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A Simplified Implementation for Gaussian Inference in RecXi

In this section, we will introduce the simplified method for implementing the proposed Gaussian
inference. We take layer 2 as an example and Equations (19) and (20) are repeated as follows:
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We formulate the adjusted uncertainty estimate L′
t and point estimation with speaker representation

removal z′t as following:
L′
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Then, Equations (Appx.1) and (Appx.2) are simplified as
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Similar to [9], we assume that the covariance (and precision) matrices are diagonal and choose to
estimate directly the log-precision which turns out to be more convenient for following derivation.
And L′

t in (Appx.3) can be simplified by computing the diagonal elements directly and thereby
avoiding the expensive computational for matrix inverse operations. The i-th diagonal element is
formulated as
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Therefore, the i-th diagonal element of the gain factor is computed as
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Let K = [log(L′
t(i)), log(Φ

+
t−1(i))], then At(i) and At−1(i) equal to the outputs of a softmax function

(σ) of K.
At(i) = σ(K)1, (Appx.12)

At−1(i) = σ(K)2. (Appx.13)

As mentioned above, the covariance and precision matrices are estimated directly the log-precision,
therefore, log(L′

t) and log(Φ+
t−1) are estimated and used directly in (Appx.12) and (Appx.13). And

Equation (Appx.5) can be simplified as

ρt = Atz
′
t +At−1ρ

+
t−1. (Appx.14)

As the gain factor A is a diagonal matrix, and z and ϕ are vectors, the expensive matrix multipli-
cation operations and numerically problematic matrix inversions are simplified into element-wise
multiplication of diagonal elements and vectors. This is the same as the implementation of point-wise
multiplication for matrices in neural networks and thus, is easy to implement based on existing
toolkits.

The method above can also be applied to layer 1 and layer 3 of the proposed RecXi. We can simplify
the implementation of the entire RecXi framework by avoiding the complex and computationally
expensive matrix inverse and matrix multiplication operations.

B Comparison between the Modified ResNet34 and Proposed tResNet34

As mentioned in Section 4.2, to model more local regions with larger frequency bandwidths at
different scales, we further modify the ResNet34 backbone used in [20] by simply changing the stride
strategy and naming it tResNet. The structure and outputs for both backbone models are detailed in
Table Appx.1.

Table Appx.1: The structure and outputs comparison between modified ResNet34 in [20] and
proposed tResNet34. The main difference is the stride strategy.

Layer ResNet34 tResNet34
stride Output Size stride Output Size

3 × 3, 32 (1,1) 32 × F × T (1,1) 32 × F × T[
3× 3, 32
3× 3, 32

]
× 3 (1,1) 32 × F × T (2,1) 32 × F/2 × T[

3× 3, 64
3× 3, 64

]
× 4 (2,2) 64 × F/2 × T/2 (2,1) 64 × F/4 × T[

3× 3, 128
3× 3, 128

]
× 6 (2,2) 128 × F/4 × T/4 (2,2) 128 × F/8 × T/2[

3× 3, 256
3× 3, 256

]
× 3 (2,2) 256 × F/8 × T/8 (2,1) 256 × F/16 × T/2

The testing results of two backbone models are stated in Table Appx.2. Temporal statistics pooling is
applied for both backbones, which is also the default aggregation layer used in [20].

Table Appx.2: Performance in EER(%) and minDCF of the ResNet34 in [20] and proposed tResNet34
on VoxCeleb1 and SITW test sets. # is the index number for the system.

# Backbone params
(Million)

VoxCeleb1-O VoxCeleb1-H VoxCeleb1-E SITW eval
EER minDCF EER minDCF EER minDCF EER minDCF

18 ResNet34 6.63 1.489 0.155 2.500 0.224 1.423 0.158 2.378 0.208
3 tResNet34 6.21 1.396 0.135 2.257 0.204 1.281 0.141 2.250 0.200

The tResNet design is not claimed as one of the major contributions of this work. A thorough
investigation and exploration of the tResNet mechanism will be presented in a forthcoming work.
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C Experiments Setup

C.1 Dataset

The experiments are conducted on VoxCeleb1 [13], VoxCeleb2 [2], and the Speaker in the Wild
(SITW) [12] datasets. During training, only the development partition of the VoxCeleb2 dataset is
used. It contains 1,092,009 utterances from 5,994 speakers. VoxCeleb1 and SITW-eval datasets are
used as the test sets. There are three test lists in the VoxCeleb1, namely VoxCeleb-O, VoxCeleb-H,
and VoxCeleb-E. There is no overlapping speaker between the training and testing sets. In addition,
we reserved a small portion of about 2% from the training set as the validation set. It is worth noting
that the text labels are not available for these datasets. The number of speakers and utterances for
these two datasets are shown in Table Appx.3.

Table Appx.3: Number of speakers and utterances of VoxCeleb1 and VoxCeleb2 dataset.

Data set # Speakers # Utterances

VoxCeleb1 1,211 148,642
VoxCeleb2 5,994 1,092,009

C.2 Training Strategy

Implementation The experiments are conducted using Pytorch1 and implemented in SpeechBrain2.
For a fair comparison, the baselines are all re-implemented and trained with the same strategy as
RecXi which follows that in ECAPA-TDNN [4] and MFA-TDNN [11]. The details are stated below:

Configuration The Adam [6] optimizer with cyclical learning rate scheduler [15] following tri-
angular policy [15] is used for training all models. The maximum and minimum learning rates
of the cyclical scheduler are 8e-3 and 8e-8 for ECAPA-TDNN-based systems, 3e-3 and 3e-8 for
ResNet-based systems. All the samples are chunked into 3-second segments during training without
augmentation. The mini-batch size is 384 for ECAPA-TDNN-based systems and 256 for ResNet-
based systems considering the limitations of GPU memory. Each model is trained by two NVIDIA
A5000 GPUs or NVIDIA 3090 GPUs with 24GB memory.

A total of 16 epochs are trained for each system and at the end of each epoch, the model is evaluated
by the validation set to find the best checkpoint for testing. The criterion of classification loss Lcls is
additive angular margin softmax (AAM-softmax) [3] with a margin of 0.2, a scale of 30 and a weight
decay of 2e-5. α and β in Equation (27) are 1.0 and 3000, respectively, following the default setting
in [18].

Data Augmentation For the experiments marked with data augmentation, we employ five augmen-
tation techniques to increase the diversity of the training data. The first two follow the idea of random
frame dropout in the time domain [14] and speed perturbation [7]. The remaining three are a set of
reverberate data, noisy data, and a mixture of both by using RIR dataset [8]. The mini-batch size is
384 (64 original samples each with 5 augmented samples). The maximum and minimum learning
rates of the cyclical scheduler are 2e-3 and 2e-8. Each model is trained by 4 or 6 NVIDIA A5000
GPUs each with 24GB memory. The other configurations are the same as the experiments without
data augmentation as described above.

Model details The number N of mini-transition models for deriving Gt is set as 16. The bottleneck
feature dimension of the filter generator between two fully connected layers is set as 256. The
bottleneck feature dimension of uncertainty estimation in the encoder for both xi-vector and RecXi
is also 256. The channels in the convolutional frame layers of ECAPA-TDNN backbone is 512
following the default setting in [4].

1https://pytorch.org/
2https://speechbrain.github.io/
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For the decoder, we follow the designs in ECAPA-TDNN [4] and ResNet [20] baselines. Specifically,
two fully connected (FC) layers following the aggregation layer are employed. For the ECAPA-
TDNN-based systems, one batch normalization layer is applied before the first FC layer. The first
FC layer produces embeddings and the other one is a classification layer. The embedding dimension
is 192 for the ECAPA-TDNN-based systems and 256 for the ResNet/tResNet-based systems. The
backbone network is trained together with the aggregation layer RecXi, as well as the decoder.

The code and the pre-trained models will be made available with third-party re-implementation.

C.3 Evaluation Protocol

All the models are evaluated by the performance in terms of equal error rate (EER) and the minimum
detection cost function (minDCF) with Ptarget = 0.01 and CFA = CMiss = 1. The test trial scores are
calculated by measuring the cosine similarity between embeddings. The S-norm [5] post-processing
method is applied for all experiments.

D Comparisons between Different Kinds of Lssp

Table Appx.4: Performance in EER(%) and minDCF of systems without proposed Lssp and with
different kinds of Lssp. The model used is ECAPA-TDNN backbone with proposed RecXi(ϕ̃, ϕ̃lin).
# is the index number for the system.

# Loss for
Self-supervision

VoxCeleb1-O VoxCeleb1-H VoxCeleb1-E SITW eval
EER minDCF EER minDCF EER minDCF EER minDCF

13 Not used 1.303 0.116 2.477 0.228 1.326 0.142 2.351 0.196
19 Mean Squared Error 1.202 0.128 2.471 0.228 1.296 0.136 2.292 0.184
11 Similarity-Preserving 1.196 0.107 2.467 0.227 1.292 0.141 2.105 0.184

In this paper, we chose the similarity-preserving (SP) loss [18] as Lssp, as it is more in line with our
layer-wise design and the idea of speaker information preserving. The experiment results reported
in Table Appx.4 show that by using either mean squared error (MSE) loss (system #19) or SP loss
(system #11) as proposed Lssp, there is a significant improvement compared to not using Lssp (system
#13). This proves the effectiveness of our proposed novel self-supervision method both with MSE
loss and SP loss. In addition, we can observe that the system with SP loss as Lssp outperforms the
system with MSE loss as Lssp in most of the trials. This shows that SP loss is more appropriate for
our design.

Our novelty lies in the approach of using knowledge distillation loss to effectively guide content dis-
entanglement without relying on textual labels, rather than finding the optimal knowledge distillation
loss. However, as discussed in Section 6, it is also valuable to explore the appropriate loss function
for Lssp. Therefore, we include Table Appx.4 here for those who may be interested.

E Broader Impact

This work proposes a Gaussian inference-based disentanglement learning neural network namely
RecXi. It models the dynamic and static components in the speech signals with the aim to disentangle
vocal and verbal information and benefit speaker recognition. The system is further enhanced by the
proposed novel self-supervision Lssp method in the absence of text labels. The research shows great
effectiveness over a variety of modern methods, and it may have a wide range of other speech-related
applications, such as automatic speech recognition (ASR), voice conversion, and anonymization.

On the negative side, even though the proposed method achieves the best performance so far in the
field of speaker verification, it is still not perfect and may make wrong decisions at a low possibility.
Similar to existing deep learning-based solutions, the decisions made are hard to interpret. This limits
its application in some critical applications, such as forensic voice comparison and banking where
false acceptances are serious issues. In addition, as mentioned above and in Section 7, our next plan
is to reconstruct speech signals from the disentangled representations, which can also be extended
to voice conversion. The voice conversion techniques can generate audio with realistic sound, and
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there is an increased potential risk of harm, malicious use, and ethical issues [10]. Specifically, these
systems could be misused in various manners, such as fake news generation and voice spoofing. To
mitigate these issues, audio anti-spoofing (or deepfake audio detection) is studied [17, 21].

F Visualization

(a) ϕ̃ (b) ϕ̃lin (c) ρ

Figure Appx.1: The t-distributed stochastic neighbor embedding (t-SNE) [19] visualization of speaker
discriminative ability in embeddings space. (a) The disentangled speaker representation ϕ̃ from layer
3. (b) The speaker representation ϕ̃lin by the linear operation in Equation (25). (c) The content
representation ρ from layer 2.

The visualization in Fig. Appx.1 depicts speakers from the test set of VoxCeleb, where the first 200
speakers (indexed from id10001 to 10200) are included, each with 20 utterances. From the figure, it is
evident that in layer 3, the disentangled speaker representation ϕ̃ is highly discriminative for speakers.
Moreover, benefiting from the self-supervision loss, the speaker representation acquired through the
linear operation in Equation (25) also exhibits notable speaker discriminative ability, comparable to
that derived from layer 3. However, for layer 2 (ρ), as its main objective is to disentangle content
information, it lacks the discriminative ability observed in layer 3.

G Ablation Study on Three RecXi Layers

Table Appx.5: Performance in EER(%) and minDCF of using different posteriors from the three
layers of RecXi for ablation study. # is the index number for the system.

# Posterior Representation Description VoxCeleb1-H VoxCeleb1-E SITW
EER minDCF EER minDCF EER minDCF

5 ϕ̃, ϕ̃lin Disentangled Speaker & Speaker by Equation (25) 2.097 0.196 1.197 0.124 1.832 0.172
15 ϕ̃ Disentangled Speaker 2.117 0.192 1.215 0.128 1.750 0.177
20 ϕ̃lin Speaker by a linear operation (Equation (25)) 2.181 0.198 1.222 0.126 1.804 0.172
21 ρ Disentangled Content 49.421 1.000 49.022 1.000 49.399 1.000
22 ϕ Precursor Speaker 2.187 0.199 1.249 0.131 2.023 0.186

In order to explore the information within each of RecXi’s three layers and the speaker represen-
tation achieved through a linear operation in Equation (25), we generate embeddings using the
output posteriors of these layers and evaluate their speaker discriminative ability. The results in
Table Appx.5 clearly show that both ϕ̃ and ϕ̃lin (systems #5, #15, and #20) carry speaker information
and demonstrate great discriminative capabilities. Additionally, reporting on layer 2 (system #21)
further supports our claims, confirming its role in representing content while effectively removing
speaker-related information. The EER being close to the maximum value, 50%, indicates that layer 2
does not contain any speaker-related information and does not exhibit any speaker discriminative
ability. The precursor speaker representation ϕ (system #22) also exhibits fine speaker discriminative
ability, but it is slightly inferior to ϕ̃ (system #15). These observations align with those in Fig. Appx.1
and strongly support our claims. Authors express their deep gratitude to anonymous reviewers for
inspiring them to conduct this ablation study, which unmistakably demonstrates the success of our
disentanglement approach.
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H Comparing RecXi with ASR- or Contrastive Learning-based Systems

Table Appx.6: Performance in EER(%) and minDCF of the proposed RecXi and the SOTA systems
with pre-trained ASR models [22, 1] or contrastive learning [16]. # is the index number for the
system.

# System Params
(Million)

Need Speaker
Labels?

Need Pre-trained
ASR Model?

VoxCeleb1-O VoxCeleb1-H VoxCeleb1-E
EER minDCF EER minDCF EER minDCF

23 IPA [22] >60 ✓ ✓ 1.81 - 3.12 - 1.68 -
24 NEMO [1] 15.88 ✓ ✗ 0.88 0.137 2.20 0.225 1.08 0.134
25 NEMO [1] 15.88 ✓ ✓ 0.74 0.110 1.90 0.189 0.90 0.105
26 MCL-DPP [16] 10.5 ✗ ✗ 2.89 - 6.27 - 3.17 -
27 MCL-DPP-C [16] 10.5 Pseudo label ✗ 1.44 - 3.27 - 1.77 -
9 Proposed RecXi 7.06 ✓ ✗ 0.984 0.091 1.857 0.179 1.075 0.114

As introduced in Section 1, pre-trained ASR models have been shown to be beneficial for the speaker
recognition task. In this appendix section, we perform a comparison between our proposed method
and the SOTA systems in two aspects: 1) using ASR models to provide phonetic information for
speaker recognition [22], and 2) utilizing ASR models as initial weights [1]. It’s worth noting that [1]
is a recent work that became accessible after our submission. This comparison is added during the
rebuttal phase.

As shown in Table Appx.6, our proposed system #9 not only surpasses the system employing a
pre-trained ASR model (system #23) but also significantly reduces the model size. Additionally,
the proposed method achieves similar performance with the model utilizing ASR pre-training in [1]
(system #9 vs #25). Our proposed method offers a significant advantage: it achieves competitive per-
formance without requiring pre-training of an ASR model. Additionally, our method is approximately
55.5% smaller than that in [1], highlighting the efficiency and effectiveness of the proposed RecXi.

Contrastive learning has been extensively investigated and has demonstrated great performance in
speaker verification. It holds the advantage of effectively utilizing unlabeled data [16]. We also
compare the proposed RecXi and a SOTA contrastive learning system, both evaluated on the same
dataset. Notably, even though the models in [16] incorporate extra visual information beyond speech,
our proposed RecXi consistently demonstrates substantial superiority over the system detailed in [16]
across all three test sets.

I Evaluation of the Effectiveness of Gt

Table Appx.7: Performance in EER(%) and minDCF of using different numbers (N) of learnable
transition matrices for frame-wise content-aware transition model Gt or identity matrix follows that
of the xi-vector. This aims to verify the effectiveness of Gt, rather than tuning the hyperparameter N.
# is the index number for the system.

# Lssp Posterior Number of Learnable
Transition Matrices (N)

VoxCeleb1-H VoxCeleb1-E SITW
EER minDCF EER minDCF EER minDCF

5 ✓ ϕ̃, ϕ̃lin 16 2.097 0.196 1.197 0.124 1.832 0.172
28 ✓ ϕ̃, ϕ̃lin 6 2.099 0.198 1.215 0.128 1.968 0.184
29 ✓ ϕ̃, ϕ̃lin 1 2.489 0.238 1.356 0.149 3.882 0.435
30 ✓ ϕ̃, ϕ̃lin 0 (use identity matrix) 2.524 0.260 1.471 0.165 4.280 0.435

To verify the effectiveness of Gt, we conduct experiments by replacing the Gt with a single learnable
matrix (system #29), or an identity matrix (system #30) following that used in the xi-vector, while
maintaining the three-layer design with the proposed self-supervision loss. Based on the results shown
in Table Appx.7, it is evident that using an identity matrix or a single learnable matrix leads to poor
performance. This clearly demonstrates that if the second layer lacks the capacity to model dynamic
patterns, the model becomes confused. This, in turn, has a significant impact on layer 3’s ability
to obtain accurate speaker embeddings, as it relies on removing the content information provided
by layer 2. The aforementioned observations further validate the effectiveness of the proposed Gt.

6



Furthermore, when N is set to 6 (system #28), the model achieves performance that is better than
the xi-vector baseline (system #4 in Table 1) and is close to the system with N = 16 (system #5) but
slightly worse. This experiment demonstrates the effectiveness and necessity of our proposed Gt in
facilitating the capability of layer 2 to model dynamic components.
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