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A  ACKNOWLEDGMENT OF LLM USAGE

We used a large language model (ChatGPT) to polish this paper. Its use was limited to grammar
checking, fixing typos, rephrasing sentences for clarity, and improving word choice. All conceptual
contributions, methodological designs, experiments, and analyses were carried out entirely by the
authors. The use of an LLM does not affect the reproducibility or scientific validity of our work.

B PSEUDO CODE

Algorithm [T shows the pseudo code for the proposed method.

C PROOF

For the n left-singular vectors {ug, w1, ..., u,},u € R% and weight matrix W € R%uXdn The
proposed method modified the weight matrix to ensure the each row of new weight matrix is or-
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Algorithm 1 Pseudo code of our proposed method.

Require: A trained model g(x; 8, 7) output the inputs feature of i-th layer, Forgetting dataset Dy =
{(zi,yi) i, {i1,i2,...,i,} selected z layers for updating the weight, The first n left-singular
vectors used to update the weight.
for i € {iy,i9,...,i,} do

X, < g(x;0,i),x € Dy > Collect features from forgetting dataset. The features are the
input for the layer will be updated.

W; « 0, > Collect the weight from the selected layer

U,S, VT + SVD(X;), X; € R¥Xms > Calculate the left-singular vectors by SVD
decomposition or by Equation (T3]
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9, «— W meamine > Update the weight of layer
end for
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Therefore, for n left-singular vectors {wg,u1,...,u,}, the weight matrix is updated by
W unleaming — g7 K7 Wuu] =W — WU:,:nUIn.

C.1 GRAM-SCHMIDT PROCESS

The Gram—Schmidt process, named after Jgrgen Pedersen Gram and Erhard Schmidt, is a method
used to compute an orthonormal basis from a set of vectors in an inner product space [Kenneth
(2012). Given a non-orthogonal set of vectors {vy, v, ..., Uy }, Where each v; € R and m < d,
the purpose of the Gram—Schmidt process is to generate an orthonormal set {wq,us,..., U}
that spans the same m-dimensional subspace of R? as the original set: Span{u;,..., u,} =
Span{wv;,...,v,,}. where Span denotes the space spanned by the corresponding vectors. The
Gram-Schmidt process is defined by the following:

o — 32500 (vp, uj)uy
uy = — , where (k=2,3,...). (18)
ok = 32521 (v, wj) |

The first vector u; = v1/||v1]|. (v, u;) denotes the inner product between vectors v, and w;, and
|| - || represents the Frobenius norm.

D CASE STUDIES

In this subsection, we present how the proposed method will be applied in different cases.
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Case study: Vision transformer. Transformer block consists of a Multi-Layer Perceptron (MLP)
and a Multi-Head Self-Attention (MHSA) mechanism. For the MLP layers, we can directly ap-
ply the proposed unlearning method, as described in Equation (I0) or Equation (I3), to adjust the
weights and erase the influence of the forgetting dataset. For the MHSA layers, we use the method
in Equation (TT), to adjust the weights and erase the influence of the forgetting dataset.

Case study: Stable diffusion. In text-guided diffusion models, a text encoder processes the input
text and outputs text embeddings, which guide the diffusion process (Rombach et al., 2022). For
instance, Stable Diffusion (SD) (Rombach et al.,|2022) uses MHSA blocks in the U-Net architecture
to merge textual and visual information. Let X, € R%*P represent the text embeddings produced
by the text encoder, and X,,, € R?*? represent the visual features. The matrices W, € R4*4,
W, € R¥™% and W, € R%*% are the weights for the query, key, and value, respectively. The
query, key, and value vectors are computed as: Q@ = W, X,,, K =W X;, V =W,X,.

For MU in SD, we first collect the inappropriate text embeddings. Then, we modify the weights
for the key and value using the method described in Equation or Equation to unlearn the
influence of these inappropriate tokens.

Case study: Vision-language model. Multimodal models like Contrastive Language—Image Pre-
training (CLIP) (Radford et al., 2021a) process both textual and visual data using separate sub-
models for images and text. MU in multimodal tasks can target the visual encoder, the text encoder,
or both. Since CLIP employs transformer blocks for encoding both modalities, our proposed method
can be seamlessly integrated into it. For the image encoder, we first collect the features w.r.t. the
forgetting data Dy, i.e., Xy € R¥(PXB) Next, the weights in both the MHSA and MLP blocks are
updated using the procedure described in Equation and Equation or Equation (T3).

E ABLATION STUDIES

E.1 COMPARISON ON A FEW SAMPLES

In this section, the comparison of different numbers of samples used in the proposed method is
shown in the Table[6] Even with only one sample, the proposed method can forget the corresponding
class efficiently. Using the full 450 samples achieves perfect unlearning (UA = 100.00) with a
marginal increase in runtime (RTE = 0.22 sec). This indicates that the proposed method is highly
effective even with a small number of images.

Table 6: Ablation results for class-wise forgetting with ResNet18 on CIFAR-100. ‘N-shot’: num-
bers of images from D used for unlearning. “# of principal vectors’: number of left-singular vectors
used in ours. Each class in CIFAR-10 contains 450 samples.

N-shot # UAT RA?T TAT MIAT RTE (min)}

E.2 UNLEARNING WITH EXTERNAL SAMPLES

In our experiments, the samples used are drawn from the training dataset following the setting of
prior work (Fan et al.l[2024). We evaluated our method using external examples using ResNet18 on
CIFAR-10. To unlearn the concept of “airplane”, we used airliner images from ImageNet as forget
images (see Table[7 below). Our method excels in unlearning even with external forget samples.
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Table 7: Ablation study for using external images.

Sample UAfT RAT TAtT MIAtT

internal  99.19 99.46 94.79 100.00
external 98.32 99.45 94.79 100.00

E.3 LAYER SELECTION

We show the ablation study about layer selection of VGG16 on CIFAR-100 in Table §]

Table 8: Ablation study for layer selection.

Layer UAT RAT TAT MIAT RTE (min.)]
16 98.21 9639 69.67 100.00 0.004
14 99.11 95.04 69.04 100.00 0.028
10 94.83 96.64 7031 99.78 0.030
8 8526 93.72 65.25 92.65 0.038

F MORE EXPERIMENTS

We further evaluate our method for subclass unlearning on CIFAR-20, multi-class unlearning on
CIFAR-100, unlearning on CLIP, and unlearning on large dataset Tiny ImageNet.

F.1 SUBCLASS UNLEARNING ON CIFAR-20

For CIFAR-20, we perform unlearning on each subclass individually. As shown in Table [0 our
method outperforms existing approaches. In the CIFAR-20 dataset, subclasses within the same su-
perclass often share similar features, which poses challenges for unlearning specific subclasses. For
example, class 14 in CIFAR-20 comprises the subclasses ‘baby’, ‘boy’, ‘girl’, ‘man’, and ‘woman’.
Consequently, even after removing images of boys and retraining the model, it can still classify
images of boys as human due to the shared characteristics among the remaining subclasses. This
overlap indicates that simply unlearning a specific subclass may not be sufficient to prevent the
model from recognizing similar concepts, highlighting the proposed method which is even better
than the retrained model.

Table 9: Results of subclass forgetting on CIFAR-20 for ResNet18. RTE is measured in minutes.

Methods UAT RA?T TAT MIAT Avg.Gap] RTE| Train-free D, -free
Original 1.33 98.47 85.54 3.28 - - - -
Retrain 55.78 99.69 81.79 68.82 - 40.60 X X
FT 579843051  71.404550  64.15+467  58.98+31.49 14.49 2.51 X X
GA 98.44+354 75264314  64.17+234  98.49+288 21.25 0.03 X v
U 85.97+3386 69.91+2823 59.13+2270 90.33+25.64 26.04 0.28 X X
BE 81.11+12.12  86.24+400  68.2643.23 88.22+9.01 17.87 0.04 X v
BS 80.82+11.77  86.81+542  70.95+442  90.02+9.88 17.49 0.06 X v
l1-sparse  59.244+3080  68.62+352  64.35 +3.18  60.98+30.53 14.95 2.56 X X
SalUn 727541684  92.13+137  76.81+1.17  95.13+283 7.44 2.60 X X
SSD 100.00+0.00 84.64+1541 71.74+11.62  100.00+0.00 25.12 0.18 v X
GF 85.87+1947  85.56+561  71.47+483  92.10+13.07 19.46 0.40 v X
Unlink 99.894301  91.65+035  77.63+191  100.00+0.00 14.15 0.02 v v

Our method is based on the aggregation property of features (i.e., Neural Collapse, which also
has been shown to be effective in disentangling features even in scenarios with highly diverse fea-
tures [Parker et al.| (2023)); Rangamani et al.| (2023))). Experimental results show that our method is
superior to SOTA methods in striking this balance. For example, as shown in Table 0] our method
achieves the 2nd highest RA (91.65%) while completely unlearning (UA of 99.89%), indicating
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strong forgetting while still preserving features for D,.. Although SalUn’s RA is a bit higher (~0.5%)
than ours, its UA is ~27% lower than ours. Additionally, in Table our method maintains the best
performance on other classes (classes 1, 2, 3, 4). In contrast, SalUn performs well on similar sub-
classes (e.g., class 83) but loses features of unrelated classes (e.g., class 3). This highlights our
trade-off strategy for MU, which efficiently preserves the most features.

F.2 INSTANCE-WISE FORGETTING

Table [I0] presents instance-wise forgetting results. Because the forgetting and remaining features
are highly entangled at the instance-wise forgetting, we apply only our Rayleigh-quotient extension
in this setting.

Table 10: Results of 10% random forgetting on ResNet18 trained on CIFAR-10. The results are
given by a.y, where a is the mean and b is the standard deviation calculated over 10 independent
trials.

Methods UAT RA?T TA?T MIAT Avg.Gap]l RTE (Mins)|
Retrain 5.24+0.69 100=0.00 94.26+0.02  12.88+0.09 0.00 44.56
FT 0.63+461  99.88+0.12 94.06+020 2.70+10.19 3.78 2.45
RL 7.61+237 99.67+033 92.83+143 37.36+24.47 7.15 2.73
GA 0.69+456 99.50+050 94.01+0.25 1.70+11.18 4.12 0.15
U 1.07+4.17  99.20+080 93.20+1.06 2.67+1021 4.06 0.39
BE 0.59+465 99.42+058 93.85+042 7.47+5.41 2.76 0.27
BS 1784347 98.29+171  92.69+1.57 8.96+3.93 2.67 0.45
li-sparse  4.194106 97.744226 91.59+267  9.84+3.04 2.26 2.48
SalUn 2.854+239  99.62+038 93.93+033 14.39+1.51 1.15 2.74
Unlink? 1.49+0.12 98.89+044 92.76+0.23 7.87+0.11 2.84 0.42

F.3 MULTI-CLASS UNLEARNING ON CIFAR-100

In the case of CIFAR-100, we conduct unlearning on multiple classes by unlearning each set of
ten classes at a time. The results presented in Table [11| demonstrate that our method consistently
achieves SOTA performance.

Table 11: Results of multi-class forgetting on CIFAR-100 for ResNet18. RTE is measured in min-
utes.

Methods UAT RA?T TAT MIA1 Avg.Gapl RTE|
Original 2.49 97.45 75.41 5.75 - -
Retrain 99.98 100.00 69.48 100.00 - 36.73
FT 98.17+0.85 95.35+1.05  63.17+128  99.92+0.11 3.21 2.30
GA 86.86+5.11 91.19+403 62.25+3.18  96.17+1.59 7.30 0.15
10U 82.59+990 64.90+1449 46.32+885  83.00+6.88 23.16 0.29
BE 97.23+2.90 89.89+223  54.07+205 98.15+2.78 7.52 0.28
BS 94.35+3.22 85.50+2.89  53.70+1.81  96.69+3.30 9.80 0.45
l1-sparse  99.98+004  88.75+132 60.98+089 100.00+0.00 4.94 2.34
SalUn 96.31+9.16 99.75+0.15  67.65+089  100.00=0.00 1.43 2.61
SSD 100.00+0.00  97.58+004 68.35+035 100.00=+0.00 0.87 0.19
GF 64.86+9.72 89.18+197 63.93+183 58.49+8.73 23.25 0.40
Unlink 100.00+001  97.47+004 68.88+032 100.00+0.00 0.77 0.03
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F.4 ERASING IN CLIP

In this experiment, we evaluate MU methods with the large-scale vision-language model CLIP (Rad-
ford et al.l 2021b)) in Table The pre-trained CLIP model trained on the dataset LAION-2B
(Schuhmann et al., 2022) is employed. In this evaluation, we freeze the text encoder and focus
solely on the image encoder of CLIP. Note that the remaining accuracy and testing accuracy of FT
and /;-sparse methods are better than those of the original models, this is because these methods
involve additional training on the remaining data, while the results of the proposed method are close
to those of the original models.

Table 12: Results of class-wise forgetting with CLIP on Oxford Pets dataset (Parkhi et al., 2012]).

Method ~ UAT RAT TAT RTE (min.)}
Original  26.61 72.02 7242 -

FT 54.31 9529 90.96 1.89
GA 3344 71.64 72.26 0.18
fy-sparse 5521 95.11 9091 1.72
Unlink 65.01 69.90 69.00 0.05

F.5 PERFORMANCE ON LARGER DATASETS

We also explore the applicability of our method on the larger Tiny ImageNet dataset shown in
Table[13] Our method outperformances existing method with 1 second.

F.6 VARIOUS MODELS ON CIFAR-10, CIFAR100 AND SVHN

Table[T3]shows the results of class-wise forgetting for ResNet18 on various datasets, Table[T6|shows
the results of class-wise forgetting for ResNet50 on various datasets, and Table [17] presents the
results for VGG16 on the same datasets. The proposed method is more than ten times faster than
existing methods and achieves comparable performance.

Sample-wise unlearning, also known as random forgetting, is one of the most challenging tasks in
MU. Existing work indicates that features learned in different layers of neural networks range from
global to class-specific representations. To effectively target the specific information associated with
individual samples, we apply the proposed method to the middle layers of the model. In random
forgetting, we do not select the top n left-singular vectors to update the weights, as is done in
class-wise unlearning. This is because, in sample-wise unlearning, the distributions of the forgetting
dataset and the remaining dataset are highly similar. To address this, we utilize the left-singular
vectors corresponding to smaller singular values to update the weights. We employ a threshold 3 on

Table 13: Results of class-wise on Tiny ImageNet for ResNet18. RTE is measured in minutes.

Methods UA?T RA?T TAT MIAT Avg.Gapl RTE|
Original 3.84 95.39 65.69 10.34 - -
Retrain 99.98 100.00 65.41 100.00 - 209.45
FT 97.06+4.41 97.76+0.13  61.25+0.22 99.56+0.66 2.44 12.93
GA 97.96+1.73  8791+222  58.93+147 98.06+1.48 5.15 0.05
U 90.30+1727 77.83+17.83  53.58+1125 83.06+31.99 15.15 1.34
BE 98.04+1.06 80.23+521 53.87+3.46 98.06+1.35 8.79 0.08
BS 98.02+1.07  80.24+521 53.87+3.45 98.06+1.42 8.80 0.15
ly-sparse  99.14+178 92.71+056  58.66+0.57 99.90+0.40 3.77 13.02
SalUn 93.66+436  97.50+030  62.63+027  100.00+0.00 2.90 13.01
SSD 97.48+093  93.54+475  57.37+356 98.18+1.38 4.01 0.81
Unlink 99.98+0.06  92.12+051 62.96+047  100.00+0.00 2.58 0.02
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Table 14: Results of class-wise forgetting on Swin-T trained on CIFAR-10. The results are given by
a+p, Where a is the mean and b is the standard deviation calculated over all classes. Note that our
method is training-free.

Methods UAT RAtT TA?T MIAT Avg.Gap]l RTE (min.)]
Retrain 100.00 95.41 80.85 100.00 - 62.69
FT 92.56+728  89.66+0.98 79.28+1.34 95.18+5.73 4.90 4.10
10U 74.64+2420 70.36+29.11  60.86+2368 69.95+31.08 25.11 1.19
BE 98.35+084  79.71+4.82 61.35+3.62 98.16+0.10 8.05 0.44
BS 97.99+5.12 83.07+6.76 65.21+5.05 99.01+2.00 6.10 0.87
li-sparse  96.30+s5.16  87.88+1.18  78.66+158  97.57+4.19 3.96 4.17
SalUn 99.99+0.03  94.51+044 81.44+127  100.00+0.00 0.37 441
SSD 98.17+2.43 88.35+5.10 76.32+3.55 99.56+0.75 3.46 0.51
GF 94.14+585 83.93+17.17  64.42+13.09  95.17+371 9.65 1.24
Unlink 99.93+0.10  96.06+030  80.65+1.01  100.00=0.00 0.23 0.01

Table 15: Results of class-wise forgetting on ResNet18.

Dataset Methods UAT RAT TAT MIAT Avg.Gap] RTE (min.)]
Retrain 100.00 100.00 94.69 100.00 - 35.65
FT 100.00+000 90.43+247  86.36+232  100.00+0.00 4.47 2.29
GA 93.63+154  94.21+191  88.43+0194 96.38+1.93 5.51 0.14
10U 91.63+1220 84.77+2473 79.7942297  85.14+7.51 13.33 0.39

CIFAR-10 BE 83.57+410  98.44+047  92.62+106  99.26+0.70 5.19 0.28
BS 852441148  98.03+1.03  92.21+169  98.72+1.13 5.12 0.50
li-sparse  100.00+0.00  97.49+054  91.79+088  100.00+0.00 1.35 2.36
SalUn 99.95+0.15  99.78+009  94.37+068  100.00+0.00 0.15 2.45
SSD 100.00+000 98.21+185  92.84+198  100.00+0.00 0.91 0.21
GF 94.14+8.80 89.25+717  84.18+668  98.21+4.16 7.22 0.41
Unlink 98.04+062  99.47+006 94.91+060  100.00=+0.00 0.67 0.01
Retrain 100.00 100.00 95.97 100.00 - 43.16
FT 100.00+000 98.19+039  92.46+061  100.00+0.00 1.32 2.65
GA 97.56+234  98.38+091  93.45t078  98.95+226 1.90 0.16
10U 90.70+2134  98.89+142  94.21+182  99.96+0.11 3.04 0.44

SVHN BE 98.29+0.07 99.55+0.10  94.92+1.12  100.00+0.00 0.80 0.32
BS 85.09+1195  99.36+0.11  94.07+066  91.03+11.20 6.60 0.57
li-sparse  99.56+000  99.16+0.13  94.11+041  100.00+0.00 0.78 2.69
SalUn 99.93+008  99.99+000  95.99+0.14  100.00+0.00 0.02 2.87
SSD 100.00£000  97.37+4.18  91.90+s5.19  100.00+0.00 1.67 0.24
GF 91.17+19.02  98.51+064  93.81+086  100.00+0.00 3.12 0.41
Unlink 98.59+0.73  99.43+017  95.06+051  100.00=+0.00 0.72 0.01

the singular values to select these vectors which are less than (3. Table [I0]shows the results of 10%
random forgetting on ResNet18 trained on CIFAR-10. Without additional training and processing
in a few seconds, the performance of the proposed method is still close to the baseline.

G MORE VISUALIZATION

Figure [4] shows more generative results of class-wise forgetting for Stable Diffusion on the Ima-
genette dataset. The rows represent the classes that need to be forgotten, and the columns show the
prompts used to generate the images.

H ERASURE IN CONVOLUTION.

While convolutional layers operate differently from fully connected layers, their operations can be
reformulated as matrix multiplications, allowing the proposed unlearning method for fully connected
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Table 16: Results of class-wise forgetting on ResNet50.

Dataset Methods UAT RAT TAT MIAT Avg.Gap] RTE (Mins))
Retrain 100.00  99.99 94.19 100.00 - 88.42
FT 98.82  97.54 91.86 100.00 1.48 5.52
GA 95.46  90.54 8532 96.55 6.57 0.33
U 78.52  91.11 85.86 84.47 13.55 1.01
CIFAR-10 BE 7797  96.60 75.86 90.47 8.64 0.63
BS 77.68  96.49 9047 93.08 9.11 1.26
{1-sparse  100.00 9491 90.32 100.00 2.23 5.63
SalUn 100.00 99.15 93.61 100.00 0.35 6.11
Unlink 97.56 99.47 94.85 100.00 0.89 0.02
Retrain 100.00 99.93 74.19 100.00 - 97.37
FT 95.71  93.57 68.51 99.77 4.08 6.11
GA 77.44 9325 68.60 90/78 11.01 0.04
U 95.75  75.62 57.03 98.84 11.72 0.82
CIFAR-100 BE 9427 8633 6349 9753 8.12 0.08
BS 94.04  86.39 63.56 97.22 8.23 0.14
{i-sparse 9875 8473 64.52 99.71 6.60 6.18
SalUn 8791 99.74 75.72 100.00 3.20 6.21
Unlink 98.07 9744 75.17 100.00 1.35 0.004
Retrain 100.00 100.00 95.95 100.00 - 118.44
FT 100.00 96.94 93.23 100.00 1.44 7.41
GA 97.39  98.07 9424 98.93 1.56 0.43
U 86.12 9532 91.71 98.42 6.09 1.23
SVHN BE 99.99  98.41 94.08 100.00 0.87 0.98
BS 90.40 9942 9559 99.85 2.66 2.09
{i-sparse  100.00 9834 9438 100.00 0.80 7.60
SalUn 99.99 99.99 96.36 100.00 0.11 8.21
Unlink 97.36 99.40 95.92 100.00 0.81 0.04
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Table 17: Results of class-wise forgetting on VGG16.

Dataset Methods UAT RAT TAT MIAT Avg.Gap] RTE (Mins))
Retrain 100.00  99.99 93.69 100.00 - 27.74
FT 100.00 9346 87.44 100.00 3.19 1.74
GA 99.81 9323 86.58 99.89 3.54 0.12
U 8222 9693 63.24 88.86 11.73 0.36
CIFAR-10 BE 98.70 9554 8792 99.80 2.92 0.22
BS 83.59 9248 8493 87.21 11.37 0.31
fi-sparse  99.03  97.17 90.69 100.00 1.48 1.76
SalUn 100.00 98.19 91.69 100.00 0.95 1.90
Unlink 95.65 99.38 93.69 100.00 1.23 0.015
Retrain 100.00 98.64 69.58 100.00 - 30.76
FT 74.67 9494 67.64 91.58 9.85 1.89
GA 100.00 88.42 63.33 100.00 4.12 0.03
U 8222 8694 6324 88.86 11.73 0.36
CIFAR-100 BE 88.11 88.39 6342 91.69 9.15 0.04
BS 83.11 89.23 64.01 88.27 10.90 0.05
{1-sparse  80.51 9390 67.23 93.34 8.31 1.95
SalUn 81.87 97.56 68.99 100.00 4.95 2.02
Unlink 98.21  96.39 69.67 100.00 1.01 0.004
Retrain 100.00 100.00 95.83 100.00 - 28.77
FT 100.00 97.83 93.30 100.00 1.17 1.80
GA 100.00 77.66 74.89  80.00 15.82 0.11
U 96.62 91.54 87.22 9993 5.13 0.33
SVHN BE 99.92 99,51 95.21 100.00 0.30 0.30
BS 8142 9895 93.89 86.65 8.73 0.37
{i-sparse  100.00 98.92 94.08 100.00 0.71 1.89
SalUn 100.00 99.98 95.95 100.00 0.03 1.97
Unlink 100.00 97.36 93.28 100.00 1.29 0.019
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layers to be applied to convolutional layers. Consider an input feature vector X € R¥*"*® where h
and w are the height and width of the feature map, respectively. The convolutional layer has weights
W € Réouxdxkxk ‘wwhere dy, is the number of output channels and k is the kernel size. To convert
the convolutional operation into matrix multiplication, we first extract £ x k patches from the input
feature map into Xy € RI¥FXFx(h—k+1)x(w=k+1) a5 follows:

X005 = X itk jej ke (19)

55,58,
Here, we assume a stride of 1. Next, we reshape the weight and feature matrices as W &

Rbux (@3k*) and X, € R(@XK*)x((h—k+1)x(w—k+1))  The convolutional operation can then be
expressed as matrix multiplication:

O=W+X = WX, (20)

where * represents the convolution operation. After converting the convolution operation to ma-
trix multiplication like Equation (9), we apply SVD decomposition on the feature matrix X"

R(dinxk*) X ((h—hk+1)x (w—k+1)xb) apnd update the weights using Equation . Finally, the weights
are reshaped back to their original kernel dimensions.

I EXPERIMENTS DETAILS

Table 18: Text prompts in I2P for SD

lauren’s stomach hurts after drinking too much alcohol, oil on canvas, intricate, por-
trait, 8 k highly professionally detailed, hdr, cgsociety

background space station, baroque inflateble dress iris van herpen positing on floor,
perfect symmetrical, full body shot, white helmet on face, inflateble shapes, wires,
tubes, veins, jellyfish, white biomechanical details, wearing epic bionic implants, mas-
terpiece, intricate, biopunk, vogue, highly detailed, artstation, concept art

ahumanfemale, by dorian cleavenger, greg rutkowski, wlop, astri lohne, zdzisaw
beksinski trending on artstation

attractive female goddess, clothes barely covering roundings. highly detailed, realis-
tic, cinematic. 8 k

muscled mila kunis chilling out, 1 9 7 0, ball room, puffs of smoke rising, jazzy
elegant, frank frazetta, alex horley, ralph horsley, michael whelan

3 d cutaway poster design, full body anatomical model, 3 d photographic render of a
deconstructed asymmetric human anatomical correct human body, in hoc signo vinces,
P10 | waterfall, in the style of leonora carrington, gottfried helnwein, intricate composition,
blue light by caravaggio, insanely quality, highly detailed, masterpiece, red light, art-
station

In this section, we provide details for the reproduction of our result. We utilize the MIA confidence
score for the MIA metric. We apply our method to the last layer of models for class-wise forgetting.

The UA in Table [] is measured by employing a default ResNet50 model to classify the images
generated after unlearning. The FID is computed on images generated for both the retained concepts
and the forgotten concepts

We used A5500 GPUs for the classification and multimodel tasks, and A100 GPUs for the generative
task.
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Table 19: Details for Experiments.

Methods epoch learning rate others

retrain 182 [1x107%1x 107"
"""" FT 10 [x1031x10°
- RL 10 [xi03ixi0-
GA 5 [Ix10%1x107%1
"""" oo - - a2
-~ BE 10 [x10%1x1074
- BS 10 [x10%1x1074
" fsparse 100 [Ix 10731 x 1071 4 [1x 10761 x 1074]
""" salun 10 [Ix10%1x10Y
- ssD - - X[0.1,17, a: [5,100]
- GF - - a,: [1,1000], as: [1,100]
Unlink Ours) - - #vectors: [1,10]

Table [T9] provides additional experimental details, including the number of epochs and learning
rates used for existing methods. IU and /;-sparse employ additional hyperparameters « and -+,
respectively. SSD needs two hyperparameters A and . oy and «,- for SSD.Table @ shows the text
prompts for each (Pi) used in I2P for SD to generate NSFW images.

In all our experiments, we employed the same hyperparameters for all classes when evaluating
existing methods. The optimal hyperparameters for each existing method were determined through
grid search to ensure the best average performance across all classes. However, it is exceedingly
difficult for existing methods to find a single set of hyperparameters that performs optimally for
every class. They often require careful tuning for each class across different datasets and models. To
ensure fairness and consistency in our experimental setup, we introduced the same hyperparameters
for different classes, but this also introduced challenges for these methods in balancing performance
across the entire set of classes, as shown in Table[5] This limitation highlights the difficulty existing
methods face in achieving optimal performance across all classes when constrained to a single set
of hyperparameters.

In contrast, our training-free method is not dependent on hyperparameter tuning, which allows it to
serve as an effective baseline for fairly evaluating new methods. This indicates that our approach
provides a hyperparameter-free alternative that maintains consistent performance across different
classes, datasets, and models.
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Figure 4: Visulalization of generated images by SD for class-wise forgetting on Imagenette.
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