
A Proofs506

A.1 Proof of Theorem 1507

Due to the feasibility of {Θ̂t}Tt=0, one can write ‖Θ̂t − F̃ ∗(Σ̂t)‖∞ ≤ λt. Combined with the first508

assumption of the theorem, this implies that509 ∥∥∥Θ̂t −Θ∗t

∥∥∥
∞

=
∥∥∥Θ̂t − F̃ ∗(Σ̂t) + F̃ ∗(Σ̂t)−Θ∗t

∥∥∥
∞

≤
∥∥∥Θ̂t − F̃ ∗(Σ̂t)

∥∥∥
∞

+
∥∥∥Θ∗t − F̃ ∗(Σ̂t)

∥∥∥
∞

< 2λt, (9)
thereby establishing the element-wise estimation error bound. We proceed to show the sparsistency510

of the estimated parameters. First, suppose that Θ∗t;ij 6= 0 for some time t and index (i, j). One can511

write512 ∣∣∣Θ̂t;ij

∣∣∣ =
∣∣∣Θ̂t;ij −Θ∗t;ij + Θ∗t;ij

∣∣∣
≥
∣∣Θ∗t;ij∣∣− ∣∣∣Θ̂t;ij −Θ∗t;ij

∣∣∣
> 0 (10)

where the last inequality is due to the second assumption of the theorem and (9). This implies that513

supp(Θ∗t ) ⊆ supp(Θ̂t). Similarly, suppose that Θ∗t;ij −Θ∗t−1;ij 6= 0 for some time t > 0 and index514

(i, j). One can write515 ∣∣∣Θ̂t;ij − Θ̂t−1;ij

∣∣∣ =
∣∣∣Θ̂t;ij −Θ∗t;ij + Θ∗t;ij −Θ∗t−1;ij + Θ∗t−1;ij − Θ̂t−1;ij

∣∣∣
≥
∣∣Θ∗t;ij −Θ∗t−1;ij

∣∣− ∣∣∣Θ̂t;ij −Θ∗t;ij

∣∣∣− ∣∣∣Θ̂t−1;ij −Θ∗t−1;ij

∣∣∣
> 0 (11)

where the last inequality is due to the third assumption of the theorem and (9). This implies that516

supp(Θ∗t −Θ∗t−1) ⊆ supp(Θ̂t − Θ̂t−1). Finally, due to the optimality of {Θ̂t}Tt=0 and feasibility of517

{Θ∗t }Tt=0, one can write518

(1− γ)

T∑
t=0

‖Θ̂t‖0 + γ

T∑
t=1

‖Θ̂t − Θ̂t−1‖0 ≤ (1− γ)

T∑
t=0

‖Θ∗t ‖0 + γ

T∑
t=1

‖Θ∗t −Θ∗t−1‖0

=⇒ (1− γ)

T∑
t=0

 ∑
(i,j)6∈St

|Θ̂t;ij |0 +
∑

(i,j)∈St

|Θ̂t;ij |0

 (12)

+ γ

T∑
t=1

 ∑
(i,j)6∈Dt

|Θ̂t;ij − Θ̂t−1;ij |0 +
∑

(i,j)∈Dt

|Θ̂t;ij − Θ̂t−1;ij |0


≤ (1− γ)

T∑
t=0

∑
(i,j)∈St

|Θ∗t;ij |0 + γ

T∑
t=1

∑
(i,j)∈Dt

|Θ∗t;ij −Θ∗t−1;ij |0

=⇒ (1− γ)

T∑
t=0

∑
(i,j)6∈St

|Θ̂t;ij |0 + γ

T∑
t=1

∑
(i,j)6∈Dt

|Θ̂t;ij − Θ̂t−1;ij |0 ≤ 0 (13)

where the last inequality follows from supp(Θ∗t ) ⊆ supp(Θ̂t) and supp(Θ∗t −Θ∗t−1) ⊆ supp(Θ̂t −519

Θ̂t−1), which implies
∑

(i,j)∈St |Θ̂t;ij |0 − |Θ∗t;ij |0 ≥ 0 and
∑

(i,j)∈Dt |Θ̂
∗
t;ij − Θ̂t−1;ij |0 − |Θ∗t;ij −520

Θ∗t−1;ij |0 ≥ 0 for every t. Due to 0 < γ < 1, the above inequality implies that Θ̂t;ij = 0521

for every t and (i, j) 6∈ St, and Θ̂t;ij − Θ̂t−1;ij = 0 for every t > 0 and (i, j) 6∈ Dt. This522

implies that supp(Θ̂t) ⊆ supp(Θ∗t ) and supp(Θ̂t − Θ̂t−1) ⊆ supp(Θ∗t − Θ∗t−1). Finally, since523

supp(Θ̂t) ⊆ supp(Θ∗t ), we have |supp(Θ̂t − Θ∗t )| = |St|. This, together with (9) implies that524

‖Θ̂t −Θ∗t ‖2 ≤
√
|St|‖Θ̂t −Θ∗t ‖∞ ≤ 2

√
|St|λt, thereby completing the proof. �525
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A.2 Proof of Theorem 3526

For simplicity of notation, we drop the subscript from the definition of sd(·, ·). The proof is inspired527

by Corollary 1 in [47]. First, we present the following key lemmas.528

Lemma 1 (Lemma 2 of [47] and Lemma 1 of [34]). Suppose that X(i) ∼ N (0,Σ) for i = 1, . . . , N ,529

and Σ̂ = 1
N

∑N
i=1X

(i)X(i)>. Then, we have530 ∥∥∥Σ̂− Σ
∥∥∥
∞/∞

≤ 8
(

max
i

Σii

)√τ log d

N
(14)

with probability of at least 1− 4d−τ+2 for any τ > 2, provided that N ≥ 40 (maxi Σii).531

Lemma 2 (Lemma 1 of [47]; modified). Under the conditions of Lemma 1, we have532 ∥∥∥STν(Σ̂)− Σ
∥∥∥
∞
≤ 5ν1−qs(q, d) + 24ν−qs(q, d)

(
max
i

Σii

)√τ log d

N
(15)

with probability of at least 1− 4d−τ+2 for any τ > 2, provided that N ≥ 40 (maxi Σii).533

Based on the above lemmas, we proceed to present the proof of Corollary 3.534

Proof of Corollary 3. It suffices to show that the conditions of Theorem 1 are satisfied with the535

proposed choices of λt and νt. It is easy to see that536 ∥∥∥Θt − [STνt(Σ̂t)]
−1
∥∥∥
∞/∞

=
∥∥∥[STνt(Σ̂t)]

−1(STνt(Σ̂t)Θt − I)
∥∥∥
∞/∞

≤
∥∥∥[STνt(Σ̂t)]

−1
∥∥∥
∞
‖Θt‖∞

∥∥∥STνt(Σ̂t)− Σt

∥∥∥
∞/∞

(16)

We provide separate bounds for different terms of the above inequality. Due to Assumption 1, one537

can write ‖Θt‖∞ ≤ κ1. Moreover, due to Lemma 1, the following inequality holds with probability538

of at least 1− 4d−τ+2 for any τ > 2539 ∥∥∥STνt(Σ̂t)− Σt

∥∥∥
∞/∞

≤
∥∥∥STνt(Σ̂t)− Σ̂t

∥∥∥
∞/∞

+
∥∥∥Σ̂t − Σt

∥∥∥
∞/∞

≤ νt + 8κ3

√
τ log d

Nt

= 16κ3

√
τ log d

Nt
(17)

provided that Nt ≥ 40κ3 and νt = 8κ3

√
τ log d
Nt

. Finally, for any vector w, one can write540

‖STνt(Σ̂t)w‖∞ ≥ ‖Σtw‖∞ −
∥∥∥(STνt(Σ̂t)− Σt)w

∥∥∥
∞

≥
(
κ2 −

∥∥∥STνt(Σ̂t)− Σt

∥∥∥
∞

)
‖w‖∞ (18)

On the other hand, the aforementioned choice of νt and Lemma 2 implies that541 ∥∥∥STνt(Σ̂t)− Σt

∥∥∥
∞
≤ 64κ1−q

3 s(q, d)

(
τ log d

Nt

) 1−q
2

(19)

Combining this inequality with (18) leads to542 ∥∥∥STνt(Σ̂t)− Σt

∥∥∥
∞
≤ κ2

2
(20)

provided that543

Nt ≥
(

128s(q, d)

κ2

) 2
1−q

κ2
3τ log d (21)
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This implies that ‖STνt(Σ̂t)w‖∞ ≥ κ2

2 ‖w‖∞, and hence,
∥∥∥[STνt(Σ̂t)]

−1
∥∥∥
∞
≤ 2

κ2
. Combining544

these bounds with (22) yields545 ∥∥∥Θt − [STνt(Σ̂t)]
−1
∥∥∥
∞/∞

≤ 32κ1κ3

κ2

√
τ log d

Nt
= λt (22)

with probability of at least 1− 4d−τ+2. Finally, we need to verify that the conditions λt ≤ Θmin
t /2546

and λt + λt−1 ≤ ∆Θmin
t /2 hold. Based on the above definition of λt, it is easy to see that both of547

these conditions are satisfied if548

Nt ≥
(

128κ1κ3

κ2

)2

max
{(

Θmin
t

)−2
,
(
∆Θmin

t

)−2
,
(
∆Θmin

t−1

)−2
}
τ log d

=⇒ Nt & τ log d (23)

Based on our assumption, we have T + 1 ≤ Cdζ for some universal constant C > 0. Therefore, a549

simple union bound over t = 0, . . . , T implies that the statements of the corollary holds for every550

t = 0, . . . , T with the probability of at least551

1− 4

T∑
t=0

d−τ+2 ≥ 1− 4(T + 1)d−τ+2 ≥ 1− 4dζ−τ+2 (24)

Selecting τ > ζ + 2 completes the proof. �552

A.3 Proof of Theorem 4553

First, we delineate the imposed assumptions on the selected kernel function.554

Assumption 3 ( [16]). The kernel K(x) satisfies the following conditions:555

-
∫ 1

−1
K(x)dx = 1,556

-
∫ 1

−1
x2K(x)dx ≤ ∞,557

- K(x) is uniformly bounded on its support,558

- sup−1≤x≤1K
′′(x/h) = O(h−4).559

The following key lemmas are borrowed from [16].560

Lemma 3 (Lemma 5 of [16]). For any fixed t, we have561

‖E[Σwt ]− Σ(t/T )‖∞/∞ . C
(
h+

1

T 2h5

)
(25)

for some constant C > 0.562

Lemma 4 (Lemma 2 of [16]). There exists a constant c > 0 such that563

P (|[Σwt ]ij − E[Σwt ]ij | ≥ ε) ≤ 2 exp(−cThε2) (26)

for every ε > 0 and any fixed t.564

Combining the above lemmas gives rise to the following result.565

Lemma 5. Assume that h = T−1/3. Then, the following inequality holds for any t and τ > 2566 ∥∥∥Σ̂wt − Σ(t/T )
∥∥∥
∞/∞

.

√
τ log d

T 1/3
(27)

with probability of at least 1− d−(τ−2).567

Proof. Based on Lemma 4, one can write568

P
(∥∥∥Σ̂wt − E[Σwt ]

∥∥∥
∞/∞

≥ ε
)
≤ 2 exp(2 log d− cThε2) (28)
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Upon choosing ε =
√

τ log d
cTh for some τ > 2, we have569

∥∥∥Σ̂wt − E[Σwt ]
∥∥∥
∞/∞

≤
√
τ log d

cTh
(29)

with probability of at least 1−d−(τ−2). Combined with Lemma 3, the following chain of inequalities570

hold with the same probability571 ∥∥∥Σ̂wt − Σ(t/T )
∥∥∥
∞/∞

≤
∥∥∥Σ̂wt − E[Σwt ]

∥∥∥
∞/∞

+ ‖E[Σwt ]− Σ(t/T )‖∞/∞

≤
√
τ log d

cTh
+ C

(
h+

1

T 2h5

)
(30)

Replacing h = T−1/3 in the above inequality gives rise to572 ∥∥∥Σ̂wt − Σ(t/T )
∥∥∥
∞/∞

.

√
τ log d

T 1/3
(31)

which completes the proof.573

Lemma 6. Assume that h = T−1/3. Then, the following inequality holds for any t and τ > 2574 ∥∥∥STν(Σ̂wt )− Σ(t/T )
∥∥∥
∞
. ν1−qs(q, d) + ν−qs(q, d)

√
τ log d

T 1/3
(32)

with probability of at least 1− d−τ+2.575

Proof. The proof is implied by Lemma 1 of [47] and Lemma 5.576

Proof of Corollary 4. We only provide a sketch of the proof, due to to its similarity to the proof of577

Corollary 3. One can write578 ∥∥∥Θ(t/T )− [STνt(Σ̂
w
t )]−1

∥∥∥
∞/∞

≤
∥∥∥[STνt(Σ̂

w
t )]−1

∥∥∥
∞
‖Θ(t/T )‖∞

∥∥∥STνt(Σ̂wt )− Σ(t/T )
∥∥∥
∞/∞

(33)

Due to Assumption 2, we have ‖Θ(t/T )‖∞ ≤ κ1. Furthermore, similar to (18), one can write579 ∥∥∥STνt(Σ̂wt )− Σ(t/T )
∥∥∥
∞/∞

≤
∥∥∥STνt(Σ̂wt )− Σ̂wt

∥∥∥
∞/∞

+
∥∥∥Σ̂wt − Σ(t/T )

∥∥∥
∞/∞

.

√
τ log d

T 1/3
(34)

with probability of at least 1 − d−τ+2, where the second inequality follows from Lemma 5 and580

the choice of νt �
√
τ log d
T 1/3 . Finally, Lemma 6 combined with an argument similar to the proof of581

Corollary 3 leads to582 ∥∥∥[STνt(Σ̂
w
t )]−1

∥∥∥
∞
≤ 2

κ2
(35)

provided that583

T & s(q, d)
3

1−q (τ log d)3/2 (36)

Combining these inequalities leads to the desired upper bound on (33). The rest of the proof is similar584

to that of Corollary 3 and omitted for brevity. �585
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A.4 Proof of Proposition 1586

Let δ1 < δ2 < . . . < δm = T be the elements of the set Γ from Algorithm 1, and define δ0 = −1.
By construction, ∆∩δi−1+1→δi+1 = ∅ for all i = 1, . . . ,m − 1. It follows that for any θ satisfying
bound constraints (7b) and i = 1, . . . ,m− 1, we have that

δi∑
t=δi−1+1

1{θt+1 − θt 6= 0} ≥ 1.

Given any j = 1, . . . , T , let h be the maximum index such that δh < j. Therefore, we find that for587

any feasible θ,588

f0→j(θ) =

j−1∑
t=0

1{θt+1 − θt 6= 0} ≥
δh∑
t=0

1{θt+1 − θt 6= 0} =

h∑
i=1

δi∑
t=δi−1+1

1{θt+1 − θt 6= 0} ≥ h.

Since f0→j(θ
Greedy) = h meets this lower bound, it follows that {θGreedyt }jt=0 is indeed an optimal589

solution to OPT0→j(1). Setting j = T and h = m− 1, we find that θGreedy is optimal for OPT0→T (1).590

�591

A.5 Proof of Theorem 5592

Before proving this theorem, we need the following intermediate lemma:593

Lemma 7. Given any optimal solution θ̂ to (7), exactly one of the following holds for any given594

zero-feasible sequence Zi→j:595

1. θ̂i = θ̂i+1 = . . . = θ̂j = 0596

2. θ̂τ 6= 0 for all τ = i, . . . , j.597

Proof. Let θ be any feasible solution to (3) that does not satisfy the conditions of Proposition 7, i.e.,598

there exists τ = i, . . . , j − 1 such that either θτ = 0 and θτ+1 6= 0, or θτ 6= 0 and θτ+1 = 0. We599

now show how to construct a solution θ̂ with improved objective value, i.e., f0→T (θ̂) < f0→T (θ).600

Consider the case θτ = 0 and θτ+1 6= 0. Define θ̂τ+1 = 0 and θ̂t = θt for all other coordinates
t 6= τ + 1. Clearly, θ̂ satisfies all bound constraints (3). Moreover,

f0→T (θ̂) = f0→T (θ)−(1− γ)︸ ︷︷ ︸
θ̂τ+1 = 0

− γ︸︷︷︸
θ̂τ = θ̂τ+1

+ γ1{θ̂τ+1 6= θ̂τ+2}︸ ︷︷ ︸
this term is 0 if τ + 1 = T

≤ f0→T (θ)−(1−γ) < f0→T (θ).

The case θτ 6= 0 and θτ+1 = 0 is handled analogously.601

Since Lemma 7 holds for any zero-feasible sequence, it holds in particular for all maximal zero-602

feasible sequences. Based on this lemma, we are ready to present the proof of Theorem 5.603

Proof of Theorem 5. Let θ̂ be an optimal solution to (7). Due to the optimality of θ̂, the conditions in604

Lemma 7 are satisfied for all maximal nonzero intervals. We first show that there exists a path in G605

with cost f(θ̂), and then we show that this path is indeed a shortest path.606

Let V0 = {v1, v2, . . . , vm} ⊆ {1, . . . , Z} be the set of indexes of the maximal zero-feasible se-607

quences where θ̂ vanishes, i.e., θ̂Zis→js = 0 for every s ∈ V0. It is easy to verify that f∗ is the608

optimal cost for the following constrained optimization:609

f0→T (θ̂) = min
{θt}Tt=0

(1− γ)

(
T + 1−

∣∣∣∣∣
m⋃
h=1

Zivh→jvh

∣∣∣∣∣
)

+ γ

T∑
t=1

1{θt − θt−1 6= 0} (37a)

subject to lt ≤ θt ≤ utt = 0, . . . , T (37b)

θt = 0 t ∈
m⋃
h=1

Zivh→jvh . (37c)

18



The constant term in (37a) reduces to610

(1− γ)

(
T + 1−

∣∣∣∣∣
m⋃
h=1

Zivh→jvh

∣∣∣∣∣
)

= (1− γ)

(
T + 1−

m∑
h=1

(jvh − ivh + 1)

)
(38)

= (1− γ)

(
iv1 +

m∑
h=2

(
ivh − jvh−1

− 1
)

+ (T − jvm)

)
.

(39)

Let the feasible region of (37) be denoted as X . The second term in (37a), under constraints (37c),611

decomposes as612

min
{θt}Tt=0∈X

{
γ

T∑
t=1

1{θt 6= θt−1}

}

=γ min
{θt}Tt=0∈X


iv1∑
t=1

1{θt 6= θt−1}

+ γ

m−1∑
h=1

min
{θt}Tt=0∈X


ivh+1∑

t=jvh+1

1{θt 6= θt−1}


+ γ min

{θt}Tt=0∈X


T∑

t=jvm+1

1{θt 6= θt−1}

 (40)

Note that each intermediate term in (40) simplifies as follows:613

min
{θt}Tt=0∈X


ivh+1∑

t=jvh+1

1{θt 6= θt−1}

 = min
{θt}Tt=0∈X


ivh+1−1∑
t=jvh+2

1{θt 6= θt−1}

︸ ︷︷ ︸
=f

Greedy

jvh
+1→ivh+1

−1

+ 1{θjvh+1 6= θjvh }︸ ︷︷ ︸
=1

+1{θivh+1
6= θivh+1

−1}︸ ︷︷ ︸
=1

. (41)

Similarly, we find that the first and last term in (40) reduces to614

min
{θt}Tt=0∈X


iv1∑
t=1

1{θt 6= θt−1}

 = min
{θt}Tt=0∈X


iv1−1∑
t=1

1{θt 6= θt−1}

+ 1{iv1 ≥ 1} = f Greedy0→iv1−1 + 1{iv1 6= 0}

(42)

min
{θt}Tt=0∈X


T∑

t=jvm+1

1{θt 6= θt−1}

 = min
{θt}Tt=0∈X


T∑

t=jvm+2

1{θt 6= θt−1}

+ 1{jvm + 1 ≤ T}

= f Greedyjvm+1→T + 1{jvm < T}. (43)

615

Combining (43), (42) with (40) and (39), we find that f0→T (θ̂) is precisely the length of the path616

(0, v1, . . . , vm, Z + 1) in the constructed graph G with weights defined as (8).617

Now suppose that there exists a path (0, v̄1, v̄2, . . . , v̄p, Z + 1) with length d̄ < f0→T (θ̂). Consider618

a solution θ̄ such that: (i) θ̄ is zero at zero-feasible sequences given by v̄1, v̄2, . . . , v̄p, and (ii) θ̄ is619

obtained from Greedy(l, u, 0, iv1−1), Greedy(l, u, jvp +1, T ) and Greedy(l, u, jvh +1, ivh+1
−1),620

otherwise. It is easy to verify that θ̄ is feasible and satisfies f0→T (θ̄) ≤ d̄ (the inequality could be621

strict if any solution reported by a call to the Greedy routine has zero values), which contradicts the622

optimality of θ̂. Thus, we conclude that f0→T (θ̂) is indeed the length of the shortest (0, Z + 1)-path623

in G. �624

A.6 Proof of Theorem 6625

Algorithm 2 involves three main components: construct graph G (line 3), solve a shortest problem626

on the constructed graph (line 4), and recover the optimal solution from the obtained shortest path.627
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Since G is acyclic, the shortest path problem can be solved in time linear in the number of arcs,628

which is O(Z2), via a simple labeling algorithm; see, e.g., Chapter 4.4. in [4]. Constructing graph629

G requires computing the costs of all arcs. A naïve implementation, where Algorithm 1 is called630

for every arc, would require (O)(Z2T ) time and memory. However, from the second statement in631

Proposition 1, we note that a single call to Greedy(l, u, i, T ) allows us to compute fGreedyi→j for all632

i ≤ j ≤ T . Therefore, Algorithm 1 needs to be invoked onlyO(Z) times, and each call requireO(T )633

leading to a total complexity of O(ZT ). Moreover, given the shortest path, the optimal solution634

can be constructed by concatenating the solutions obtained from the calls of Greedy. Finally, since635

Z ≤ T + 2, we find that the overall complexity is dominated by that of constructing the graph. This636

completes the proof. �637

B More on Numerical Experiments638

In this section, we provide more information about the performance of the proposed estimator in639

different case studies. In the first case study, our goal is to compare the statistical performance of our640

proposed method with two other state-of-the-art methods, namely time-varying Graphical Lasso [17],641

and a modified version of the elementary `1 estimator [44, 47]. We will show that the proposed642

estimator outperforms the other two estimators, in terms of both sparsity recovery and estimation643

error. In the second case study, we showcase the statistical and computational performance of the644

proposed method on massive-scale datasets. In particular, we will show that our proposed estimation645

method can solve instances of the problem with more than 500 million variables in less than one hour,646

with almost perfect sparsity recovery. Moreover, we demonstrate the improvements in the runtime647

of our algorithm with parallelization. Finally, we conduct a case study on the correlation network648

inference in stock markets. In particular, we show that the inferred time-varying graphical model can649

correctly identify the stock market spikes based on the historical data.650

All simulations are run on a desktop computer with an Intel Core i9 3.50 GHz CPU and 128GB RAM.651

The reported results are for an implementation in MATLAB R2020b.652
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Figure 5: Precision, Recall, and F1-score for the estimated precision matrices and their dif-
ferences using the proposed method (denoted as Exact L0), L1E, and TVGL (averaged over 10
independent trials).
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Figure 6: The normalized `∞-norm and induced 2-norm of the estimation error for the estimated
precision matrices and their differences using the proposed method, L1E, and TVGL (averaged over
10 independent trials).

B.1 Case Study on Small Datasets653

In this case study, we evaluate the statistical performance of the proposed estimator, compared to654

two other methods, namely time-varying Graphical Lasso (TVGL) [17, 12], and a modified version of655

the elementary `1 estimator (L1E) introduced in [44, 47]. As mentioned in the introduction, TVGL656

is a well-known regularized MLE approach for estimating the sparsely-changing GMRFs. On the657

other hand, different variants of L1E have been used to estimate static MRFs [47], and differential658

networks with sparsity imposed only on the parameter differences [44]. Consider an `1 relaxation659

of the proposed estimator (3), where the `0 penalties in the objective function are replaced with `1660

penalties. The resulted estimator reduces to that of [47] for T = 0, and [44] for T = 1 and γ = 1.661

We consider randomly generated instances of sparsely-changing GMRFs, where the true inverse662

covariance matrix is constructed as follows: at time t = 0, we set Θ0 = Id×d +
∑

(i,j)∈S A
(i,j),663

where d = 50 andA(i,j) is a sparse positive semidefinite matrix with exactly two nonzero off-diagonal664

elements. In particular, we randomly select 100 edges in the graph (corresponding to 200 off-diagonal665

entries in Θ0) and collect their indices in S . For every (i, j) ∈ S , we set A(i,j)
ij = A

(i,j)
ji = −0.4 and666

A
(i,j)
ii = A

(i,j)
jj = 0.4. Clearly, A(i,j) � 0, and hence, Θ0 � 0. Moreover, at every time t = 1, . . . , 9,667

exactly 20 nonzero off-diagonal entries are added to Θt according to the aforementioned rules, and668

20 nonzero nonzero off-diagonal entries are deleted by reversing the above procedure. Our goal is669

to estimate the true sparsely-changing precision matrices {Θt}9t=0 based on a varying number of670

samples Nt. We evaluate the accuracy of the different methods in terms of Recall, Precision, and671

F1-score values, defined as672

Recall =
TP

TP + FP
, Precision =

TP

TP + FN
, F1-score =

2× Recall× Precision

Recall + Precision
,

(44)

where TP, FP, and FN respectively denote the number of true positives, false positives, and false673

negatives in the estimated sequence of precision matrices. In all of our experiments, we set γ = 0.7.674

Moreover, according to Theorem 3, the parameters νt and λ are chosen as C1

√
log d
T and C2

√
log d
T ,675

respectively, where the constants C1 and C2 are inferred directly from the data samples via Bayesian676

Inference Criterion (BIC) [32, 14]. Similarly, we set the regularization coefficients γ1 = C3

√
log d
Nt

677

and γ2 = C4

√
log d
Nt

for TVGL (2), where the constants C3 and C4 are selected via BIC.678

Figure 5 illustrates the accuracy of the estimated precision matrices for different number of samples.679

It can be seen that the proposed estimator outperforms L1E and TVGL in terms of Precision value,680

but has a slightly worse Recall value. In particular, both L1E and TVGL tend to overestimate the681

number of nonzero elements in the precision matrices. This overestimation naturally reduces the682

number of false negatives (leading to better Precision values), while significantly increasing the683
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Figure 7: TPR, FPR, `1-norm estimation error, and the runtime of the proposed method for fixed T
and different values of d. The number of samples Nt is set to d/2 for every t. The runtime is shown
with respect to p = d(d+ 1)/2.

number of false positives (leading to worse Recall values). Moreover, F1-score shows the overall684

performance of the estimates in terms of the sparsity recovery. It can be seen that the proposed685

estimator outperforms the other two methods. In particular, both L1E and TVGL perform poorly on686

the sparsity recovery of the parameter differences. Finally, Figure 6 depicts the normalized `∞-norm687

and induced 2-norm estimation errors. It can be seen that TVGL incurs a relatively large `∞-norm688

error due to the shrinking effect of its regularization.689
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Figure 8: (a) The runtime of the parallelized algorithm with respect to the number of variables Tp,
for different number of cores. (b) The normalized mismatch error with respect to the regularization
coefficient γ, for the choices of parameters d = 4000, T = 10, and Nt = 2000 for every t.
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Figure 9: TPR, FPR, and the runtime of the proposed method for fixed d and different values of T .
The number of samples Nt is set to 2d for every t.

B.2 Case Study on Large Datasets690

In this case study, we analyze the performance of the proposed estimator on large datasets, with691

different values of d and T . In particular, we will analyze the runtime of the proposed algorithm692

and its statistical performance in high dimensional settings, where Nt < d for every t = 1, 2, . . . , T .693

Moreover, we will report the improvements in the runtime with parallelization, and analyze the694

robustness of the estimator for different choices of the regularization coefficient γ.695

Consider the class of synthetically generated sparsely-changing GMRFs with random precision696

matrices, as explained in Subsection B.1. In the first experiment, we fix T = 10 and change the697

values of d. The number of nonzero elements in the individual precision matrices and their differences698

are set to 3d and 0.04d, respectively. We evaluate the performance of the proposed method in the high699

dimensional settings, where Nt = d/2 for every t = 0, . . . , T . The parameters λt and νt are fine-700

tuned similar to the previous case study and γ = 0.7 in all instances. Moreover, define TPR and FPR701

for the individual parameters and their differences as the TP and FP values, normalized by the total702

number of nonzero and zero elements in the true precision matrices and their differences, respectively.703

Clearly, both TPR and FPR are between 0 and 1, with TPR = 1 and FPR = 0 corresponding to the704

perfect recovery of the sparsity patterns. Figure 7 depicts TPR, FPR, and the `1-norm error of the705

estimated parameters, as well as the runtime of our algorithm for different values of d. It can be seen706

that both TPR and FPR values improve with the dimension for the estimated parameters and their707

differences. Moreover, the runtime of our algorithm scales almost linearly with p = d(d + 1)/2,708

which is in line with the result of Theorem 2. Using our algorithm, we reliably infer instances of709

sparsely-changing GMRFs with more than 500 million variables in less than one hour.710

As mentioned before, our proposed optimization framework is amenable to parallelization due to its711

elementwise decomposable nature. Figure 8a illustrates the runtime of our parallelized algorithm with712

respect to the total number of variables (fixed T and varying p), for different number of cores. Using 5713

cores, the runtime of our algorithm is improved by 40% on average. On the other hand, using 10 cores714

deteriorates the performance due to the shared memory limitations. Finally, we evaluate the accuracy715

of the estimated parameters for different choices of the regularization coefficient γ. In particular, we716

fix d = 4000, T = 10, and Nt = 2000 for every t, and depict the normalized mismatch error in the717

sparsity pattern of the estimated parameters and their differences for γ ∈ {0.1, 0.2, . . . , 1}. Based on718

this figure, it can be concluded that overall performance of the proposed method is not too sensitive719

to specific choice of the regularization parameter γ. In particular, it can be seen that the normalized720

mismatch error remains approximately the same for γ ∈ [0.5, 0.8].721

In the next experiment, we set d = 1000 and Nt = 2d, and evaluate the performance of the proposed722

method for different values of T ∈ {10, 20, 30, . . . , 200}. Figure 9a shows TPR for the estimated723

precision matrices and their differences. It can be seen that TPR for the estimated precision matrices724

is close to 1 for all values of T . Moreover, the TPR for the differences of the estimated precision725

matrices is at least 0.966. On the other hand, Figure 9b shows that the FPR for the estimated precision726

matrices is close to zero. Finally, Figure 9c shows that the runtime of the proposed algorithm scales727

almost linearly with T . Together with Figure 7d, this implies that the empirical complexity of the728

algorithm is linear in both p and T .729
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Figure 10: The number of changes in the estimated stock correlation network, for different choices of
ν0 and λ0. The x-axis represent the day indexes.
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Figure 11: (a) NASDAQ historical chart from 1988 to 2017 [2]. (b) The number of changes in the
estimated correlation network for ν0 = 3 and λ0 = 0.16.

B.3 Case Study on Stock Market730

Finally, we illustrate the performance of our algorithm for the inference of stock correlation network.731

We consider the daily stock prices for 214 securities from 1990/01/04 to 2017/08/10, with the total732

number of 6990 days (d = 214 and T = 6990). Due to the continuously changing nature of the stock733

correlation network, we will use the kernel averaging approach that was introduced in Subsection 4.1734

to estimate the underlying time-varying network. In particular, we consider a Gaussian kernel with735

bandwidth h = 0.3T−1/3 to obtain the sequence of weighted sample covariance matrices. Using736

the constructed sample covariance matrices, we estimate the sparsely-changing precision matrix737

Θ(t/T ) at discrete times t ∈ {30, 60, 90, . . . , 6990}. Moreover, we set γ = 0.9, λt = λ0

√
log(d)
Th ,738

and νt = ν0

√
log(d)
Th , for some constants λ0 and ν0 to be defined later. Note that these choices of the739

parameters are consistent with the assumptions of Theorem 4.740
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Figure 10 shows the number of changes in the sparsity pattern of the estimated correlation network,741

for different choices of the parameters ν0 and λ0. A drastic change in the correlation network signals742

a spike in the stock market, which may reflect the market’s response to unexpected global events. It743

can be seen that, for small values of ν0 and λ0, the estimated network can detect both small and large744

spikes. As the values of ν0 and λ0 increase, the small spikes gradually dimish, and the estimated745

network only “picks up” major changes in the network. Nonetheless, there is a recurring pattern of746

spikes in these plots that is almost insensitive to different values of ν0 and λ0. A closer look at this747

recurring pattern sheds light on the behavior of the market. Figure 11 shows the number of changes748

in the estimated network, for the choices of ν0 = 3 and λ0 = 0.16, together with the historical chart749

of National Association of Securities Dealers Automated Quotations (NASDAQ) [1]. It can be seen750

that the major spikes in the estimated network can be attributed to the historical stock market crashes.751

For instance, the spikes A, B, and C respectively correspond to the “early 1990s recession”, “dot-com752

bubble”, and “global financial crisis”; see [5] for more details. Interestingly, the estimated network753

can also detect other historical (but less severe) downturns in 2011 (point D) and 2016 (point E).754
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