger number of clusters. AMI has a value of 1 when
two partitions are identical, and an expected value of 0 for random (independent) partitions. In
Figure 4, we show the AMI scores for three clusterings obtained by PCL, with number of clusters
K = {25000, 50000, 100000}. In Table 5, we show that compared to DeepCluster (Caron et al.,
2018) and MoCo (He et al., 2020), PCL produces clusters of substantially higher quality.

APPENDIX H CONVERGENCE PROOF

Here we provide the proof that the proposed PCL would converge. Suppose let

F (✓) =
nX

i=1

log p(xi; ✓) =
nX

i=1

log
X

ci2C

p(xi, ci; ✓) =
nX

i=1

log
X

ci2C

Q(ci)
p(xi, ci; ✓)

Q(ci)

�
nX

i=1

X

ci2C

Q(ci) log
p(xi, ci; ✓)

Q(ci)
.

(13)

We have shown in Section 3.2 that the above inequality holds with equality when Q(ci) = p(ci;xi, ✓).

At the t-th E-step, we have estimated Qt(ci) = p(ci;xi, ✓t). Therefore we have:

F (✓t) =
nX

i=1

X

ci2C

Qt(ci) log
p(xi, ci; ✓t)

Qt(ci)
. (14)

At the t-th M-step, we fix Qt(ci) = p(ci;xi, ✓t) and train parameter ✓ to maximize Equation 14.
Therefore we always have:

F (✓t+1) �
nX

i=1

X

ci2C

Qt(ci) log
p(xi, ci; ✓t+1)

Qt(ci)
�

nX

i=1

X

ci2C

Qt(ci) log
p(xi, ci; ✓t)

Qt(ci)
= F (✓t). (15)

The above result suggests that F (✓t) monotonously increase along with more iterations. Hence the
algorithm will converge.

14



Under review as a conference paper at ICLR 2021

APPENDIX I VISUALIZATION OF LEARNED REPRESENTATION

In Figure 5, we visualize the unsupervised learned representation of ImageNet training images using
t-SNE (Maaten & Hinton, 2008). Compared to the representation learned by MoCo, the representation
learned by the proposed PCL forms more separated clusters, which also suggests representation of
lower entropy.

Figure 5: T-SNE visualization of the unsupervised learned representation for ImageNet training images from
the first 60 classes. Left: MoCo; Right: PCL (ours). Colors represent classes.

APPENDIX J VISUALIZATION OF CLUSTERS

In Figure 6, we show ImageNet training images that are randomly chosen from clusters generated
by the proposed PCL. PCL not only clusters images from the same class together, but also finds
fine-grained patterns that distinguish sub-classes, demonstrating its capability to learn useful semantic
representations.

15



Under review as a conference paper at ICLR 2021

Figure 6: Visualization of randomly chosen clusters generated by PCL. Green boarder marks top-5 images
that are closest to fine-grained prototypes (K = 100k). Orange boarder marks images randomly chosen from
coarse-grained clusters (K = 50k) that also cover the same green images. PCL can discover hierarchical
semantic structures within the data (e.g. images with horse and man form a fine-grained cluster within the
coarse-grained horse cluster.)

16


	Introduction
	Related work
	Prototypical Contrastive Learning
	Preliminaries
	PCL as Expectation-Maximization
	Concentration estimation
	Mutual information analysis
	Prototypes as linear classifier

	Experiments
	Implementation details
	Image classification with limited training data
	Image classification benchmarks
	Clustering evaluation
	Object detection

	Conclusion
	Training details for unsupervised learning
	Ablation on ProtoNCE
	Pseudo-code for Prototypical Contrastive Learning
	Standard deviation for low-shot classification
	COCO object detection and segmentation
	Training details for transfer learning experiments
	Evaluation of Clustering
	Convergence proof
	Visualization of learned representation
	Visualization of clusters

