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Interpolating Item and User Fairness in Multi-Sided
Recommendations

Additional Experiments on MovieLens Data
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(a) Convergence of revenue.
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(b) Normalized revenue.
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(c) Item outcomes.
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(d) User outcomes.

Figure 6: Additional experiment results on MovieLens data. Here, we act as a movie recommendation
platform that shows a “trending action movie” to any arriving user. We considered the N = 50 action movies
from MovieLens (ML-100K) data with the highest number of ratings and clustered users into 6 types based on
their preferences. As the movies are not associated with revenues, we let ri = 1 for all i ∈ [N ]. Here, the
platform’s main objective is to maximize its expected marketshare. The item-fair solution adopts maxmin
fairness w.r.t. each movie’s marketshare, with user utilities captured by the MNL model. We consider a total of
200, 000 user arrivals, and solves Problem (FAIR-RELAX(θ̂t, ηt)) upon every 1000 arrivals.

The results are consistent with those in our Amazon review data case study (Section 4). Note that in
a movie recommendation setting with homogeneous revenues, the interests of the platform and the users
completely align. This explains why the curves of greedy and max-utility completely overlaps with each other
in our figures. However, greedy still suffers from 7-8% loss in marketshare (Figure 6b)), which is precisely
because inadequate exploration of user data makes it overlook potentially more popular items and stick with
a sub-optimal item. Overall, our algorithm FORM adeptly balances the interests of both the platform and its
stakeholders, while handling the tradeoff between learning and fair recommendation.
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