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1 Proofs of the Theorems

We begin with Theorem 2 for simplicity and sketch the proof of Theorem 1 afterwards.

Theorem 2. LetH(β) be the entropy of quantity β. A lower bound on log pθ(x≤T ) is given by

log pθ(x≤T ) ≥
∑
t

(
H
(
qφ(ỹt|x≤t, z<t,y<t)

)
− Eqφ(ỹt|x≤t,z<t,ỹ<t)

[
L(xt, ỹt)

])
≡
∑
t

−U(xt)

Proof. For unlabeled training instances, defining the marginal likelihood according to the generative
structure introduced yields

pθ(x≤T ) =

∫
z≤T

∫
y≤T

pθ(x≤T , z≤T , y≤T )dy≤T dz≤T

=

∫
z≤T

∑
y≤T

T∏
t=1

pθ(xt|x<t, z≤t, y≤t)pθ(zt|x<t, z<t, y<t)pθ(yt|x<t, z<t, y<t)dz≤T .
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To derive the lower bound on the log likelihood, we incorporate the variational information into the
above definition and apply Jensen’s inequality:∫ ∫

qφ(z≤T , y≤T |x≤T ) log
T∏
t=1

pθ(zt|x<t, z<t, y<t)pθ(yt|x<t, z<t, y<t)
qφ(zt|x≤t, z<t, y≤t)qφ(yt|x≤t, z≤t, y<t)

dz≤T dy≤T

=

T∑
t=1

∫ ∫
qφ(z≤T , y≤t|x≤T ) log

pθ(zt|x<t, z<t, y<t)pθ(yt|x<t, z<t, y<t)
qφ(zt|x≤t, z<t, y≤t)qφ(yt|x≤t, z≤t, y<t)

dz≤T dy≤T

=

T∑
t=1

∫ ∫
qφ(z≤t, y≤t|x≤t) log

pθ(zt|x<t, z<t, y<t)pθ(yt|x<t, z<t, y<t)
qφ(zt|x≤t, z<t, y≤t)qφ(yt|x≤t, z≤t, y<t)

dz≤tdy≤t

=

T∑
t=1

∫ ∫
qφ(z<t, y<t|x<t)

(
− Eqφ(yt|x≤t,z<t,y<t)

[
KL[qφ(zt|x<t, z<t, y≤t ‖ pθ(zt|x<t, z<t, y<t)]

]
−KL[qφ(yt|x≤t, z<t, y<t) ‖ pθ(yt|x<t, z<t, y<t)]

)
dz<tdy<t

= Eqφ(z≤T ,y≤T |x≤T )

[
T∑
t=1

−KL[qφ(zt|x≤t, z<t, y≤T ) ‖ pθ(zt|x<t, z<t, y<t)]

−KL[qφ(yt|x≤t, z<t, y<t) ‖ pθ(yt|x<t, z<t, y<t)]

]
.

Thus, we can write

log pθ(x≤T ) ≥ Eqφ(z≤T ,y≤T |x≤T )

[
T∑
t=1

log pθ(xt|x<t, z≤t, y≤t)

−KL[qφ(zt|x≤t, z<t, y≤t) ‖ pθ(zt|x<t, z<t, y<t)]

−KL[qφ(yt|x≤t, z<t, y<t) ‖ pθ(yt|x<t, z<t, y<t)]

]
,

which is identical to our objective function.

Theorem 1. A lower bound on log pθ(x≤T ,y≤T ) in Eqn (??) is given by

log pθ(x≤T ,y≤T )≥
∑
t

log pθ(yt|x<t, z<t,y<t)+Eqφ(zt|x≤t,z<t,y≤t)

[
log pθ(xt|x<t, ,z≤t,y≤t)

]
−KL[qφ(zt|x≤t, z<t,y≤t) ‖ pθ(zt|x<t, z<t,y<t)] ≡

T∑
t=1

−L(xt,yt).

Proof.

log pθ(x≤T , y≤T ) = log

∫
z≤T

T∏
t=1

qφ(zt|x≤t, z<t, y≤t)
qφ(zt|x≤t, z<t, y≤t)

pθ(xt|x<t, z≤t, y≤t)pθ(zt|x<t, z<t, y<t)

≥ Eqφ(z≤T |x≤T ,y≤T )

[
T∑
t=1

log pθ(xt|x<t, z≤t, y≤t)

−KL[qφ(zt|x≤t, z<t, y≤t) ‖ pθ(zt|x<t, z<t, y<t)] + log pθ(yt|x<t, z<t, y<t)

]
.
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2 Implementation Details

For our experiments, we define the model components as follows. We individually capture the
spatiotemporal dependencies of the label-specific patterns y≤T and the data-specific patterns x≤T ,

z≤T , resulting in two separate variables o
(a),l
t and o

(a),d
t . For ease of exposition, we refer to

the concatenation of the two parts as o
(a)
t in the remainder of this paper. The encoders are mod-

eled as qφ(ỹ(a)|x≤t, z<t, y<t) = Cat(y(a)t |fyenc([o
(a)
t−1, ϕ

x(x
(a)
t )]) and qφ(z

(a)
t |x≤t, z<t, y≤t) =

N (z
(a)
t |fzenc([o

(a)
t−1, ϕ

x(x
(a)
t ), ϕy(y

(a)
t )]) for uncovering discrete and continuous latent information,

respectively. The prior distributions are computed analogously omitti input xt. Agent movements are
represented as pθ(x

(a)
t |x<t, z≤t,y≤t) = N (x

(a)
t |fdec([o

(a)
t−1, ϕ

x(z
(a)
t ), ϕy(y

(a)
t )]).

All functions f and feature extractors ϕ are two-layer MLPs with LeakyRelu [14] activations. We use
2-layer GRU networks [1] for recurrence. Moreover, we define the graph network using 3 GAT layers
implemented according to [13] and the graph structure wrt.the k = 2 and k = 5 spatially closest
agents for basketball and soccer, respectively. We implement skip-connections as described in [15]
and use concatenation followed by a linear transformation to aggregate intermediate layer embeddings
to the GNN model output. For generative tasks, we use λ1 = 0, however, including the auxiliary loss
yields negligible deterioration. For classification, we use λ0 = 1 and α = 10 ∗ (1/% of labeled data).

The model operates solely on agent velocities (input and output). However, we inject position tuples
to the all model components via teacher forcing. We use the gumbel-softmax trick [6, 3] when
sampling from categorical distributions. Training was executed on an Nvidia V100 GPU and took
about 16 hours to complete 300 epochs while comsuming ∼ 15Gb for basketball. All models are
optimized using Adam [4] with a learning rate of 0, 001 and gradient clipping using a max norm of
10. All models are implemented using PyTorch [10].

Baselines As stated in the main text, we report against the values reported in [9]. For [2, 5, 8], we
adapt the source code from their official repositories to our experimental setting1 For GVRNN [16],
we re-implemented the model according to the descriptions in their paper and designed the overall
architecture such that it is comparable in parameter number to our method.

Soccer application Since the labels denote ball-centric events, we use the output of the ball node
for loss computation and evaluation. The F1 score is computed as follows. We annotate a multi-
agent segment when the derived probability estimates exceed an externally defined threshold value.
We obtain TP values (FP values) when the predicted event coincides (disagrees) with the ground
truth annotation. FN values are defined by anotated segments that remain undetected. We compute
F1-scores for 100 distinct threshold values in the range between 0.5 and 0.98 and only report the
maximum F1-score. However, threshold optimization yields only negligible improvement over simply
using 0.5.

3 More Details on the MAT Models

Discrete variables y≤T are defined arbitrary (possibly latent) behavioral indicators. To validate this
general formulation (and our proposed architecture), we vary the specific definition of the variable
across experiments. Accordingly, we propose different framework instantiations that are described in
more detail in this section.

S-MAT In the main text, we first observe that existing SOTA trajectory prediction approaches use
heuristically generated labels for trajectory prediction that encode agents’ intents or goals over a
discretized position space. We then note that our formalization allows to naturally integrate such
long-term goals into the overall scheme via treating them as discrete semantic concepts. Since these
labels are generated heuristically based on the trajectory input prior to model training, this model
instantiation is fully-supervised and is referred to as S-MAT. We refer to [17] for more details on how
to produce the weak labels used for training S-MAT.

1For [8], we used https://github.com/crowdbotp/OpenTraj/blob/master/datasets/SDD/
estimated_scales.yaml to map between real-world and pixel coordinates.
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U-MAT However, we found (although done in [? 9]) that benchmarking against unsupervised
baselines is inappropriate for the reasons described in the main text. Since most SOTA approaches
are unsupervised generative models, we additionally propose a fully-unsupervised instantiation of
our framework (U-MAT) employing no external guidance for discrete latent structuring. From the
predicted (latent) categorical distribution qφ, we sample a label value and exploit separate motion
predictors (different decoder parameterizations) pθ dependent on the realized value. Intuitively, this
encourages the model to learn categories describing fundamentally different movement patterns,
which can be interpreted as dynamic “agent roles”. Thus, the concept of agent roles here is merely
an intuitive explanation and realized via an inductive bias that increases the “scope” of latent
information encoded without utilizing any supervision. To the best of our knowledge, parameterizing
the generation module based on inferred agent categories is novel and could provide valuable insights
for practitioners.

4 Experiments with Drone Data

Table 1: Results for SDD (observation phase of 8 timesteps and a prediction horizon with 12 timesteps)
expressed in real-world coordinates.

NAME avgL2 FINAL L2

STGAT 0.58 1.11
SOCIAL-WAYS 0.62 1.16
DAG-NET 0.53 1.04
PECNET 0.67 1.03
S-MAT 0.51 1.03

To showcase applicability to scenarios that exhibt variable numbers of agents, we also report results
on the Stanford Drone Data (SDD) [11]. SDD is a collection of videos recorded by drones at eight
locations at Stanford. While pedestrians predominate as interacting agents, cyclists, skateboarders,
cars, buses, and golf carts are also present. We use the TrajNet benchmark [12] of the data, providing
sequential two-dimensional real-world coordinates at a frame rate of 2.5 frames per second. We
follow [9] regarding the data processing strategy2. We incorporate PECNet [8] for comparison as it
is considered state-of-the-art for SDD [7]. PECNet models stochasticity in the final position of the
pedestrians conditioned on the past motion history.

To generate weak labels, we move a time window through each trajectory, with the respective end
cells acting as agent targets y(a)t . Static time windows allow us to use the fully-supervised variant for
all comparisons (including fully unsupervised models). The scene at hand is thereby discretized into
960 areas and results are shown in Table 1. We observe the same general pattern as for the basketball
experiments.

5 Ablation Study

Table 2: Ablation study on NBA.

NAME L2 FINAL L2

S-MAT-DIAG 8.93 13.92
S-MAT-FULL 8.87 13.87
S-MAT-GVRNN 9.78 14.27
S-MAT-GVRNN-HIDDEN 9.90 15.20
S-MAT 8.11 12.52

Table 2 validates the proposed architecture by showing results of an ablation study. We test a fully
connected graph (S-MAT-Full), an independent version with diagonal adjacency matrices (S-MAT-

2Data and preprocessing can be accessed at https://github.com/alexmonti19/dagnet/tree/
master/datasets
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Diag), a variant that employs GNNs for variational, generative, and prior distribution parameters, but
ignores interactive updates for the hidden states (S-MAT-GRVNN) similar to [16], and a variant that is
identical to the latter but additionally includes a GNN for the hidden state (S-MAT-GRVNN-Hidden).
The table provides supporting evidence for our design choices: though the GVRNNs are theoretically
able to capture intra-timestep dependencies, we observe significant drops in performance compared to
the other competitors. The S-MAT-Diag and MAT-Full experiments suggest that our model captures
interaction patterns among agents very well; S-MAT denotes a valuable contribution to the large body
of research that explicitly addresses modeling multi-agent data accurately.
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