
A Proof of Theorem 1

The estimator Q̂πβ∗(s, a) was defined via

β∗(s, a) = arg min
β∈[βmin,βmin]

∣∣∣∣∣Q̂β(s, a)− 1

N

N∑
i=1

Ri(s, a)

∣∣∣∣∣. (8)

To declutter the notation we drop the dependencies on the state-action pairs (s, a) and the policy π.
Further we write R̄ = 1

N

∑N
i=1Ri. First note that the average of symmetrically distributed random

variables is still a symmetric distributed random variable and hence R̄ is symmetrically distributed.
By assumption Q̂βmin and Q̂βmax have the same distance to the true Q-value which is the mean
Q = E[R̄], i.e. there is a distance real valued value d such that Q = Q̂βmin +d = Q̂βmax −d Denote
the tail probabilty P(R̄ < Q̂βmin) = pt. Because of the symmetry and the same distance to the
mean we also have that P (R̄ > Q̂βmax) = pt. In the computation of E[Q̂β∗ ] we can differentiate
three events. If Q̂βmin ≤ R̄ ≤ Q̂βmax then Q̂β∗ = R̄, if Q̂βmin ≥ R̄ then Q̂β∗ = Q̂βmin and if
Q̂βmin ≥ R̄ then Q̂β∗ = Q̂βmax . We denote the indicator function with A, which is equal to 1 if the
event A is true and 0 otherwise. Then we get

E
[
Q̂β∗

]
= E

[
1

[
Q̂βmin ≤ R̄ ≤ Q̂βmax

]
R̄

]

+ E

[
1

[
Q̂βmin ≥ R̄

]
Q̂βmin

]

+ E

[
1

[
Q̂βmax ≤ R̄

]
Q̂βmax

∣∣∣]
= (1− 2pt) · E[R̄] + pt E

[
Q̂βmin

]
+ pt E

[
Q̂βmax

]
= (1− 2pt)Q+ ptQ̂βmin + ptQ̂βmax
= (1− 2pt)Q+ pt(Q− d) + pt(Q+ d)

= (1− 2pt)Q+ 2ptQ+ pt(d− d)

= Q

B Using Fewer Critic Networks for Faster Runtime

Using 5 critic networks - the default in TQC - to approximate the value function leads to a high
runtime of the algorithm. It is possible to trade off performance against runtime by changing the

0 1 2 3 4 5
1e6

0

2500

5000

7500

10000

12500

15000

17500

20000

Av
er

ag
e 

Ev
al

ua
tio

n 
R

et
ur

n

HalfCheetah

ACC_5net
ACC_2net

0 1 2 3 4 5
1e6

0

1000

2000

3000

4000

5000

6000

7000

8000
Walker2d

0 1 2 3 4 5
1e6

0

2000

4000

6000

8000

10000
Ant

0.0 0.2 0.4 0.6 0.8 1.0

Environment Steps 1e7

0

2000

4000

6000

8000

10000

12000

Av
er

ag
e 

Ev
al

ua
tio

n 
R

et
ur

n

Humanoid

0.0 0.5 1.0 1.5 2.0 2.5 3.0

Environment Steps 1e6

0

20

40

60

80

100

120

140

160
Swimmer

0.0 0.5 1.0 1.5 2.0 2.5 3.0

Environment Steps 1e6

0

500

1000

1500

2000

2500

3000

3500

4000

4500
Hopper

Figure 4: The mean ± standard deviation over 10 trials. Results with different choices for the number
of critic networks for each algorithm.

13



Algorithm 1 ACC - General

Initialize: bias controlling parameter β, steps between β updates Tβ , tβ = 0
for t = 1 to total number of environment steps do

Interact with environment according to π, store transitions in replay buffer B and store observed
returns R(s, a), increment tβ += 1
if episode ended and tβ >= Tβ then

Update β with Eq. 6 using the most recent experience and set tβ = 0
end if
Sample mini-batch b from B
Update Q with target computed from Qβ and b

end for

Algorithm 2 ACC - Applied to TQC

Initialize: d the bias controlling parameter, α the learning rate for d, Td the minimum number of
steps between updates to d, T initd the initial steps before d is updated, SR the size from which on
episodes are removed from the batch storing the most recent returns, moving average parameter τd,
td = 0
for t = 1 to total number of environment steps do

Interact with environment according to π, store transitions in replay buffer B and, increment
td += 1
if episode ended then

Store observed returns R(s, a) and corresponding state-action pairs (s, a) in BR
if td >= Td and t > T initd then
C =

∑
(s,a,R)∈BR

[
Q(s, a)−R(s, a)

]
, ma = (1− τd)ma+ τdC

d = d+ α C
ma , clip d in interval [0, dmax], set td = 0

Remove the oldest episodes from BR until there are at most SR left
end if

end if
Sample mini-batch from B
Update critic Q as in TQC, where dN (rounded to the next integer) number of targets are
dropped from the set of pooled targets
Update policy π as in TQC

end for

number of critic networks. We evaluated ACC applied to TQC with 2 networks and compare it to
the standard setting with 5 networks in Figure 4. The results show that reducing the number of critic
networks to 2 leads only to a small drop in performance while the runtime is more than 2 times faster.

C Pseudocode

In Algorithm 1 the general version of ACC is presented. The pseudocode for ACC applied to TQC is
in Algorithm 2. As the number of dropped targets per network is given by d = dmax − β, we state
the pseudocode in terms of the parameter d instead of β.

D Hyperparameters

At the beginning of the training we initialize β = 2.5 and set the step size parameter to α = 0.1. After
Tβ = 1000 steps since the last update and when the next episode finishes, β is updated with a batch
that stores the most recent state-action pairs encountered in the environment and their corresponding
observed discounted returns. The choice of Tβ was motivated by the fact that the maximum duration
of an episode is 1000 steps for the considered environments. After every update of β the oldest
episodes in this stored batch are removed until there are no more than 5000 state-action pairs left.
This means that on average β is updated with a batch whose size is a bit over 5000. The updates of β
are started as soon as 25000 environment steps as completed and the moving average parameter in the
normalization of the β−update is set to 0.05. The first 5000 environment interactions are generated

14



with a random policy after which learning starts. Apart from that all hyperparameters are the same as
in TQC with N = 5 critic networks. In Table 1 we list all hyperparameters of ACC applied to TQC.

In the following we also desribe the process of hyperparameter selection. The range of values d is
allowed to take is set to the interval [0, 5] as it includes the optimal hyperparameters for TQC from
all environments, which are in the set {0, 2, 5}. We did not try higher values than 5. The initial value
for number of dropped targets per network was set to 2.5 as this value is in the middle of the allowed
range and did not evaluated other choices. The learning rate α of d was set to 0.1 based on visual
inspection of how fast d changes. We evaluated α = 0.05 for a small subset of tasks and seeds, but
α = 0.1 gave slightly better results. Td was set to 1000 as the episode length is 1000 and we did not
evaluate other choices. For T initd we evaluated the choices 10000 and 25000 on a small subset of
environments and seeds and did not found a big impact on performance. As d changes very quickly
in the beginning we chose T initd = 25000. For SR we evaluated the choices 1000 and 5000 also on a
small subset of environments and seeds and found 5000 to perform slightly better. We did not tune the
moving average parameter and set it to τd = 0.05. For all hyperparameters for which we evaluated
more than one choice we do not have definite results as the number of seeds and environments were
limited. The hyperparameters shared with TQC were not changed.

Table 1: Hyperparameters values.

HYPERPARAMETER ACC

OPTIMIZER ADAM
LEARNING RATE 3× 10−4

DISCOUNT γ 0.99
REPLAY BUFFER SIZE 1× 106

NUMBER OF CRITICS N 5
NUMBER OF ATOMS M 25
HUBER LOSS PARAMETER 1
NUMBER OF HIDDEN LAYERS IN CRITIC NETWORKS 3
SIZE OF HIDDEN LAYERS IN CRITIC NETWORKS 512
NUMBER OF HIDDEN LAYERS IN POLICY NETWORK 2
SIZE OF HIDDEN LAYERS IN POLICY NETWORK 256
MINIBATCH SIZE 256
ENTROPY TARGET −dimA
NONLINEARITY RELU
TARGET SMOOTHING COEFFICIENT 0.005
TARGET UPDATES PER CRITIC GRADIENT STEP 1
CRITIC GRADIENT STEPS PER ITERATION 1
ACTOR GRADIENT STEPS PER ITERATION 1
ENVIRONMENT STEPS PER ITERATION 1

INITIAL VALUE FOR NUMBER OF DROPPED TARGETS PER NETWORK 2.5
MAXIMUM VALUE FOR d DENOTED dmax 5
MINIMUM VALUE FOR d DENOTED dmin 0
LEARNING RATE FOR d DENOTED α 0.1
MINIMUM NUMBER OF STEPS BETWEEN UPDATES TO d DENOTED Td 1000
INITIAL NUMBER OF STEPS BEFORE d IS UPDATED DENOTED T init

d 25000
LIMITING SIZE FOR BATCH USED TO UPDATE d DENOTED SR 5000
MOVING AVERAGE PARAMETER τd 0.05

HYPERPARAMETER IN SAMPLE EFFICIENT EXPERIMENT ACC_1Q ACC_2Q ACC_4Q

CRITIC GRADIENT STEPS PER ITERATION 1 2 4
ACTOR GRADIENT STEPS PER ITERATION 1 1 1
TARGET UPDATES PER CRITIC GRADIENT STEP 1 1 1

E Potential Limitations

One limitation of our work is that ACC can not be applied in the offline RL setting, as ACC also uses
on-policy data. Furthermore, in the stated form ACC relies on the episodic RL setting. However,
we believe that ACC could potentially be adapted to that setting. It is also not entirely clear how

15



0 1 2 3 4 5
Steps 1e6

0

1

2

3

4

5

d

HalfCheetah

0 1 2 3 4 5
Steps 1e6

Walker2d

0 1 2 3 4 5
Steps 1e6

Ant

0.0 0.2 0.4 0.6 0.8 1.0
Steps 1e7

Humanoid

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Steps 1e6

Swimmer

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Steps 1e6

Hopper

0 1 2 3 4 5
Steps 1e6

0

1

2

3

4

5

d

0 1 2 3 4 5
Steps 1e6

0 1 2 3 4 5
Steps 1e6

0.0 0.2 0.4 0.6 0.8 1.0
Steps 1e7

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Steps 1e6

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Steps 1e6

Figure 5: Development of the number of dropped targets per network d = dmax − β in ACC over
time for different environments. The top row shows the mean (thick line) and standard deviation
(shaded area) over the 10 trials where for readability a uniform filter of size 15 is used. The bottom
row shows the unfiltered development for one of the seeds.

the algorithm would perform in the terminal reward setting, where a reward of for example 1 is
given upon successful completion of a specific task. While we do not have experiments for such
environments we imagine that the positive effect of ACC could diminish as the true Q-values of states
closer to the start of the episode are almost zero because of the discounting.

F Analysis of the ACC Parameter

To better understand the hidden training dynamics of ACC we show in Figure 5 how the number
of dropped targets per network d = dmax − β evolves during training. To do so we plotted d
after every 5000 steps during the training of ACC. From the top row the first observation is that
per environment the results are similar over the 10 seeds as can be seen from the relatively low
standard deviation. We show the single runs for all seeds in the appendix to further support this
observation. However, there are large differences between the environments which supports the
argument that it might not be possible to find a single hyperparameter that works well on a wide
variety of different environments. Another point that becomes clear from the plots is that the optimal
amount of overestimation correction might change over time during the training even on a single
environment.

In the bottom row of Figure 5 we plotted the evolution of d for one of the 10 trials in order to shed
light on the actual training mechanics of a single run without lost information due to averaging. For
each environment there is a trend but d is also fluctuating to a certain degree. While this shows that
the initial value of d is not very important as the value quickly changes, this also highlights another
interesting aspect of ACC. The rollouts give highly fluctuating returns. The parameter d = dmax − β
is changing more slowly and picks up the trend. So a lot of the variance of the returns is filtered out
in ACC by incorporating on-policy samples via the detour over β. This leads to relatively stable TD
targets computed from Qβ while an upbuilding under- or overestimation is prevented as β picks up
the trend. On the other hand, if β would change too slowly the upbuilding of the bias might not be
stopped.

16


