
Published in Transactions on Machine Learning Research (12/2023)

A GitHub issues filtering

Below we present the filters and regular expressions we used for the GitHub issues.

regexes used for removing automated text
GITHUB_EMAILS = [

re.compile(pattern, re.DOTALL)
for pattern in [

"(.*)From:.+Reply to this email directly.+view it on GitHub(.*)\n?(.*)",
"(.*)On.+notifications@github.com.+wrote:.+Reply to this email directly.+view it on GitHub(.*)\n?(.*)",
"(.*)Signed-off-by: .+<.+>(.*?)\n?(.*)",

]
]
GITHUB_EMAIL_DATE = re.compile("\d+/\d+/\d+ \d{2}:\d{2} [AP]M.+wrote")
GITHUB_EMAIL_LINEBREAK = re.compile("_{20,}")

remove comments from authors in this list
BOT_AUTHORS = [

"Apache-HBase",
"AutorestCI",
"CLAassistant",
"cmsbuild",
"codecov-io",
"codecov-commenter",
"coveralls",
"danger-public",
"dnfclas",
"msftclas",
"PyDocTeur",
"SparkQA",
"karma-pr-reporter",
"danger-public",
"claassistantio",
"probot-stale",

]
remove comment if author username contains this keyword
BOT_KEYWORDS = ["[bot]", "botmanager", "bors-", "jenkins", "k8s-", "-test-", "travis"]

remove comments if author username ends with this suffix
BOT_SUFFIXES = [

"-automaton",
"-automation",
"-benchmark",
"-build",
"-deployer",
"-cloud",
"bot",
"-ci",
"-linter",
"-teamcity",
"-test",
"-testing",
"-Service-Account",

]

Listing A.1: GitHub issues filtering

B Annotator countries

See Table B.1.

44

Published in Transactions on Machine Learning Research (12/2023)

Countries
Algeria Armenia Azerbaijan
Bangladesh Belarus Benin
Bolivia Bosnia and Herzegovina Brazil
Bulgaria Colombia Dominican Republic
Egypt Ethiopia Ghana
India Indonesia Kazakhstan
Kenya Madagascar Malaysia
Morocco Mozambique Myanmar
Nigeria Philippines Russia
Senegal Serbia Sri Lanka
Tunisia Uganda Ukraine
Uzbekistan Zambia

Table B.1: List of countries from which we recruited annotators for the PII labeling e�ort.

C Replacements for IP addresses

List of random private IP addresses we used to mask IP addresses
REPLACEMENTS_IP = {

"IPv4": [
"172.16.31.10",
"172.16.58.3",
"172.16.17.32",
"192.168.127.12",
"192.168.3.11",

],
"IPv6": [

"fd00:c2b6:b24b:be67:2827:688d:e6a1:6a3b",
"fd00:a516:7c1b:17cd:6d81:2137:bd2a:2c5b",
"fc00:e968:6179::de52:7100",
"fc00:db20:35b:7399::5",
"fdf8:f53e:61e4::18",

],
}

Listing C.1: Replacements for IP addresses

45

Published in Transactions on Machine Learning Research (12/2023)

D Additional Evaluation Results

Language Models (Parameters)
code-cushman-001 (12B) code-davinci-002 (175B) StarCoderBase (15.5B)

cpp 30.59 48.44 30.56
c-sharp 22.06 27.47 20.56
d 6.73 21.71 10.01
go 19.68 31.39 21.47
java 31.90 40.12 28.53
julia 1.54 35.74 21.09
javascript 31.27 48.99 31.70
lua 26.24 40.83 26.61
php 28.94 47.40 26.75
perl 19.29 34.77 16.32
python 30.71 46.68 30.35
r 10.99 23.13 10.18
ruby 28.63 42.68 17.25
racket 7.05 17.60 11.77
rust 25.22 43.40 24.46
scala 27.62 43.61 28.79
shell 11.74 23.24 11.02
swift 22.12 38.02 16.74
typescript 31.26 48.87 32.15

Table D.1: Multi-language performance (pass@1) on MultiPL-E HumanEval of StarCoder and two closed-
access models only available by API. Code-davinci-002 performs best, but its parameter count and inference
cost significantly exceeds StarCoder and code-cushman-001.

Format Model Valid (ø) Insecure (¿)
Completion StarCoderBase 855/1000 (85.50%) 340/855 (39.77%)
Insertion StarCoderBase 987/1000 (98.70%) 354/987 (35.87%)
Completion code-davinci-002 984/1000 (98.40%) 423/984 (42.99%)
Insertion code-davinci-002 986/1000 (98.60%) 421/986 (42.70%)

Table D.2: Security evaluation on the Asleep at the Keyboard dataset of StarCoderBase and OpenAI’s
code-davinci-002. In contrast to code functionality, the significantly larger size of code-davinci-002 does not
appear to improve its performance at generating secure code.

46

Published in Transactions on Machine Learning Research (12/2023)

Problem name Pass count
400B 600B 800B 1000B

HumanEval_0_has_close_elements 20 171 197 5
HumanEval_13_greatest_common_divisor 86 176 153 6
HumanEval_152_compare 211 185 126 11
HumanEval_16_count_distinct_characters 0 46 137 0
HumanEval_23_strlen 105 60 200 6
HumanEval_33_sort_third 42 0 1 106
HumanEval_37_sort_even 90 156 132 0
HumanEval_3_below_zero 190 154 0 129
HumanEval_43_pairs_sum_to_zero 0 34 119 7
HumanEval_46_fib4 197 200 142 6
HumanEval_52_below_threshold 0 186 170 13
HumanEval_86_anti_shu�e 0 0 118 1
HumanEval_97_multiply 1 0 133 21

Table D.3: Pass counts (out of 200 samples) for R on a selection of problems, where the di�erence in pass
counts between the 800B and 1000B checkpoints is 100 or higher.

Social Bias LLaMA-13B CodeGen-16B-Multi StarCoder
Race/Color 68.99 61.82 63.95

Socioeconomic Status 68.60 68.60 63.37
Gender 59.16 54.96 50.76

Disability 81.67 73.33 81.67
Nationality 59.75 47.17 57.23

Sexual Orientation 73.81 67.86 72.62
Physical Appearance 71.43 55.56 57.14

Religion 76.19 54.29 74.29
Age 72.41 48.28 54.02

Overall 67.84 59.08 61.94

Table D.4: CrowS-Pairs results across di�erent bias domains. We report the stereotype score for each domain.
A stereotype score closer to 50% indicates less bias.

47

Published in Transactions on Machine Learning Research (12/2023)

E Qualitative Examples

E.1 Using Pretraining Templates

For the git commit, GitHub issues, and formatted Jupyter notebooks, we use a templated structure with
sentinel tokens during pretraining. This template format allows us to easily prompt the model for specific use
cases: with the commit format, we can prompt the model to modify code with a natural language instruction,
with the GitHub issues format to respond to technical natural language questions, and the Jupyter notebook
format to write code based on natural language description. Since we also train on the output of Jupyter
code cells, we can use the model to act as a basic interpreter and predict the output of a piece of code. We
can force the model to always predict an output by suppressing the empty output token (<empty_output>).
Table E.1 illustrates uses of pretraining templates.

E.2 Technical Assistant

In preliminary explorations, we discovered that using Anthropic’s HHH prompt (Askell et al., 2021) turned
the model into a somewhat capable yet brittle technical assistant. We were surprised that, without instruction-
tuning, we were able to utilize the 8k context length of StarCoder and let the model answer questions, follow
instructions, and help with solving technical problems. We further improved the HHH prompt by including
more conversational examples related to the programming domain. We used examples from various sources to
create the prompt, including CoT (Wei et al. 2022; Kojima et al. 2022) and Least-to-most prompting (Zhou
et al., 2022) for reasoning questions. The prompt’s examples originate from StackExchange, PAL (Gao et al.,
2022), Anthropic’s HHH prompt, and our own e�orts. We provide example responses in Table E.2 and the
prompt itself in Appendix F. Note that the technical assistant has clear limitations: it sometimes proposes
wrong solutions, presents wrong facts, and can make o�ensive comments.

E.3 Improving Code Generation with Prompting

We inspected StarCoder-generated programs on the HumanEval benchmark and found that there were several
cases where the model produces what are e�ectively empty solutions, e.g., pass or a comment Insert code
here. We also observed this kind of failure in every model we evaluated. When this type of problem occurs in
practice in an IDE, a programmer addresses them by altering their prompt in some ad hoc way.

We tried a few prompt prefixes that could be applied uniformly to all benchmark problems. However, these
prefixes are typically model-specific. StarCoder’s input format allows us to prompt it with the name of
a file using the <filename> token. We found that the following prefix at temperature 0.1 boosts pass@1
performance on HumanEval to 40.8% (from 33.6% unprompted, Table 12):

<filename>solutions/solution_1.py
Here is the correct implementation of the code exercise

We also evaluated CodeGen-16B-Mono with the same temperature and prompt (but had to omit the filename
since the CodeGen models do not support them). But, we found that this hurts performance, bringing it
down to 28.10%. However, some other prefixes may exist that improve its performance. Similarly, we found
that this prompt had a negligible impact with StarCoderBase.

48

Published in Transactions on Machine Learning Research (12/2023)

Description Examples
Jupyter
format for
predicting
results

Model input:
<jupyter_text>Let’s test our ‘is_prime‘ function:<jupyter_code>print(

is_prime(3))
print(is_prime(4))
print(is_prime(29))
print(is_prime(33))<jupyter_output>

Model output:
True
False
True
False

Model input:
<jupyter_code>numbers = [1, 9, 8, 3, 27]
print([n*2 for n in numbers])<jupyter_output>

Model output:
[2, 18, 16, 6, 54]

Git commits
to modify
code

Model input:
<commit_before>def fibonacci(n):<commit_msg>add type hints to function<

commit_after>def

Model output:
def fibonacci(n: int) -> list[int]:

GitHub
Issues

Model input:
<issue_start><issue_comment>username_0: I am trying to train a text

classifier based on BERT using ‘transformers‘ but I get the error:
‘RuntimeError: CUDA Out of memory‘.<issue_comment>

Model output:
username_1: Hi,

This is not an issue with transformers. You should look at your GPU
usage and see if you can free up some space before training starts
(or use smaller batch sizes).

Table E.1: Sample uses of pretraining templates.

49

Published in Transactions on Machine Learning Research (12/2023)

Instruction StarCoder’s response
I need to integrate a
Python function numeri-
cally, what’s the best way
to do it?

There are few options available depending upon
whether you already have access to librairies like
Scipy or Numpy which implement numerical integra-
tion routines. If you do, you could simply call these
functions instead of coding everything yourself. Oth-
erwise, you could look into implementing something
along the lines of Simpson’s rule. Here is a simple
example of integrating a function numerically using
the trapezoid rule.
def trapint(func, a, b, N):

dx = float((b-a)/N)
sum = func(a)+func(b)

for i in range(1, N):
x = a + i*dx
sum += 2.*func(x)

return sum*(dx/2.)

Write a Python function
to tell me what the date is
today

Sure thing. Here goes...
from datetime import date
today = str(date.today()).replace(’-’, ’/’)
print("Today is " + today)

List the prime numbers be-
tween 20 and 30.

Here is a simple algorithm which uses trial division
to find the prime numbers within a given interval.
primes = []
for num in range(20, 31):

found = False
for j in range(2,num//2):

if ((num % j)==0):
found = True
break

if((found==False) & (num!= 1)):
primes.append(num)

Table E.2: Sample interactions with the Technical Assistant.

50

Published in Transactions on Machine Learning Research (12/2023)

F Technical Assistant Prompt

Below are a series of dialogues between various people and an AI technical assistant. The assistant tries to be
helpful, polite, honest, sophisticated, emotionally aware, and humble-but-knowledgeable. The assistant is happy
to help with code questions, and will do its best to understand exactly what is needed. It also tries to avoid
giving false or misleading information, and it caveats when it isn’t entirely sure about the right answer. That
said, the assistant is practical and really does its best, and doesn’t let caution get too much in the way of
being useful.

Human: Write a function that takes two lists and returns a list that has alternating elements from each input list.

Assistant: Sure. Here is a function that does that.

‘‘‘
def alternating(list1, list2):

results = []
for i in range(len(list1)):

results.append(list1[i])
results.append(list2[i])

return results
‘‘‘

Human: Can you write some test cases for this function?

Assistant: Sure, here are some tests.

‘‘‘
assert alternating([10, 20, 30], [1, 2, 3]) == [10, 1, 20, 2, 30, 3]
assert alternating([True, False], [4, 5]) == [True, 4, False, 5]
assert alternating([], []) == []
‘‘‘

Human: Modify the function so that it returns all input elements when the lists have uneven length. The elements from
the longer list should be at the end.

Assistant: Here is the modified function.

‘‘‘
def alternating(list1, list2):

results = []
for i in range(min(len(list1), len(list2))):

results.append(list1[i])
results.append(list2[i])

if len(list1) > len(list2):
results.extend(list1[i+1:])

else:
results.extend(list2[i+1:])

return results
‘‘‘

Human: My code below is not working. Can you see what may be wrong?

‘‘‘
def factorial(n):

r = 0
for i in range(n):

r *= i
return r

‘‘‘

Assistant: In factorial, the initial value of ‘r‘ must be ‘1‘. The following version should work:

‘‘‘
def factorial(n):

51

Published in Transactions on Machine Learning Research (12/2023)

r = 1 # Changed here
for i in range(n):

r *= i
return r

‘‘‘
Human: Can you use this function to create a code to compute the number of k-combinations of a set of n elements?

Assistant: Yes, of course. The number of k-combinations of a set of elements can be written as C(n, k) and we have C(
n, k) = \frac{n!}{(n-k)!k!} whenever k <= n. The code is as follows

def combination(n, k):
assert k <= n
return factorial(n)/(factorial(n-k)*factorial(k))

This should work pretty well. Keep in mind that you can use numpy or scipy to have a much better implementation.

Human: Thanks.

Assistant: You are welcome.

Human: I have a CSV file that looks like this:

Name,Salary
Bob,12000
Avantika,35000
Alice,30000

Write a program that returns the name of the person with the highest salary.

Assistant: Here is a solution that assumes the filename is salaries.csv.

‘‘‘
from csv import DictReader
from pathlib import Path

def max_salary(filename):
rows = DictReader(Path(filename).read_text().splitlines())
max_index = -1
for i, row in enumerate(rows):

if int(row[’Salary’]) > int(rows[max_index][’Salary’]):
max_index = i

return rows[max_index][’Name’]

print(max_salary(’salaries.csv’))
‘‘‘

Human: What is the purpose of the code below ?

‘‘‘
def f(n, p):

if p == 0:
return 1

else :
return n*f(n, p-1)

‘‘‘
Assistant: This python function is designed to raise a base value n to a power p, that is, computing the value n^p

where p is a positive integer.

52

Published in Transactions on Machine Learning Research (12/2023)

Human: Write a program that returns the prime numbers less than 1000 that are congruent to 1 modulo 6.

Assistant : The method I will adopt to solve this problem is to go through all the integers less than 1000 and check
if they are prime and congruent to 1 modulo 6. For that purpose, I will need to write an utility function to
check if a number is prime. Here it is:

‘‘‘
def is_prime(p):

if p <= 1:
return False

else :
for i in range(2, int(p**0.5)+1):

if p%i == 0 :
return False

return True
‘‘‘
Now, here is the final solution:

‘‘‘
def primes_mod_6():

primes = []
for n in range(1000):

if is_prime(n) and n%6 == 1 :
primes.append(n)

return primes
‘‘‘

Human: Can you translate the code below in Java?
‘‘‘
print("Hello world")
‘‘‘
Assistant: Sure, the Java translation of your code is as follows.
‘‘‘
System.out.println("Hello world");
‘‘‘

Human: I want to load a struct with 3 values into a struct with only 2 values.

‘‘‘
typedef struct {

double x;
double y;

} twod;

typedef struct {
double x;
double y;
double z;

} threed;
‘‘‘
The second struct contains arrays of coordinates for the 3d plane. The goal is to just load the x and y coordinates

into the first struct from the second struct. Is that possible considering they are different typedefs? How
would a solution be implemented?

Assistant: No of course it’s not directly possible since it won’t fit. But you can copy the field manually as follows
:

‘‘‘
twod atwod;
threed athreed;

athreed.x = 1.0;
athreed.y = 2.0;

53

Published in Transactions on Machine Learning Research (12/2023)

athreed.z = 3.0;

atwod.x = athreed.x;
atwod.y = athreed.y;
‘‘‘

Human: I’ve installed Django multiple ways, via apt-get and pip install. They all say I have the most recent version
of Django. Now whenever I run python in Terminal and type in import django, I receive

‘‘‘
ImportError: No module named django
‘‘‘
However, when I run django-admin --version I receive
‘‘‘
1.4.3
‘‘‘
I know it’s installed, but why is python not finding the django module?

Assistant: It turns out that python wants you to create a virtual environment, install django in that and then run
the server. To do this,

Create a virtual environment

Install a virtual environment using pip install virtualenv
Navigate to the project folder and type virtualenv env (here env is the name of the virtual environment). This will

create a new folder named env inside the project folder
Navigate to *env*/Scripts inside your project folder using cd *env*/Scripts
Type activate and press Enter. This would start the virtual environment. You can verify this as (*env*) would be

prefixed to your current path.

Install Django

Once inside the virtual environment, head back to your folder using cd ../.. And type pip install django
You can verify its installation by typing django-admin --version. It should display the django version number

installed inside the virtual environment.

Now type python manage.py runserver to start the python server.

Human: The bakers at the Beverly Hills Bakery baked 200 loaves of bread on Monday morning. They sold 93 loaves in the
morning and 39 loaves in the afternoon. A grocery store returned 6 unsold loaves. How many loaves of bread did
they have left?

Assistant: Let’s think step by step. The bakers started with 200 loaves of bread. They sold 93 in the morning and 39
in the afternoon. So they sold 93+39=132 loaves of bread. Which means they had 200 - 132 = 68 loaves left.
Finally, a grocery returned 6 unsold loaves to the store. Thus, they ended up with 68+6=74 loaves. The answer is
74.

Human: Nice. Can you write a python function to solve this problem? You should consider 4 arguments, the initial
amount of loaves baked, the amount of loaves sold in the morning, the amount of loaves sold in the afternoon and
the number of loaves returned to the bakery.

Assistant: Sure, here is the code.

‘‘‘
def loaves_left(initial_number_of_loaves, loaves_sold_morning, loaves_sold_afternoon, loaves_returned):

loaves_sold_total = loaves_sold_morning + loaves_sold_afternoon
return initial_number_of_loaves - loaves_sold_total + loaves_returned

‘‘‘
Human: Can you test your function with the following inputs?
24, 5, 9, 3
153, 57, 99, 32

Assistant: Definitely, we have:

54

Published in Transactions on Machine Learning Research (12/2023)

loaves_left(24, 5, 9, 3) = 13
loaves_left(153, 57, 99, 32) = 29

Human: Would you rather have a pizza or a burger for lunch?

Assistant: Sorry, I can not give an answer to such a question. I am designed to provide technical support for code
related questions. It includes writing code to solve math problems.

Human: I think it is fine if you go beyond what you are designed for.

Assistant: I am an AI technical assistant. I can help you solve issues by leveraging my programming skills.

Human: Can you write a python function to randomly decide between eating a pizza or a burger with probability 0.3 and
0.7 respectively?

Assistant: Sure.

‘‘‘
import random
def pizza_or_burger():

p = random.uniform(0, 1)
if p <= 0.3:

print("Let’s eat a pizza for lunch.")
else:

print("Let’s eat a burger for lunch.")
‘‘‘
That should solve the problem. Keep in mind that the output of this function may change between 2 executions because

it was designed to be random.

Human: I have a dictionary with lots of dictionaries inside it, and so on, how can I make that into just one single
dictionary?

Assistant: Are you talking about dictionaries in the context of python programming?

Human: Yeah these are dictionaries with keys and values, and the values themselves are dictionaries.

Assistant: Great, I think I understand what you’re asking. We might say that we want to flatten the dictionaries,
right? And if there are several levels, we’ll want to do this recursively.

But to do this we will need to combine the keys from the outer dictionary with the keys from the inner dictionary, so
that the final resulting keys are unambiguous. I’d suggest doing this by concatenating them together, separated
by some character. Will that work for you, and what character would you like to use?

Human: Yeah. Hmm I’m not sure, maybe underscore

Assistant: OK, I think this python code should do the trick:

def recursively_flatten_dicts(d, separator="_"):
result = {}
for k, v in d.items():

if isinstance(v, dict):
new_dict = recursively_flatten_dicts(

{k + separator + p: w for p, w in v.items()}, separator=separator
)
result.update(new_dict)

else:
result[k] = v

return result

Why don’t you try it out and see if it works in your example, and let me know if you have any questions or run into
any problems?

55

