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Abstract

Few-shot object detection (FSOD) aims to detect new objects based on few anno-1

tated samples. To alleviate the impact of few samples, enhancing the generalization2

and discrimination abilities of detectors on new objects plays an important role.3

In this paper, we explore employing Singular Value Decomposition (SVD) to4

boost both the generalization and discrimination abilities. In specific, we propose5

a novel method, namely, SVD-Dictionary enhancement, to build two separated6

spaces based on the sorted singular values. Concretely, the eigenvectors corre-7

sponding to larger singular values are used to build the generalization space in8

which localization is performed, as these eigenvectors generally suppress certain9

variations (e.g., the variation of styles) and contain intrinsical characteristics of10

objects. Meanwhile, since the eigenvectors corresponding to relatively smaller sin-11

gular values may contain richer category-related information, we can utilize them12

to build the discrimination space in which classification is performed. Dictionary13

learning is further leveraged to capture high-level discriminative information from14

the discrimination space, which is beneficial for improving detection accuracy. In15

the experiments, we separately verify the effectiveness of our method on PASCAL16

VOC and COCO benchmarks. Particularly, for the 2-shot case in VOC split1, our17

method significantly outperforms the baseline by 6.2%. Moreover, visualization18

analysis shows that our method is instrumental in doing FSOD.19

1 Introduction20

With the rejuvenation of deep neural networks, for object detection, many progresses [11, 12, 1, 26,21

22] have been achieved. Though these methods obtain outstanding detection performances, they22

usually require a large number of labeled samples for training, which are labored yet expensive to23

collect and annotate. On the contrary, human beings are born with the ability to learn a new visual24

concept with only few samples. To imitate such an ability of human beings, the task of few-shot25

object detection (FSOD) [2, 17] has been proposed, which aims to improve the detection performance26

for new objects that contain few annotated training samples.27

The main challenge of FSOD lies in how to learn generalized and discriminative object features from28

both abundant samples in base object categories and few samples in new object categories, which29

can improve the representation ability of object features and alleviate overfitting on new objects.30

Following the popular methods for few-shot image classification, earlier attempts [37, 36, 33, 8] in31

FSOD utilize the meta-learning strategy [29, 31, 10], whose goal is to learn detectors across tasks and32

then transfer to the few-shot detection task. However, compared with traditional two-stage fine-tuning33

based approaches [34, 35, 30], the meta-learning strategy fails to effectively improve generalization34

and discrimination of object features and leads to weak performance. The reason may be that during35
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Figure 1: SVD-Dictionary enhancement for FSOD. ‘SVD-Large’ indicates that we use the eigenvec-
tors corresponding to larger singular values to build the generalization space in which localization is
performed. ‘SVD-Small’ indicates that we use the eigenvectors corresponding to smaller singular
values to build the discrimination space in which classification is performed. Meanwhile, dictionary
learning [40] is used to capture high-level discriminative information from the discrimination space,
which is beneficial for improving the detection accuracy.

each training episode, meta-learning methods focus on transferability across different tasks and ignore36

learning of generalized and discriminative feature representations.37

For FSOD, the generalized representations may contain intrinsical characteristics of object features,38

which is beneficial for adapting knowledge from base object categories to new object categories.39

Meanwhile, the discriminative representations may contain certain category-related information,40

which is helpful for boosting the detection accuracy. Furthermore, recent research [3] has shown that41

from a spectral analysis perspective, the feature representations can be decomposed into eigenvectors42

with importance quantified by the corresponding singular values. The eigenvectors corresponding to43

larger singular values contribute to the generalization ability, as these eigenvectors could suppress44

certain variations (e.g., the variations of style and texture). Meanwhile, since the eigenvectors45

corresponding to relatively smaller singular values contain richer category-related information (e.g.,46

the structures of objects), these eigenvectors are beneficial for discrimination. Therefore, in this47

paper, we explore employing Singular Value Decomposition (SVD) (as shown in Fig. 1) to promote48

detectors to learn generalized and discriminative object features.49

Particularly, we propose a method named as SVD-Dictionary enhancement for FSOD. Given an50

input image, a backbone network is first used to extract the corresponding feature map. Then, SVD51

is performed on the feature map. Here, we select the eigenvectors corresponding to the first k52

largest singular values to compute a generalization map. And the generalization ability is enhanced53

by a residual operation between the generalization map and the original feature map. Next, the54

residual eigenvectors are used to calculate a discrimination map. Meanwhile, to further enhance55

discrimination, we define a codebook containing multiple codewords and employ dictionary learning56

[40] to capture high-level discriminative information from the discrimination map, which is good for57

accurate detection. Compared with most methods [35, 33, 17] for FSOD, our method includes two58

virtues. One is that during enhancing generalization, our method does not introduce extra parameters.59

The other is that with the help of the discrimination map and dictionary learning, our method could60

capture high-level discriminative information of different categories, which is conductive to reducing61

the data-scarce impact on new object categories. During training, we first train the model on the62

data-abundant base object categories. Then, the model is fine-tuned on a reconstructed training set63

that contains a small number of balanced training samples from both base and new object categories.64

Extensive experiments on two benchmarks demonstrate the superiorities of our method.65

The contributions of our work are summarized as follows:66

• To boost both the generalization and discrimination abilities, we propose to build the67

generalization and discrimination spaces based on the sorted singular values.68

• To further enhance the discrimination ability, we explore dictionary learning to capture69

high-level discriminative information from the discrimination map.70

• By plugging our method into two fine-tuning based two-stage methods, i.e., MPSR [35] and71

FSCE [30], our method significantly improves their performances on PASCAL VOC [6, 7]72

and COCO [20] benchmarks.73
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2 Related Work74

Few-shot image classification. The goal of few-shot image classification [29, 24] is to recognize new75

categories with very few labeled samples. Recently, many progresses [5, 32, 41, 39, 13] have been76

achieved. Particularly, meta-learning [10] is a widely used method to solve few-shot classification,77

which aims to leverage task-level meta knowledge to help models adapt to new tasks with few labeled78

samples. Based on the meta-learning policy, Snell et al. [29] proposed a prototypical network to learn79

a metric space in which classification can be performed by computing distances to the prototype80

representation of each category. However, the performance of this method relies on the quality of the81

learned prototypes. When the training data is scarce, the learned prototypes could not represent the82

information of each category sufficiently, which affects the classification performance. Liu et al. [23]83

proposed a method of prototype rectification, which considers the intra-class bias and the cross-class84

bias and improves the performance significantly. Apart from these methods, more methods, e.g.,85

sample synthesis and augmentation, in few-shot learning can be seen in the work [24]. Whereas,86

these classification methods could not be directly applied to detection that requires localizing and87

recognizing objects simultaneously.88

Few-shot object detection. Towards FSOD, most existing methods [18, 8, 25, 2, 38] employ a meta-89

learning or fine-tuning based mechanism. Particularly, Wang et al. [33] proposed a meta-learning90

framework to leverage meta-level knowledge from base object categories to facilitate the generation91

of a detector for new object categories. Based on this work [33], Kang et al. [17] further proposed92

a one-stage detection architecture that contains a meta feature learner and a reweighting module.93

In order to alleviate the impact of complex background and multiple objects on one image, Yan et94

al. [37] extended Faster R-CNN [27] and Mask R-CNN [16] by proposing meta-learning over RoI95

(Region-of-Interest) features. Recently, the two-stage fine-tuning based approach (TFA) [34] reveals96

a potential for addressing FSOD. By simply fine-tuning the box classifier and regressor, this method97

outperforms many meta-learning based methods. Wu et al. [35] considered the impact of the scale98

bias on the fine-tuning process, which further improves the detection performance.99

Different from the above methods, in this paper, we explore enhancing both generalization and100

discrimination for FSOD. And we propose a method of SVD-Dictionary enhancement that combines101

SVD with dictionary learning. Experimental results and visualization analysis demonstrate the102

superiorities of the proposed method.103

3 SVD-Dictionary Enhancement for FSOD104

In this paper, we follow the same settings introduced in Kang et al. [17]. Concretely, there are a set105

of base object categories that contain abundant annotated samples and a set of new object categories106

that contain only few (usually less than 30) annotated samples per category. The main purpose is to107

improve the detection performance of new object categories.108

3.1 SVD Enhancement109

For FSOD, generalization and discrimination are two important criteria that characterize the goodness110

of feature representation. Particularly, enhancing generalization is beneficial for adapting the knowl-111

edge learned from base object categories to new object categories, which alleviates the data-scarce112

impact on new object categories. Meanwhile, discrimination refers to the ability to separate different113

categories based on the learned representations. And enhancing discrimination is helpful for reducing114

the overfitting risk on new object categories, which improves the detection accuracy. To this end, we115

explore SVD to enhance both the generalization and discrimination abilities of detectors.116

Concretely, as shown in Fig. 2, we adopt a widely used two-stage object detector, i.e., Faster R-CNN117

[27], as the basic detection model. Given an input image, we first employ the feature extractor, e.g.,118

ResNet [15], to extract the corresponding feature map F ∈ Rm×w×h, where m, w, and h separately119

denote the number of channels, width, and height. Then, F is reshaped as F ∈ Rm×n, where120

n = w × h. SVD is used to factorize the matrix F, i.e., F = UΣVT ∈ Rm×n, into the product of121

three matrices, where U ∈ Rm×m and V ∈ Rn×n are orthogonal, and Σ contains the sorted singular122

values along its main diagonal [4]. Since the eigenvectors corresponding to larger singular values123

contain more information of the original matrix F, we select the eigenvectors corresponding to the124

first k largest singular values to compute the generalization map G ∈ Rm×n. Next, by feat of the125
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Figure 2: The architecture of generalized and discriminative FSOD via SVD-Dictionary enhancement.
Here, ‘⊕’ indicates the residual operation. ‘RPN’ denotes Region-Proposal Network with RoI Pooling.
After extracting the corresponding feature maps of input images, SVD is utilized to compute all
singular values and eigenvectors. Then, the eigenvectors corresponding to larger singular values are
used to compute the generalization map. And the eigenvectors corresponding to smaller singular
values are used to calculate the discrimination map. Finally, dictionary learning is used to further
capture high-level discriminative information, which helps improve the ability of accurate detection.

residual operation between G and F, the generalization ability of the extracted features is enhanced.126

The processes are shown as follows:127

G = Um×kΣk×kVT
k×n, E = G + F, (1)

where Um×k and VT
k×n indicate that we select the first k columns and rows from the matrix U and128

VT , respectively. Σk×k is a diagonal matrix with the dimension k × k. E ∈ Rm×n is the enhanced129

matrix. Finally, E is reshaped as E ∈ Rm×w×h that is used to perform the following RPN operation.130

It is worth noting that in the process of enhancing generalization, we only perform the SVD operation131

and do not introduce extra parameters. Besides, we utilize the residual operation to obtain the output132

E, which strengthens the generalization ability and retains the discriminative information in the output.133

In the experiment, we observe that utilizing the operation of enhancing generalization improves the134

detection performance effectively.135

Next, the remaining eigenvectors and corresponding singular values are used to calculate the discrim-136

ination map D ∈ Rm×n. The processes are the same as computing G. Since the map D contains137

more category-related information [3], e.g., the structures of objects, it is helpful for enhancing the138

discrimination ability. Similarly, for this process, we do not introduce extra parameters, either.139

3.2 SVD-based Dictionary Learning140

Dictionary Learning. Based on the map D, we explore employing dictionary learning [40, 14] to141

capture high-level discriminative information, which is beneficial for strengthening the discrimination142

ability of detectors. Concretely, we define a learned codebook C = {cj ∈ Rm, j = 1, · · · , Q}143

that contains Q codewords. Each element di ∈ Rm of the map D can be assigned with a weight144

aij to each codeword cj and the corresponding residual vector is denoted by rij = di − cj , where145

i = 1, 2, · · · , n. Thus, dictionary learning can be calculated as follows:146

xj =

n∑
i=1

aijrij , aij =
exp(−sj ||rij ||2)∑Q
j=1 exp(−sj ||rij ||2)

, (2)

where sj indicates the learnable smoothing factor for the corresponding codeword cj . Finally, the147

output of dictionary learning is a fixed length representation X = {xj ∈ Rm, j = 1, · · · , Q}. Next,148

we take E as the input of the RPN module to obtain a set of object proposals P ∈ Rz×m×o×o, where149

z and o separately denote the number of proposals and their spatial size. And the fusion result of P150

and X is taken as the input of the classifier.151

P = RPN(E), y = cls([φ(P ), wcX + bc]), (3)

where φ consists of two fully-connected layers. wc and bc are learnable parameters. ‘[,]’ indicates152

the fusion operation. Here, we use the concatenation operation. ‘cls’ denotes the classifier. By the153
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constraint of the classification loss, we can promote the learned representation X and codebook C to154

absorb category-related information, which is good for enhancing detection accuracy.155

Dictionary-based Remap. To further facilitate the learned codebook C to retain more category-156

related characteristics, we try to remap P to the dictionary space and perform classification. Con-157

cretely, each element p ∈ Rm of P is remapped as a combination of codewords in the codebook C.158

The processes are shown as follows:159

rep =

Q∑
j=1

exp(ψ(p)cTj )∑Q
j=1 exp(ψ(p)c

T
j )
cj , (4)

where ψ is a fully-connected layer that maps p to the dictionary space. rep ∈ Rm indicates one160

element of the remapping output Rep ∈ Rz×m×o×o. Next, Rep is taken as the input of the classifier161

to output the probability:162

yrep = cls([φ(P ), φ(Rep)]), (5)

where yrep indicates the output probability. Eq. (3) and Eq. (5) share the same classifier. Finally, the163

KL-Divergence loss Lkl is leveraged to enforce the prediction consistency between yrep and y. By164

performing classification in the dictionary space, the codebook C could be directly facilitated to learn165

category-related characteristics, which is conductive to the improvement of the discrimination ability.166

3.3 Two-Stage Fine-Tuning Mechanism167

In this paper, we employ the commonly used detection loss [27] to optimize the model. Concretely,168

the joint training loss is defined as follows:169

L = Lcls + Lloc + Lrpn + λLkl, (6)

where Lcls and Lloc separately indicate the classification and bounding-box regression losses. Lrpn170

is the RPN loss that is used to distinguish foreground from background and refine bounding-box171

anchors. The hyper-parameter λ is set to 1.0 in the experiment.172

During training, we employ the two-stage fine-tuning mechanism to optimize the proposed method.173

Currently, there exist two fine-tuning training strategies. One is that during the base training and174

fine-tuning stage, all the parameters of the detector are optimized simultaneously [35]. The other is175

that during the fine-tuning stage, some important parameters of the detector are optimized. And the176

remaining parameters are fixed [34, 30]. To demonstrate the effectiveness of the proposed method,177

we separately utilize these two strategies to optimize the detector. Specifically, in the base training178

stage, we employ the joint loss L to optimize the entire model based on the data-abundant base object179

categories. During fine-tuning, the last fully-connected layer (for classification) of the detection head180

is replaced. The new classifier is randomly initialized. For the first strategy, we follow MPSR [35] to181

optimize all the parameters of the model based on a balanced training set consisting of both the few182

base and new object categories. For the second strategy, we follow FSCE [30] to jointly fine-tune the183

FPN [21] pathway and RPN while fixing the backbone.184

3.4 Further Discussion185

In this section, we further discuss SVD and dictionary learning for few-shot object detection.186

For FSOD, the two-stage fine-tuning mechanism can be regarded as a method that adapts the187

knowledge from base object categories to new object categories, which is effective to alleviate the188

data-scarce impact. Most existing methods [34, 30] focus on designing an effective optimizing189

strategy and pay little attention to improving both the generalization and discrimination during the190

fine-tuning stage. Recently, FSCE [30] brings contrastive learning [19] into FSOD, which is beneficial191

for enhancing discrimination. However, the contrastive loss is calculated based on object proposals,192

which neglects the impact of generalization on object localization.193

For FSOD, we propose an SVD-Dictionary method to enhance both generalization and discrimination.194

Particularly, the eigenvectors corresponding to larger singular values are directly used to enhance195

generalization without introducing extra parameters. Meanwhile, we employ dictionary learning196

to capture high-level discriminative information, which leads to accurate detection. Experimental197

results and visualization analysis demonstrate the superiorities of our method.198
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4 Experiments199

In the experiments, the proposed method is evaluated on PASCAL VOC [6, 7] and COCO [20]200

benchmarks. We strictly follow the consistent few-shot detection data construction and evaluation201

protocol [17, 35, 36, 34] to ensure fair and direct comparison. Meanwhile, since our method is trained202

based on the two-stage fine-tuning mechanism, we take two-stage methods, i.e., TFA [34], MPSR203

[35], and FSCE [30], as the compared baselines.204

4.1 Implementation Details and Few-Shot Detection Benchmarks205

Implementation Details. For the detection model, we use Faster R-CNN [27] with the RoI Align206

[16] layer. The backbone is ResNet-101 [15]. The parameters are pre-trained on ImageNet [28] for207

initialization. In Eq. (1), we select the first k largest singular values to compute the generalization208

map. Here, k is set to half of the total number of singular values. For dictionary learning, the209

number of codewords is set to 24. All newly introduced parameters are initialized randomly. All the210

experiments are trained using the standard SGD optimizer with a momentum of 0.9 and a weight211

decay of 0.0001. During inference, we take the output y of Eq. (3) as the classification result.212

FSOD Benchmarks. For PASCAL VOC, the overall 20 categories are divided into 15 base object213

categories and 5 new object categories. All base object category data from PASCAL VOC 07+12214

trainval sets is available. For each new object category, there exist K instances available and K is215

set to 1, 2, 3, 5, and 10. Following existing methods [17, 34, 35], we utilize the same three random216

partitions of base and new object categories, referred to as New Split 1, 2, and 3. And for the217

predictions on PASCAL VOC 2007 test set, we separately report the results of nAP50 and nAP75.218

For the 80 categories in COCO, 20 categories overlapped with PASCAL VOC are taken as new object219

categories. The remaining 60 categories are used as base object categories. The K = 10 and 30 shots220

detection performance is evaluated on 5,000 images from COCO 2014 validation set.221

4.2 Performance Analysis of Few-Shot Detection222

PASCAL VOC Results. Table 1 shows the results on three PASCAL VOC New Splits. We can see223

that as the number of object instances increases, the performance continually improves significantly.224

This shows that few samples affect the performance of object detection. Besides, compared with the225

two-stage fine-tuning training mechanism, the training process of the meta-learning mechanism is226

more complex. However, for FSOD, meta-learning based methods [37, 33, 36] fail to obtain superior227

performance. The reason may be that these methods focus on learning task-level transferability and228

ignore the learning of feature generalization and discrimination. Next, we can see that plugging229

our method into MPSR [35] and FSCE [30] improves their performances significantly. Particularly,230

based on nAP50 and nAP75, the performance of FSCE is significantly improved. These analyses231

demonstrate that the proposed method is helpful for enhancing the generalization and discrimination232

abilities of detectors, which is beneficial for FSOD.233

In Fig. 3, we show some detection examples. We can see that compared with MPSR and FSCE,234

our method localizes and recognizes the objects in these images accurately. Particularly, there exist235

three types of error detections, i.e., missing detection that misses the detection of certain objects (e.g.,236

the fifth example in the first row), uncertain detection that classifies objects into multiple different237

categories (e.g., the second example in the first row), and mis-classifications of objects (e.g., the first238

example in the first row). For these examples, our method reduces the appearance of these errors,239

which shows improving generalization and discrimination is beneficial for accurate detection.240

COCO Results. Table 2 shows the COCO results. We can also see that plugging our method into241

MPSR and FSCE leads to performance improvement. Particularly, for MPSR, based on the 30-shot242

case, plugging our method separately improves its performance by 2.4 % (AP), 2.4 % (AP75), and243

3.7 % (APL). For FSCE, in terms of the five metrics, plugging our method is beneficial for boosting244

the detection performance. This further demonstrates the effectiveness of our method. Besides,245

FSOD-VE [36] is a recently proposed meta-learning method, which explores leveraging viewpoint246

estimation to solve FSOD. Though FSOD-VE’s performance outperforms fine-tuning based methods247

[35, 30], the training process of meta-learning is much more complex. And the performance on248

small objects is weaker. This shows that improving the generalization and discrimination during the249

fine-tuning process is an effective solution for FSOD.250
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Table 1: Few-shot detection performance (%) on PASCAL VOC New Split sets. ‘MPSR + Ours’
and ‘FSCE + Ours’ separately indicate that we plug our method into MPSR [35] and FSCE [30]. ‘ft’
denotes fine-tuning. ‘†’ represents meta-learning based methods. ‘?’ indicates that we directly run
the released code to obtain the results. The evaluation of the last two rows is based on nAP75. The
evaluation of the other rows is based on nAP50.

New Split 1 New Split 2 New Split 3

Method (nAP50) / Shot 1 2 3 5 10 1 2 3 5 10 1 2 3 5 10

FRCN-ft [33] 13.8 19.6 32.8 41.5 45.6 7.9 15.3 26.2 31.6 39.1 9.8 11.3 19.1 35.0 45.1
FRCN+FPN-ft [34] 8.2 20.3 29.0 40.1 45.5 13.4 20.6 28.6 32.4 38.8 19.6 20.8 28.7 42.2 42.1
†Meta R-CNN [37] 19.9 25.5 35.0 45.7 51.5 10.4 19.4 29.6 34.8 45.4 14.3 18.2 27.5 41.2 48.1
†MetaDet [33] 18.9 20.6 30.2 36.8 49.6 21.8 23.1 27.8 31.7 43.0 20.6 23.9 29.4 43.9 44.1
†FSOD-VE [36] 24.2 35.3 42.2 49.1 57.4 21.6 24.6 31.9 37.0 45.7 21.2 30.0 37.2 43.8 49.6

TFA w/fc [34] 36.8 29.1 43.6 55.7 57.0 18.2 29.0 33.4 35.5 39.0 27.7 33.6 42.5 48.7 50.2
TFA w/cos [34] 39.8 36.1 44.7 55.7 56.0 23.5 26.9 34.1 35.1 39.1 30.8 34.8 42.8 49.5 49.8
Retentive R-CNN [9] 42.4 45.8 45.9 53.7 56.1 21.7 27.8 35.2 37.0 40.3 30.2 37.6 43.0 49.7 50.1
MPSR? [35] 40.7 41.2 48.9 53.6 60.3 24.4 29.3 39.2 39.9 47.8 32.9 34.4 42.3 48.0 49.2
MPSR + Ours 41.5 47.4 51.5 57.7 61.2 29.4 29.6 39.8 41.2 51.5 36.0 39.4 45.4 50.4 51.3
FSCE? [30] 44.2 43.2 45.7 58.3 61.0 25.4 29.5 42.1 43.6 48.7 37.2 43.5 45.8 53.3 55.8
FSCE + Ours 46.1 43.5 48.9 60.0 61.7 25.6 29.9 44.8 47.5 48.2 39.5 45.4 48.9 53.9 56.9

FSCE? (nAP75) [30] 21.9 21.2 20.1 32.7 38.8 6.9 8.4 14.7 20.3 25.9 16.3 18.3 18.9 25.4 29.6
FSCE + Ours (nAP75) 25.1 21.4 25.1 36.5 39.8 9.4 11.3 18.5 24.1 25.6 18.4 20.5 24.2 26.8 30.5

Table 2: Few-shot detection evaluation results (%) on COCO. Here, APS, APM, and APL separately
indicate the detection performances of the small, medium, and large objects.

Shots Method AP AP75 APS APM APL

10

†Meta R-CNN [37] 8.7 6.6 2.3 7.7 14.0
†MetaDet [33] 7.1 6.1 1.0 4.1 12.2
†FSOD-VE [36] 12.5 9.8 2.5 13.8 19.9
TFA w/fc [34] 10.0 9.2 – – –
TFA w/cos [34] 10.0 9.3 – – –
MPSR? [35] 9.5 9.5 3.3 8.2 15.9
MPSR + Ours 11.0 10.6 4.4 11.5 17.1
FSCE? [30] 11.3 9.6 3.7 10.7 18.6
FSCE + Ours 12.0 10.4 4.2 12.1 18.9

30

†Meta R-CNN [37] 12.4 10.8 2.8 11.6 19.0
†MetaDet [33] 11.3 8.1 1.1 6.2 17.3
†FSOD-VE [36] 14.7 12.2 3.2 15.2 23.8

TFA w/fc [34] 13.4 13.2 – – –
TFA w/cos [34] 13.7 13.4 – – –
MPSR? [35] 13.8 13.5 4.0 12.9 22.9
MPSR + Ours 16.2 15.9 4.6 14.6 26.6
FSCE? [30] 15.4 14.2 5.5 14.9 24.4
FSCE + Ours 16.0 15.3 6.0 16.8 24.9

4.3 Ablation Analysis251 Table 3: The performance (%) of using a
different number of singular values. Here,
‘proportion’ indicates the percentage of the
total number of singular values.

proportion/shot 1 2 3 5 10

10% 40.6 43.9 49.1 55.6 62.1

25% 38.3 44.7 49.4 56.2 61.7

50% 41.5 47.4 51.5 57.7 61.2

75% 36.3 42.9 48.7 55.1 60.9

90% 37.9 41.8 48.1 55.8 60.2

In this section, ablation analysis is performed based on252

the New Split 1 of PASCAL VOC. And we plug our253

method into MPSR to make the ablation analysis.254

Analysis of Hyper-parameter k. In Eq. (1), we select255

the first k columns and rows from U and VT that cor-256

respond to the first k largest singular values to build257

the generalization map. To enhance the generalization258

ability, the generalization map is expected to contain259

much information reflecting intrinsical characteristics260

of objects. In Table 3, we analyze the impact of k. Here,261

we only change the setting of k. The other modules are kept unchanged. We can see that different262

7



(a) 1-shot (b) 2-shot (c) 3-shot (d) 5-shot (e) 10-shot

Figure 3: Detection examples based on different shots. The first, second, and third rows separately
indicate detections based on MPSR [35], FSCE [30], and our method. We can see our method
accurately detect ‘dog’, ‘bird’, ‘person’, ‘horse’, ‘cat’, and ‘cow’.

settings of k affect the performance of FSOD. Particularly, while k is set to a large value or a small263

value, the performance decreases. The reason may be that using a large value of proportion introduces264

much information that is not related to intrinsical characteristics, which weakens the generalization265

ability. Meanwhile, using a small value of proportion may lead to the loss of certain object-related266

information, which weakens the feature representation. We observe that the performance of using267

50% proportion is the best.268

Table 4: The performance (%) of using a
different number of codewords in the code-
book of dictionary learning.

number/shot 1 2 3 5 10

16 39.2 48.3 51.3 55.8 60.5

20 40.1 48.1 49.6 56.1 60.7

24 41.5 47.4 51.5 57.7 61.2

28 41.9 47.6 50.9 56.5 60.4

32 42.1 46.2 51.3 56.9 60.3

Analysis of SVD-based Generalization and Dictio-269

nary Learning. To demonstrate the effectiveness of270

the proposed method, we remove the module of dictio-271

nary learning and only keep the SVD-based generaliza-272

tion. From the 1-shot to 10-shot case, the performance273

is 41.2%, 44.3%, 49.7%, 54.8%, and 60.9%. We can274

see that employing dictionary learning is helpful for275

improving detection performance. Particularly, taking276

the 2-shot case as an example, the performance is im-277

proved by 3.1%. This indicates based on the output of278

SVD operation, dictionary learning is able to leverage279

multiple codewords to capture high-level discrimina-280

tive information that is helpful for accurate detection. Meanwhile, this also shows that the learned281

codewords contain category-related information, which enhances the discrimination ability of the282

detector. Besides, we can see the current performance of only using SVD-based generalization still283

outperforms MPSR. Taking the 2-shot and 5-shot cases as examples, the performance is separately284

improved by 3.1% and 1.2%. This indicates that utilizing eigenvectors corresponding to larger285

singular values to build the generalization map is beneficial for extracting generalized information286

without introducing extra parameters, thereby boosting the performance of FSOD.287

Table 5: The performance (%) of base and
new object categories.

Method Base AP50 New AP50
1 3 5 1 3 5

MPSR [35] 59.9 68.5 69.4 40.7 48.9 53.6
MPSR + Ours 61.3 69.4 69.8 41.5 51.5 57.7

FSCE [30] 78.3 74.2 76.6 44.2 45.7 58.3
FSCE + Ours 78.6 74.8 77.8 46.1 48.9 60.0

Analysis of the Number of Codewords in Dictionary288

Learning. In this paper, we define a codebook contain-289

ing multiple codewords to sufficiently capture category-290

related discriminative information from the discrimina-291

tion map corresponding to relatively smaller singular292

values. In Table 4, we analyze the impact of using a dif-293

ferent number of codewords. We can see that when the294

number is small, e.g., 16, the performance decreases.295

The reason may be that a small number of codewords296

are not sufficient to capture much discriminative information, which affects the detection performance.297
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(a) Input Image (b) G Map (c) D Map (d) Input Image (e) G Map (f) D Map

Figure 4: Visualization of the generalization (G) map and discrimination (D) map. The first, second,
third, fourth, and fifth rows separately denote 1-shot, 2-shot, 3-shot, 5-shot, and 10-shot cases. For
each feature map, the channels corresponding to the maximum value are selected for visualization.

Besides, when the number is large, e.g., 32, the performance also decreases. The reason may be298

that employing more codewords increases the parameters, which leads to overfitting on new object299

categories. For our method, the performance of using 24 codewords is the best.300

The Performance of Base Object Categories. In Table 5, we can see that plugging our method into301

MPSR [35] and FSCE [30] improves not only the performance of new object categories but also the302

performance of base object categories. This further shows our method is beneficial for enhancing303

generalization and discrimination, which is conductive to the improvement of detection performance.304

4.4 Visualization Analysis305

In Fig. 4, we give visualization examples of the generalization (G) map and discrimination (D) map.306

We can see that the generalization map focuses on the representative object characteristics, e.g., the307

head of the dog and bird, which are helpful for improving generalization and accuracy of localization.308

Meanwhile, the discrimination map contains rich information of background and object, which309

enables the following dictionary learning to sufficiently capture high-level discriminative information.310

This further shows that our method is effective to enhance both the generalization and discrimination311

abilities for FSOD.312

5 Conclusion313

In this paper, for FSOD, we focus on improving generalization and discrimination via SVD-Dictionary314

enhancement. Specifically, the eigenvectors corresponding to larger singular values are used to315

calculate a generalization map. And the eigenvectors corresponding to relatively smaller singular316

values are garnered to compute a discrimination map. Meanwhile, dictionary learning is employed to317

capture high-level discriminative information from the discrimination map. The experimental results318

and visualization analysis demonstrate the superiorities of our proposed method.319
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