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Abstract

We provide novel information-theoretic generalization bounds for stochastic gradi-
ent Langevin dynamics (SGLD) under the assumptions of smoothness and dissi-
pativity, which are widely used in sampling and non-convex optimization studies.
Our bounds are time-independent and decay to zero as the sample size increases,
regardless of the number of iterations and whether the step size is fixed. Unlike
previous studies, we derive the generalization error bounds by focusing on the time
evolution of the Kullback–Leibler divergence, which is related to the stability of
datasets and is the upper bound of the mutual information between output parame-
ters and an input dataset. Additionally, we establish the first information-theoretic
generalization bound when the training and test loss are the same by showing that a
loss function of SGLD is sub-exponential. This bound is also time-independent and
removes the problematic step size dependence in existing work, leading to an im-
proved excess risk bound by combining our analysis with the existing non-convex
optimization error bounds.

1 Introduction

Stochastic optimization, including stochastic gradient descent (SGD), is central to realizing practical
large-scale or deep-learning models. There are currently considerable active discussions on accurately
determining the generalization performance of models trained by SGD or its variants. In particular,
stochastic gradient Langevin dynamics (SGLD) [13, 39, 29], a noisy variant of SGD, has garnered
much attention in this type of study since it provides a useful theoretical framework for generalization
error analysis based on the Langevin diffusion context [29]. Our study aims to contribute to a more
accurate understanding and evaluation of the generalization performance for SGLD.

There are two main approaches to generalization analysis in SGLD. One is the information-theoretic
analysis proposed by Russo and Zou [30] and Xu and Raginsky [40], by which a generalization
error bound is derived using the mutual information (MI) between the learned parameters and
the training dataset. Recently, some extensions using gradient information have been made to
investigate the generalization properties of SGLD, for example, upper-bounding the MI with the
norm of gradients [28] and the sum of gradient variances [25, 35, 37, 36]. Information-theoretic
generalization bounds are applicable to a wide range of noisy iterative algorithms such as differentially
private SGD [11] and stochastic gradient Hamiltonian Monte Carlo [5] modified to include a noisy
momentum.

The other approach is stability analysis, by which the effects of changes in the learning algorithm
due to the addition or removal of a single training data point on the generalization performance are
investigated. Raginsky et al. [29] derived the non-asymptotic generalization and excess risk bound
of SGLD via the exponential ergodicity of Langevin diffusion. Starting with the study by Raginsky
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et al. [29], there have been many attempts to improve the generalization analysis in SGLD from the
stability perspective, such as those by Zhang et al. [43], Mou et al. [23] and Li et al. [20].

Unfortunately, these existing generalization bounds are time-dependent; namely, they diverge with
increasing number of iterations unless the step size is adjusted so that the order of bound values is
O(n−1) or O(n−1/2), where n is the sample size (see Section 5 for details). Farghly and Rebeschini
[10] attempted to avoid this problem by Wasserstein stability analysis through reflection coupling [9]
under the smoothness and dissipativity [14] assumptions commonly used in sampling and non-convex
optimization communities [29, 44]. Although their bounds bypass the divergence problem when
taking a supremum over time, the geometry introduced for the reflection coupling yields an unnatural
dependence on step size, resulting in a vacuous bound as the step size decreases (see Table 1).

In this paper, we provide novel generalization bounds for SGLD under smooth and dissipative loss
functions obtained by the information-theoretic approach. We focus on the upper bound of the MI,
namely, the Kullback–Leibler (KL) divergence between the distributions of parameters learned from
different training datasets. We then analyze its time evolution caused by the update of the SGLD
algorithm through the Fokker–Planck (FP) equation (Lemma 1). On the basis of this analysis, we
obtain time-independent generalization error bounds that decay to zero as n → ∞ regardless of the
number of iterations or whether the step size is fixed (Theorem 4 and Corollary 1). Conventional
information-theoretic generalization bounds [29, 28, 35, 36] are derived by bounding the MI between
the parameters at all iterations and the training dataset. Therefore, these bounds grow linearly with
the number of iterations, resulting in a time-dependent generalization error bound. Our analysis based
on time evolution eliminates both this linearity issue and the unnatural dependence on step size (the
inverse of step size) in the time-independent bound of Farghly and Rebeschini [10].

Another contribution is providing the first information-theoretic generalization bound and the excess
risk bound when the same loss is used for training and the generalization performance evaluation.
In the conventional information-theoretic approach, deriving generalization error bounds under
this setting was challenging owing to the unknown tail behavior of a loss function of SGLD. We
overcome this difficulty with our discovery that a smooth and dissipative loss function of SGLD is
sub-exponential.

2 Preliminaries

2.1 Problem settings and stochastic gradient Langevin dynamics

We represent random variables in capital letters, such as X , and deterministic values in lowercase
letters, such as x, and express the Euclidean inner product and distance as · and ∥ · ∥. Let µ be an
unknown generating distribution on the instance space Z and w ∈ W ⊆ Rd be the d-dimensional
parameters such as weights of neural networks, where W is the space of the parameters. We consider
a loss function l : W ×Z → R and the following optimization problem:

min
w∈W

Lµ(w) := EZ [l(w,Z)] =

∫
Z
l(w,Z)dµ(z),

which cannot be computed since µ is unknown. Instead, we typically minimize the empirical risk
estimated using the dataset S := {Zi}ni=1:

min
w∈W

LS(w) :=
1

n

n∑
i=1

l(w,Zi),

where {Zi}ni=1 are independent and identically distributed (i.i.d.) samples from µ, i.e., Zi
i.i.d.∼ µ.

Stochastic gradient Langevin dynamics. In this paper, we use the SGLD algorithm [39] to solve
the empirical risk minimization. SGLD utilizes the gradient information of the loss function; however,
some loss functions, such as the 0-1 loss, are not differentiable. In this case, it is common to use the
differentiable surrogate loss function f : W ×Z → R (e.g., the cross-entropy loss) and minimize the
following empirical risk: FS(w) :=

1
n

∑n
i=1 f(w,Zi). Given a mini-batch B ⊂ [n] := {1, · · · , n}

with k = |B| ≤ n, we define its mini-batch version as

F (w,B) :=
1

k

∑
i∈B

f(w,Zi).
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The SGLD algorithm updates the parameters using the following recursion:

Wt+1 = Wt − ηt∇F (Wt, Bt) +

√
2β−1

t ηtξt, W0 ∼ PW0
,

where PW0
is a given initial distribution, ∇F (w,B) is a stochastic gradient, t is the number of

iterations, ηt is the step size, βt is the inverse temperature, and (Bt)
∞
t=0 is an i.i.d. sequence of random

variables distributed uniformly on {B ⊂ [n] : |B| = k}. In addition, (ξt)∞t=0 is an i.i.d. sequence
of standard Gaussian random variables, i.e., ξt ∼ N (0, Id), where Id is the d-dimensional identity
matrix. The output parameters W ∈ W obtained using SGLD can be seen as the samples from a
conditional distribution PW |S : Zn → W . We express the t-th output of the SGLD algorithm as Wt.

2.2 Expected generalization error and its bounds

The focus of this paper is the expected generalization error, defined as

gen(µ, PW |S ;L) := ES,W [Lµ(W )− LS(W )], (1)

where the expectation is taken over the joint distribution of (S,W ), i.e., µn ⊗ PW |S .

Information-theoretic generalization bounds. Russo and Zou [30] and Xu and Raginsky [40]
have shown that Eq. (1) can be bounded by the MI between the input dataset S and the output
parameters W under the following sub-Gaussian assumption.
Assumption 1 (sub-Gaussian losses). A loss function l(w,Z) is sub-Gaussian under Z ∼ µ for all
w ∈ W , that is, there is a positive constant σ2

g such that logEZ [exp(λ(l(w,Z) − El(w,Z)))] ≤
λ2σ2

g/2 for all constant λ ∈ R.

For example, bounded or Lipschitz-continuous loss functions satisfy this assumption. Assumptions
regarding the tail behavior of the loss function distributions as in the above are necessary for the
information-theoretic generalization error analysis. Bu et al. [3] have investigated information-
theoretic generalization bounds with another tail-behavior assumption such as sub-exponential losses.

We introduce the following standard information-theoretic generalization bound.
Theorem 1 (Russo and Zou [30] and Xu and Raginsky [40]). Suppose that Assumption 1 holds.
Then, we have

|gen(µ, PW |S ;L)| ≤
√

2σ2
g

n
I(W ;S), (2)

under a training dataset S = {Zi}ni=1 and the algorithm’s output W , where I(W ;S) is the MI
between W and S.

In the SGLD context, I(W,S) of Eq. (2) can be upper-bounded in a form that incorporates the
gradient variance [28, 25, 35, 36]. Given the output of the T -th iterate of the SGLD algorithm, WT ,
the following upper bound can be obtained.
Theorem 2 (Modified bound of Pensia et al. [28]). Let f(·, z) be an L-Lipschitz continuous function,
namely, there is a constant L > 0 such that ∥f(w, z)−f(w̄, z)∥ ≤ L∥w−w̄∥ holds for all w, w̄ ∈ W
and all z ∈ Z . Then, we obtain

I(WT ;S)
(i)

≤
T∑

t=0

d

2
log

(
1 +

βtηt
d

Var[∇f(Wt, Bt)|Wt]

)
≤

T∑
t=0

d

2
log

(
1 +

βtηtL
2

d

)
, (3)

where Var[∇f(W,B)|W ] := EEB [∥∇W f(W,B) − EB [∇W f(W,B)]∥2|W ] is the conditional
variance.

Note that bound (i) can be obtained by the data-processing inequality [6].

The merit of such information-theoretic generalization bounds is that we can evaluate the bound value
using the empirically estimated gradient variance per iteration. However, unfortunately, from Eq. (3),
this bound is time-dependent; namely, the bound value can diverge unless the gradient variance or
βtηt approaches 0 as T → ∞. This is due to the data-processing inequality when deriving upper
bound (i) in Eq. (3). By the data-processing inequality, we obtain I(WT ;S) ≤ I(W (T );S), where
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W (T ) := (W0,W1, · · · ,WT ) denotes the joint random variables appearing in all the iterations in the
algorithm. Since W (T ) is treated simultaneously, the bound is inevitably linear in T .

Another limitation of the information-theoretic approach appears in the setting where training losses
(f ) are also used for performance evaluation, which is often employed in sampling and non-convex
optimization studies of SGLD [29, 41]. In this setting, the generalization error is defined as

gen(µ, PW |S ;F ) := ES,W [Fµ(W )− FS(W )], (4)

where Fµ := EZ [f(w,Z)]. We cannot conduct the information-theoretic analysis for Eq. (4) because
the tail behavior of the distribution of the training loss is unclear.

Time-independent generalization bounds for Eq. (4). To solve the above problems, Farghly and
Rebeschini [10] provided the generalization error bounds of Eq. (4) from the stability perspective
under the following assumptions widely used in the non-convex optimization analysis of SGLD [29,
41, 19].

Assumption 2 (Smoothness). For each z ∈ Z , f(·,z) is differentiable and M -smooth. That is, there
is a positive constant M for all w, w̄ ∈ W and all z ∈ Z such that

∥∇f(w, z)−∇f(w̄, z)∥ ≤ M∥w − w̄∥.

Assumption 3 (Dissipativity [14]). For each z ∈ Z , f(·, z) is (m, b)-dissipative. 1 That is, there are
positive constants m and b for all w ∈ W and z ∈ Z such that

m∥w∥2 − b ≤ ∇f(w, z) · w.

The discussion regarding loss functions that satisfy Assumption 3 is presented in Appendix B.

Hereafter, we eliminate the time dependence of the step size and temperature by setting ηt = η and
βt = β. With this notation, Farghly and Rebeschini [10] derived the following generalization bound.

Theorem 3 (Farghly and Rebeschini [10]). Suppose that Assumptions 2 and 3 hold. Assume that the
initial law of W0 has a finite fourth moment σ. Then, if η ≤ 1/2m, for any T ∈ N, we have

|gen(µ, PWT |S ;F )| < C1

(
ηT ∧ n(C2 + 1)

n− k

)(
k

nη1/2
+ η1/2

)
, (5)

where (x ∧ y) = min{x, y}, and C1 and C2 are the positive constant terms w.r.t. {M,m, b, d, β, σ}
and {M,m, b, d, β}, respectively.

Farghly and Rebeschini [10] utilized the Wasserstein stability on the basis of the contraction property
of Langevin diffusion under reflection coupling. The important technique to derive the above bound
is that we only focus on WT differently from W (T ) of the information-theoretic approach when
deriving the contraction property. In this way, the resulting bounds do not suffer from divergence as
T → ∞; however, it still has a problem. That is, Eq. (5) depends on the factor η−1/2, which implies
that it becomes vacuous or even diverges with decreasing η(= ηT ) as T → ∞.

In this paper, we propose new generalization bounds to address the drawbacks of the information-
theoretic and stability-based approaches. Specifically, the proposed bounds are established on the
basis of the two expected generalization errors outlined in Eqs. (1) and (4), which remain time-
independent and do not diverge as the step size decreases.

3 Time-independent generalization error bound for SGLD

Here, we explain our time-independent bound of gen(µ, PW |S ;L) for SGLD. We first introduce the
main result (Section 3.1) and then summarize its proof outline (Sections 3.2 and 3.3). Finally, in
Section 3.4, we provide a detailed discussion on our bound with concrete examples.

1 This assumption holds not only for (strongly) convex losses but also for many practically used non-convex loss
functions [24]. For example, it applies to non-convex loss functions with l2 constraints and likelihood functions
that satisfy Poincaré inequality [2, 32].
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3.1 Main result

Our key idea is to derive the generalized error bound using the FP equation. To use the FP equation,
we impose the following regularity condition for PW0 .
Assumption 4 (Regularity of the initial distribution). The initial distribution of W0: PW0 is a
Gaussian distribution 2 with a finite variance s2 > 0, which is independent of η and T .

Our analysis is also grounded in the time evolution of the FP equation using the logarithmic Sobolev
inequality (LSI) [2] associated with π described as follows. We state that π satisfies the LSI with
constant cLS, if for any ρ ≪ π, the following relation holds:

KL(ρ|π) ≤ cLSE∥∇ log ρ−∇ log π∥2.

Raginsky et al. [29] showed the existence of cLS under Assumptions 2, 3, and β ≥ 2/m. Note that
cLS is expressed by the problem-dependent constant (see Appendix F.1 for details).

We now introduce our generalization error bound.
Theorem 4. Suppose that Assumptions 1, 2, 3, and 4 are satisfied. Then, for any β ≥ 2/m and
η ∈ (0, 1 ∧ m

5M2 ∧ 4βcLS) and any T ∈ N, we have

|gen(µ, PWT |S ;L)| ≤

√
2c1σ2

g

n

(
1 ∧ ηT

4βcLS

)
(V∇ + c2), (6)

where c1, c2, and V∇ are the positive constant terms w.r.t. {M,m, b, d, β, s2}.

The above theorem shows |gen(µ, PWT |S ;L)| = O(
√
(ηT ∧ 1)/n), which implies time indepen-

dence since it does not diverge even if T → ∞ and thus converges as n → ∞.

In Eq. (6), the term V∇ corresponds to stability, which is expressed as the upper bound of the
difference of the expected conditional gradients with respect to changes in training datasets at each
iteration. This shows a certain similarity to existing information-theoretic generalization bounds,
such as Theorem 2, expressed by the variance of gradients with respect to the training datasets. This
similarity is discussed in detail in Section 3.4. Additionally, detailed information on the explicit
expression of c1, c2, and V∇ can be found in Appendix F.

3.2 Proof outline of Theorem 4

In this section, we present how to derive our bound in Theorem 4. Our aim here is to share the ideas
behind our analysis and an outline of the proof, providing the detailed proof in Appendix F.

We adopt the information-theoretic approach and focus on the MI in Eq. (2). By using the Jensen
inequality, we have the following upper bound of the MI:

I(WT ;S) ≤ ES,S′KL(PWT |S |PWT |S′), (7)

where S and S′ are random variables drawn independently from µn, and KL(PWT |S |PWT |S′) is the
KL divergence from PWT |S′ to PWT |S . Note that this KL divergence indicates the stability of the
learned parameter from two datasets, S and S′. We also note that PWT |S′ can be regarded as the
data-dependent prior. Thus, this KL divergence is tighter than that of the data-independent prior,
which is often used in the probably approximately correct (PAC)-Bayes bound 3.

The key idea is to analyze the time evolution of the KL divergence, which is summarized in the
following lemma:
Lemma 1. Suppose that the same assumptions in Theorem 4 hold. Then, for any t ∈ N, we have

KL(PWt|S |PWt|S′) ≤ e
− η

4βcLS KL(PWt−1|S |PWt−1|S′) + ηV∆ + c3η, (8)

where V∆ and c3 is the constant term w.r.t. {M,m, b, d, β, s2}.

2 The Gaussian assumption can be relaxed, e.g., to a Gaussian mixture, in the theorems and corollaries
shown in this paper. The detailed discussions are provided in Appendix F.3. 3 We can confirm this from
the fact that ES,S′KL(PWT |S |PWT |S′) = ESKL(PWT |S |PWT ) − ES′KL(PWT |S′ |PWT ), where PWT is a
data-independent prior distribution.
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We will discuss the details of Lemma 1 in Section 3.3. By recursively applying Eq. (8) from t = 0 to
T , we obtain

KL(PWT |S |PWT |S′) ≤ 1− e
− ηT

4βcLS

1− e
− η

4βcLS

η (V∇ + c3)
(i)

≤ 4βcLS

(
1 ∧ ηT

4βcLS

)
1

1− η
4βcLS

(V∇ + c3) ,

which is based on the fact that KL(PW0|S |PW0|S′) = 0. Note that bound (i) can be obtained from

e
− η

4βcLS < 1− η
4βcLS

+ η2

16β2c2LS
when η

4βcLS
≤ 1, and e

− ηT
4βcLS ≥ 1− ηT

4βcLS
.

3.3 Proof outline of Lemma 1 under the continuous Langevin diffusion

Here, we organize our ideas for the proof of Lemma 1 that are important in the derivation of
Theorem 4. For simplicity, we now provide an intuitive explanation and an outline of the proof under
the continuous Langevin diffusion setting. Note that the results of Theorem 4 and Lemma 1 are based
on the SGLD setting, and their proofs are shown in Appendix F.

The Langevin diffusion is defined as

dWt = −∇F (Wt, S)dt+
√
2β−1dHt, (9)

where dHt is the standard Brownian motion in Rd. Note that, in this context, t expresses the
continuous time and the full-batch gradient ∇F (Wt, S) is used. The stationary distribution of Eq. (9)
is given as the Gibbs distribution π(dw) ∝ exp(−βF (w, S)).

With some abuse of notation, let us denote PWt|S as the conditional distribution obtained using
Eq. (9) and express its density as ρt. Then, the FP equation [2] for Eq. (9) can be obtained as

∂ρt(w, t)

∂t
= ∇ ·

(
1

β
∇ρt + ρt∇F (w, S)

)
. (10)

Similarly, we can define the Langevin diffusion when we use dataset S′ and the conditional distribution
using that diffusion as PWt|S′ with the density γt, obtaining the FP equation in the form of ρt replaced
by γt in Eq. (10).

Now we analyze the time evolution of KL(PWt|S |PWt|S′) = KL(ρt|γt) at time t, i.e.,
∂KL(ρt|γt)/∂t. By utilizing the FP equations of ρt and γt and the Cauchy–Schwartz inequality, we
obtain the following upper bound:

∂KL(ρt|γt)
∂t

≤ − 1

2β
E∥∇ log ρt −∇ log γt∥2 +

β

2
E∥∇F (Wt, S)−∇F (Wt, S

′)∥2. (11)

The second term on the right-hand side of Eq. (11) represents the stability of the gradient with respect
to the randomness of the training dataset S, S′ ∼ µn, which leads to V∇ in Lemma 1 under the SGLD
setting. Hereafter, we define E∥∇F (Wt, S)−∇F (Wt, S

′)∥2 as Ṽ∇t
.

By introducing ∇ log π(w) into E∥∇ log ρt −∇ log γt∥2 in Eq. (11), we obtain
∂KL(ρt|γt)

∂t
≤ − 1

4β
E∥∇ log ρt −∇ log π∥2 + 1

2β
E∥∇ log π∥2 + 1

β
E∇ log ρt · ∇ log γt +

β

2
Ṽ∇t

≤ − 1

4βcLS
KL(ρt|π) +

1

2β
Ω(ρt, γt, π) +

β

2
Ṽ∇t

≤ − 1

4βcLS

(
KL(ρt|γt) + E log

γt
π

)
+

1

2β
Ω(ρt, γt, π) +

β

2
Ṽ∇t

, (12)

where the first inequality is from the fact that −x2 ≤ −∥x − y∥2/2 + y2 for x, y ∈ Rd and the
second one is from the LSI. We introduced Ω(ρt, γt, π) := Eρt∥∇ log π∥2 + 2Eρt∇ log ρt · ∇ log γt
to simplify the notation.

By integrating e
t

4βcLS
∂KL(ρt|γt)

∂t in Eq. (12) over t ∈ [0, η] and rearranging it, we obtain

KL(ρη|γη) ≤ e
−η

4βcLS KL(ρ0|γ0)

+

∫ η

0

e
−(η−t)
4βcLS

(
β

2
Ṽ∇t

− 1

4βcLS
E log

γt
π
+

1

2β
Ω(ρt, γt, π)

)
dt. (13)
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In Appendix F, we show that the terms related to π in Eq. (13) can be bounded by using the techniques
of Raginsky et al. [29] and Vempala and Wibisono [32].

We next derive an upper bound for the following terms in Eq. (13): E[log γt

π ] and Ω(ρt, γt, π) by
using the parametrix method for the FP equation [12, 27], which allows us to expand the FP equation’s
solution via the heat kernel. On the basis of this expansion, we can upper bound Eq. (13) as∫ η

0

e
−(η−t)
4βcLS

(
− 1

4βcLS
E log

γt
π

+
1

2β
Ω(ρt, γt, π)

)
dt ≤ O(η). (14)

By combining Eq. (14) with Eq. (13), we obtain the continuous version of Lemma 1.

The same procedure can be used for the SGLD setup. The difference from the continuous Langevin
diffusion case is that the discretization errors and the effects of using a stochastic gradient are
taken into account, resulting in the appearance of an additional constant 4 in the above bounds (see
Appendix F for details).

3.4 Additional discussion on our bound in terms of stability

We conclude this section by presenting further discussion on our bound in terms of stability with a
concrete example.

As shown in Eq. (7), the information-theoretic generalization bound is closely related to the stability
in KL divergence under the different training datasets. However, our bound in Theorem 4 incorporates
the constant term c2, which is irrelevant to stability, alongside the stability term V∇. If we can avoid
the occurrence of c2, the resulting upper bound of KL(PWt|S |PWt|S′) would be dominantly expressed
by V∇, and as a result, we may obtain a bound where the relationship between generalization and
stability is more directly represented.

The problematic constant term c2 arises from c3η in Lemma 1 analyzing the time evolution of
stability in KL divergence. Specifically, the term c3η is the byproduct of treating the general
dissipative function using LSI. Actually, it is possible to avoid the problematic constant term c3η and
derive bounds that are evaluated solely on the basis of stability-related metrics in specific examples,
such as strongly convex or bounded (non-convex) losses with l2-regularization. For simplicity, we
show this fact using the following theorem under the Langevin diffusion (LD) setting, where the
probability induced by Eq. (9) is expressed as PWT |S .

Theorem 5. Suppose that Assumptions 1 and 2 are satisfied and that F (w, z) is R-strongly convex
(0 < R < ∞). Then, for any T ∈ R+, we have

∂KL(ρt|γt)
∂t

≤ −R

4
KL(ρt|γt) +

β

2
E∥∇F (Wt, S)−∇F (Wt, S

′)∥2, (15)

and

|gen(µ, PWT |S ;L)| ≤

√
2βσ2

g

n

∫ T

0

e−
(T−t)R

4 E∥∇F (Wt, S)−∇F (Wt, S′)∥2dt. (16)

A similar bound in Eq. (16) (with R replaced by λ/e8βC) can be obtained for bounded non-convex
losses with l2-regularization, where F (w, z) = F0(w, z) +

λ
2 ∥w∥

2 (0 < λ < ∞) and F0(w, z) is
C-bounded (0 ≤ C < ∞). The full proof is summarized in Appendix F.4.

When comparing with Lemma 1, we can see that, in Eq. (15), stability-unrelated constants do not
appear in the time evolution of KL divergence at each time step. Therefore, the resulting generalization
bound is also independent of such constants. Furthermore, when compared with Theorem 2, which
adds up the stability terms at all time steps, our bound is dominated by the stability terms near the
final time step, as those at earlier time steps decrease geometrically by e−

R
4 . This indicates that the

stability around the initial time steps is of lesser importance in evaluating the final generalization
performance.

Note that our bounds are closely related to the bound indicated in Proposition 9 of Mou et al. [23],
which was also derived by focusing on stability. The bound of Mou et al. [23] primarily assesses
4 This constant is evaluable (see Vempala and Wibisono [32] or Kinoshita and Suzuki [19]).
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generalization errors focusing on the gradient norm near the conclusion of training. In contrast, our
bounds evaluate it through the norm of differences in gradients, emphasizing the state in the proximity
of training completion. In other words, our bound allows for the evaluation of generalization errors
using a stability measure that is more closely related to generalization performance than the gradient
norm. This benefit originates from our approach, which tracks the time evolution of MI-related
stability in Eq. (15) on the basis of information-theoretic generalization bounds, in contrast to the
PAC-Bayes bounds derived from the direct analysis of stability measures as in Mou et al. [23].

4 Generalization analysis for SGLD directly using a training loss

In this section, we consider the setting that the generalization performance is measured by a training
loss f directly as in Eq. (4). We show that this is possible by demonstrating that loss functions of
SGLD are sub-exponential under smooth and dissipative assumptions (Section 4.1). On the basis of
this fact, we obtain for the first time an information-theoretic generalization bound of SGLD that
is similar to Theorem 4. Finally, combining these results with existing optimization error bounds
provides an excess risk bound with improved convergence (Section 4.2).

4.1 Smooth and dissipative loss function of SGLD is sub-exponential

To perform an information-theoretic analysis for SGLD, it is necessary to know the tail behavior of
f(W,Z). Our contribution here is showing that a loss function of SGLD under smooth and dissipative
assumptions is sub-exponential.
Theorem 6. Suppose that Assumptions 2, 3 and 4 are satisfied. Let PWT

= ES [PWT |S ] be the
marginal distribution of the output obtained using the SGLD algorithm at the T -th iteration. Then,
for any η ∈ (0, 1 ∧ m

5M2 ) and T ∈ N, f(WT , Z) is sub-exponential under the distribution PWT
⊗ µ.

That is, there exist positive constants σ2
e and ν w.r.t. {m,β,M, b, d, s2} 5 such that

logEWT⊗Z

[
eλ(f(WT ,Z)−EWT ⊗Z [f(WT ,Z)])

]
≤ σ2

eλ
2

2
for all |λ| < 1

ν
.

Proof sketch. First, note that under Assumptions 2 and 3, for any z ∈ Z , we obtain

m

3
∥w∥2 − b

2
log 3 ≤ f(w, z) ≤ M

2
∥w∥2 +M

√
b

m
∥w∥+A, (17)

where A is a positive constant (see Lemma 8 in Appendix G.1 for its explicit form). By employing
Lemma B.2 from Farghly and Rebeschini [10], we can show the following fact: for any p ∈ N,

E∥WT ∥2p2 ≤ E∥W0∥2p2 + c(p), (18)
where

c(p) :=
1

m

(
6

m

)p−1(
1 +

22pp(2p− 1)d

mβ

)[(
2b+ 8

M2

m2
b

)p

+ 1 + 2

(
d

β

)p−1

(2p− 1)p

]
.

This implies that WT is a sub-Gausssian random variable according to Proposition 2.5.2
in Vershynin [33]. To show the sub-exponential property, we directly upper-bound
EWT⊗Z [e

λ(f(WT ,Z)−EWT ⊗Z [f(WT ,Z)])] by considering the Taylor expansion of the exponential mo-
ment and using Eqs. (17) and (18) (see Appendix G.2 for the complete proof).

Remark 1. In previous information-theoretic analysis studies [28, 25, 35], it is often assumed that a
loss function l(w,Z) is sub-Gaussian under the distribution µ for all w ∈ W . In contrast, Theorem 6
holds under the distribution PWT

⊗ µ, not conditioned on w ∈ W .

We can interpret the sub-exponential property of SGLD intuitively as follows. Under Assumptions 2
and 3, the loss function grows at most as a quadratic function shown in Eq. (17). The conditional
distribution of the parameters follows the Gaussian distribution, and the square of the Gaussian
random variable is known as the chi-square (χ2) random variable [34]. According to these facts, we
expect that the behavior of the loss function resembles that of the χ2-random variable; therefore, it
is sub-exponential since the χ2-distribution is also sub-exponential [34]. Theorem 6 validates this
intuition.
5 The explicit form of σ2

e and ν can be seen in Appendix G.2.
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4.2 Generalization bounds for SGLD using the same loss for training and evaluation

On the basis of Theorem 6, we can derive the following information-theoretic generalization bound
for SGLD even if a surrogate loss is not used. In contrast to Theorem 4, an assumption regarding the
tail behavior of a loss function such as Assumption 1 is not necessary.
Corollary 1. Suppose that Assumptions 2, 3, and 4 are satisfied. Then, for any β ≥ 2/m, η ∈
(0, 1 ∧ m

5M2 ∧ 4βcLS), and T ∈ N, we obtain

|gen(µ, PWT |S ;F )| ≤ Ψ∗−1

(
c1
n

(
1 ∧ ηT

4βcLS

)
(V∇ + c2)

)
,

where

Ψ∗−1(y) =

{√
2σ2

ey if y ≤ σ2
e

2ν

νy +
σ2
e

2ν otherwise
,

c1 and c2 are the same as in Theorem 4, and σ2
e and ν are the same as in Theorem 6.

Proof sketch. This is the direct consequence of the sub-exponential property from Theorem 6 and
the upper bound of MI in Eq. (7) (see Appendix G.3 for the complete proof).

Remark 2. Despite the assumptions of Corollary 1 being the same as those made by Farghly and
Rebeschini [10] except for the initial distribution and step size, the resulting bound becomes 0 as
n → ∞ without being dependent on inverse stepsize.

We conclude this section by introducing our excess risk bound. Let us define the excess risk as
follows: Excess(µ, PW |S) := EW,S [Fµ(W ) − Fµ(w

∗)], where w∗ = argminw∈W Fµ(w). Under
this definition, we derive the following upper bound for the excess risk by utilizing Corollary 1.
Corollary 2. Suppose that Assumptions 2, 3, and 4 are satisfied. Then, for any β ≥ 2/m, η ∈
(0, 1 ∧ m

5M2 ∧ 4βcLS), and T ∈ N, we obtain

Excess(µ, PWT |S) = O
(√

(ηT ∧ 1)

n
+ e−ηT/cLS +

√
η + cerr

)
,

where cerr is the positive constant w.r.t. {M,m, b, d, β} corresponding to the optimization error.

We show the complete proof in Appendix G.4. In contrast with the existing excess risk studies, our
bound does not diverge with increasing t owing to the time-independent generalization bound in
Corollary 1.

5 Related studies and discussion

In this section, we compare our generalization bounds with those in related studies. Table 1 shows
the order of each bound value along with its assumptions for a loss function.

SGLD analysis with/without changing losses. The existing generalization error bounds in Table 1
are time-dependent; namely, we need to impose restrictive conditions for the step size η in terms of t
to achieve a generalization bound that decays to zero with increasing sample size [29, 28, 25, 35] (see
the right column in Table 1). Some important applications of SGLD do not satisfy these conditions.
For instance, the short-run Markov chain Monte Carlo [26] method used in energy-based models [17]
adopts SGLD with a fixed step size. Another example is the cyclic SGLD [42] used in deep learning,
where the step size is periodically increased or decreased to facilitate escape from local optima.

Farghly and Rebeschini [10] first analyzed the generalization error of SGLD by using smoothness
and dissipative assumptions, which are broadly used in sampling and non-convex optimization
studies [29, 41, 4, 44]. Their bound is time-independent; the bound does not diverge with time and
achieves the order O(n−1/2). However, the bound depends on the inverse of step size η−1/2 owing to
the reflection coupling [9], which results in the unnatural behavior of decreasing η with increasing t.
Farghly and Rebeschini [10] also derived a bound that does not suffer from this problem by assuming
the Lipschitz loss function with weight decay; however, these assumptions excessively restrict the
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Table 1: Comparison of our bounds with those in existing studies. Our bounds are time-independent
and bounded even if η → 0. (I) denotes the information-theoretic approach and (S) denotes the
stability analysis approach. The symbol * means that the sub-Gaussian assumption is unnecessary for
our bounds when using the same loss for training and generalization performance evaluation. Namely,
our bounds can be derived under more relaxed assumptions for a loss function in this case.

Study Assumptions for a loss function Expected generalization error bound
(S) Raginsky et al. [29] (Thm. 2.1.) Dissipative, Smoothness O(ηt+ e−ηt/c + 1/n)
(S) Mou et al. [23] (Thm. 1.) Bounded, Lipschitz O(

√
ηt/n)

(S) Mou et al. [23] (Thm. 2.) Lipschitz, Sub-Gaussian, (Weight decay) 6 O(
√

η log(t+ 1)/n)

(I) Pensia et al. [28] (Cor. 1.) Lipschitz, Sub-Gaussian O(
√

ηt/n)

(I) Negrea et al. [25] (Thm. 3.1.) Sub-Gaussian O(
√

ηt/n)
(S) Farghly and Rebeschini [10] (Thm. 3.1.) Lipschitz, Smoothness, Weight decay O((ηt ∧ 1)(1/n+

√
η))

(S) Farghly and Rebeschini [10] (Thm. 4.1.) Dissipative, Smoothness O((ηt ∧ 1)(
√
η−1/n+

√
η))

(I) Wang et al. [35] (Thm. 1.) Sub-Gaussian O(
√

ηt/n)

(I) Ours (Thm. 4 and Cor. 1) Dissipative, Smoothness, Sub-Gaussian* O(
√

(ηt ∧ 1)/n)

class of loss functions and algorithms. In contrast to these bounds, our bound is time-independent
and does not require scaling η, t, and n to achieve O(n−1/2).

Time evolution analysis of MI via FP equation. The analysis of SGLD using the FP equation
has been successfully used in the convergence analysis of SGLD [32, 19]. These studies present
analyses of the discretization errors and convergence properties of the unadjusted Langevin algorithm,
SGLD, and variance-reduction SGLD (SVRG-LD) [8], comparing them with the continuous Langevin
dynamics through the FP equation.

In generalization error analysis, the FP equation is mainly used to analyze the time evolution of
KL divergence appearing in a generalization bound on the basis of the stability approach. Li et al.
[20] analyzed the time evolution of the KL divergence between the probability densities of the
parameters obtained from two training datasets that differ by only one data point under the bounded
loss assumption. Mou et al. [23] also studied the KL divergence and Hellinger divergence, and they
derived a generalization error bound on the basis of the PAC-Bayes notion [22]. Our idea is similar
to these: we analyze the time evolution of the KL divergence between the probability densities of
the parameters obtained from two training datasets. The differences between our approach and other
approaches are twofold. First, we do not assume weight decay or Lipschitz continuity but instead
derive our analysis assuming smoothness and dissipativity. Second, the KL divergence we analyzed
is tighter than that of the PAC-Bayes bound with data-independent prior dealt by Mou et al. [23].

6 Limitations and future work

In this paper, we provide a generalization analysis of SGLD, where Gaussian noise is a fundamental
assumption for our theoretical results. Thus, it is difficult to extend our analysis to other noisy
iterative algorithm variants with a different noise, such as differentially private SGD with Laplace or
uniform noise [36]. Another limitation of this study is that we have estimated the sub-exponential
parameter roughly with respect to the dimensions of the model parameters. Further investigation
of the sub-exponentiality of smooth and dissipative losses, and improvement of the dependence
on dimensionality, are crucial for enhancing the practicality of our generalization bounds. The
sub-exponential property of a loss function is expected to be helpful in fields other than generalized
error analysis. For example, this property opens up room for new theoretical analysis policies that
employ useful concentration and transport inequalities [34] in the sampling and optimization context.
We hope that the analysis presented in this paper goes beyond generalization analysis and provides
valuable insights into understanding the characteristics of machine learning.

6 The order of the bound in Mou et al. [23] varies with the choice of regularization parameters and decay
factors. In this paper, we adopt the order of this bound in Table 1 of Farghly and Rebeschini [10]. For a more
comprehensive discussion, we refer to Section 5.2 of Mou et al. [23].
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A Notation used in the main paper

We summarize the notation we used in the main part of this paper.

Category Symbol Meaning

Scalars and constants

n ∈ N The sample size
w ∈ R Model parameters (deterministic)
w∗ ∈ R argminw∈W Lµ(w) (deterministic)
W ∈ R Model parameters (random variables)
t, T ∈ N An iteration of the SGLD algorithm
W (T ) The joint random variables appearing in all the iterations until T
d ∈ R The number of parameter dimensions
k ∈ N The number of samples in a mini-batch B (≤ n)
Id Identity matrix with d rows and d columns
ηt(= η) ∈ R The learning rate
βt(= β) ∈ R The inverse temperature
ξt ∈ R Gaussian noise sampled from N (0, Id)
σ2
g A positive constant for sub-Gaussian random variables

L A positive constant in the Lipschitz continuous function
M A positive constant in the smoothness condition
m, b Positive constants in the dissipative condition
s2 A positive finite Gaussian variance for the initial parameter distribution PW0

σ ∈ R A finite fourth moment of the initial parameters W0

cLS ∈ R The logarithmic Sobolev constant
Ṽ∇t

∈ R The expected value of E∥∇F (Wt, S)−∇F (Wt, S
′)∥2

σ2
e A positive constant for sub-exponential random variables

cerr ∈ R The constant w.r.t. {M,m, b, d, β} corresponding to the optimization error

Sets and sequences

Z The instance space
W The parameter space
R,R+ The set of real numbers and that of positive real numbers
N The set of natural numbers
[n] := {1, . . . , n} The set of all integers between 1 and n
S, S′ := {Zi}ni=1(∈ R) The i.i.d. samples from µn

B ⊂ [n] A mini-batch set
(Bt)

∞
t=1 An i.i.d. sequence of random variables specifying indexes

(ξ)∞t=1 An i.i.d. sequence of Gaussian noise ξt

Probability and information theory

µ An unknown data generating distribution
PW |S A conditional distribution w.r.t. W given S via SGLD (or the continuous Langevin diffusion)
N (m,Σ) Gaussian distribution with mean m ∈ Rd and covariance Σ ∈ Rd×d

P ⊗Q The product distribution
I(W ;S) The mutual information between W and S
Ex The expectation w.r.t. x
E The expectation w.r.t. all randomness
Var[∇f(W,B)|W ] The gradient variance w.r.t. B conditioned by W
Var[∇f(W,B)] The gradient variance w.r.t. B
KL(P |Q) The Kullback–Leibler divergence of P from Q
ρt The density of PWt|S
γt The density of PWt|S′

π The Gibbs distribution (stationary distribution of the continuous Langevin diffusion)

Functions

l : W ×Z → R an original loss function
f : W ×Z → R a surrogate loss function
Lµ, Fµ The population risk based on an original or a surrogate loss
LS , FS The empirical risk based on an original or a surrogate loss
F (w,B) The empirical risk with l or f on a mini-batch B
∇F (w,B) The gradient of F (w,B) w.r.t. w
gen(µ, PW |S ;L), gen(µ, PW |S ;F ) The expected generalization error based on an original or a surrogate loss
Excess(µ, PW |S) The excess risk defined as EW,S [Fµ(W )− Fµ(w

∗)]

B Additional information for dissipative losses

Here, we provide the additional information for losses with dissipativity in Assumption 3.

The dissipative assumption plays an essential role in guaranteeing the geometrical convergence of
SGLD to the stationary distribution. We note that convergence to the stationary distribution is crucial
for reducing training error since the stationary distribution in this context corresponds to the Gibbs
posterior distribution of the given loss function. The dissipative assumption is widely used in the
research on sampling or non-convex potential function optimization; thus, it is a fundamental property
that enables optimization with SGLD rather than strong constraint conditions for generalization. As
Mou et al. [24] discussed, the dissipative assumption is weaker than convexity and strong convexity.

Many non-convex losses commonly used in practice satisfy the dissipative property. First, all strongly
convex and convex losses obviously satisfy dissipativity. The dissipative losses also include losses
that are strongly convex or convex when sufficiently far from zero, that is, there exists m,R > 0
such that ∥x − y∥2 ≥ R, (x − y) · (∇f(x, z) − ∇f(y, z)) ≥ m∥x − y∥2 or that ∥x − y∥2 ≥ R,
(x − y) · (∇f(x, z) − ∇f(y, z)) ≥ 0 for all x and y (refer to Mou et al. [24]). This means that
the dissipative losses include the non-convex losses that have a local optimum somewhat close to
zero and losses whose tail behavior is similar to the strongly convex losses. A typical example of
losses that satisfy dissipativity is non-convex losses with l2 regularization that used for many machine
learning models including deep learning models (see Mou et al. [23]). Because of its capability to
handle many non-convex losses, the dissipative condition is often employed in the theoretical analysis
of non-convex optimization, such as Raginsky et al. [29] and Xu et al. [41].
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In the Bayesian context, for example, we often use the negative log-likelihood losses, which satisfy
the dissipative property if the likelihood distribution satisfies the Poincaré inequality [2, 32]. Poincaré
inequality is applicable to a wide range of practical likelihood distributions, such as log-concave
distributions, distributions obtained via bounded perturbations of Poincaré-inequality-satisfying (PIS)
distributions, distributions with Gaussian convolution added to bounded losses, distributions formed
by Lipschitz continuous transformations of PIS distributions, and direct sums of PIS distributions [2].
Therefore, the dissipative assumption covers many useful Bayesian models, including Bayesian deep
learning models [32, 24].

In essence, the dissipative assumption allows for the broad treatment of not only general non-convex
optimization in (deep) machine learning but also non-convex losses used in Bayesian inference and
Bayesian machine learning. On the other hand, it is essential to note that thick-tailed losses, such as
long-tailed t-distributions or Cauchy distributions, cannot be handled as a dissipative loss [24].

C Difference from generalization error bounds based on uniform convergence

In this section, we discuss the difference between the generalization error bounds based on the
information-theoretic (IT) approach and that on the basis of the uniform convergence (UC) notion.

The generalization error bound based on the UC notion guarantees that the generalization error of
all hypotheses in the algorithm’s output space simultaneously vanishes as the size of the training
data increases, ensuring the convergence of generalization error. Furthermore, this bound asserts that
within the empirical risk minimization (ERM) principle, it suffices to output any hypothesis from the
class that minimizes empirical risk, and by measuring model complexities such as VC-dimension or
Rademacher complexity, one can evaluate generalization performance. In other words, the UC-based
generalization bounds offer non-trivial guarantees only when the hypothesis class utilized by the
algorithm, along with its complexity, is moderately constrained.

On the other hand, deep neural networks (DNNs) are included in vast hypothesis classes where
the model complexity drastically increases with the size and depth of the network. When applied
to such models, UC-based bounds turn into a vacuous metric due to the exceedingly large model
complexity. Furthermore, bounds based on UC rely solely on the hypothesis space and are unable
to leverage beneficial statistics obtained from algorithms or datasets, which sometimes results in
an inability to capture the true essence of generalization performance. For instance, the gradient
variance w.r.t. model parameters exhibit a strong correlation with the generalization performance of
deep learning [18]; however, this correlation cannot be represented within UC-type bounds (see Amit
et al. [1] for details). This observation leads to the recent interest in data and algorithmic-dependent
generalization bounds, such as the PAC-Bayes and IT-based generalization error bounds.

The strength of the IT-based analysis lies in its capacity to directly incorporate the algorithm- and
data-dependent statistics related to the generalization performance, such as the gradient variance
instead of the model complexity, into the generalization error upper bounds. Especially, the gradient
variance is empirically known to have a stronger correlation with the generalization performance of
DNNs [18] in comparison to statistics appearing in uniform convergence analysis contexts (e.g., VC
dimension, the number of parameters d, and the norm of parameters). Although the gradient variance
implicitly depends on d, it is widely recognized that, in practice, the gradient variance becomes
reasonably small as the training proceeds [18].

In our bounds, such as Theorem 4, the generalization error bound is expressed through a quantity that
reflects the stability w.r.t. variations in the training data, which is closely related to the generalization
properties [23, 25, 35]. While this quantity is expressed via the expectation of gradients and thus is
implicitly dependent on d like the gradient variance, it is expected to decrease as training progresses
and generalization performance is being enhanced [23, 25] 7. Consequently, IT-based bounds offer
a sensible generalization bound even in models with significantly high complexity, such as DNNs.
This is why it has gained attention in the context of SGLD’s generalization analysis.

In short, the core aim of IT-based analysis is to offer practical bounds that effectively account for
models with high complexity, like DNNs, by directly integrating empirically validated statistics
associated with generalization obtained from datasets and an algorithm. Active discussions within
7 Note that some constants in our bounds explicitly depends on d under non-convex and disspative losses.
Removing this dependency is our significant future work. As can be seen in Appendix F.3, however, this
dependence does not occur in the convex loss case.
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the realm of IT-based analysis revolve around how to analyze the generalization performance of
DNNs, which involve non-convex losses, to derive bounds that lead to an accurate understanding of
generalization performance.

D Further discussion for convergence and dependence on dimensions

Here, we provide further discussions on IT-based bounds including ours from the perspectives of
convergence and dependence on parameter dimension especially focusing on convex losses.

D.1 On the convergence of SGLD and our bounds in convex losses

As shown by Shalev-Shwartz et al. [31], there is a convex problem in which the unique solution
of ERM fails to generalize. This shows that any optimization algorithm executed for an infinite
algorithm iteration must fall into one of two categories: either it never converges to the minimum, or
it fails to generalize. The SGLD algorithm leads to the former phenomenon because the obtained
parameters via SGLD do not converge to the (local) minima under a fixed temperature parameter β
for the Gaussian noise coefficient even after infinite iterations.

SGLD rather ensures convergence to a stationary distribution, known as the Gibbs posterior distri-
bution π(dw) ∝ e−βF (W,S), when β remains fixed over time steps. In essence, the trajectory of
parameters via the SGLD algorithm gets closer to the minima and then explores its vicinity due to
the addition of Gaussian noise to the gradient. Therefore, while convergence to a target distribution
occurs, convergence to the minima itself is not achieved without controlling the noise via β.

Although SGLD does not converge to the minima, it boasts a distinct edge in its ability to explore
parameters globally, even within non-convex problems, thanks to the Gaussian noise. This property
enables the evaluation of how the obtained expected loss w.r.t. the stationary distribution deviates
from that with the global minima. Specifically, we can evaluate this difference by factors that depend
on parameter dimensions d, β, and the constants appearing in the assumptions for the potential
function, such as dissipativity and smoothness, as elaborated in Appendix G.4. Furthermore, we can
also derive the upper bounds for the population risk and excess risk both for convex and non-convex
losses (see Raginsky et al. [29], Xu et al. [41]).

D.2 On dependence on parameter dimension of IT-based bounds

Recently, Livni [21] has shown that every algorithm that guarantees non-trivial population loss on
convex problems, must carry dimension-dependent information on the sample. Together with our
Theorem 4, this fact implies that, if the temperature β is dimension independent, then SGLD will
not achieve non-trivial population loss on the (convex) construction in Livni [21]. Alternatively,
one could choose dimension-dependent β in SGLD but then algorithmic-independent generalization
bounds can be easily (and have been) obtained via standard uniform convergence argument.

Unfortunately, removing the dependence on the parameter dimension d is difficult or unavoidable
even if our framework is utilized when analyzing the generalization error of discretized Langevin
dynamics such as SGLD through the MI between the dataset and parameters. On the other hand,
existing and our IT-based bounds such as Theorems 2 and 5 are expressed by the gradient variance or
the stability of the expected gradient, which implicitly depend on d but could be smaller than it as
training proceeds and the generalization performance is enhanced. We refer to Appendix C for an
explanation of the advantages of this property in the IT-based bounds.

In order to theoretically mitigate this reliance on dimensionality, it could be imperative to explore an
alternative approach to evaluating generalization that deviates from the MI between parameters and
data, which forms the cornerstone of this paper. One possible avenue is, for instance, the utilization
of conditional mutual information (CMI) involving super-samples (e.g., Wang and Mao [38]), as
highlighted in Livni [21], as well as methods to quantify the MI between the learned hypothesis and
dataset (hMI), instead of focusing on the parameters [15]. However, the drawback of these approaches
is that it becomes challenging to explicitly incorporate statistics directly obtained from algorithms,
such as the gradient variance, into the understanding and evaluation of generalization despite being
analyses of algorithm-dependent generalization performance. Seeking IT-based bounds that not only
represent algorithm- and data-dependent statistics related to generalization performance, such as
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gradient variance but also theoretically eliminate dimension dependence constitutes a significant
future work in the context of the IT-based generalization analysis field.

E Theoretical properties of SGLD and Langevin diffusion

Here, we show some theoretical properties of SGLD under Assumptions 2 and 3.
Lemma 2 (Adapted from Farghly and Rebeschini [10]). Suppose that Assumptions 2 and 3 are
satisfied. Then, for any z ∈ Z , we have

∥∇f(0, z)∥ ≤ M

√
b

m
.

Proof. We straightforwardly obtain the above claim from Assumptions 2 and 3 with w = 0.

Lemma 3 (Modified version from Raginsky et al. [29]). Suppose that Assumption 2 is satisfied. Then,
for any z ∈ Z and all w ∈ W , we have

∥∇f(w, z)∥ ≤ M∥w∥+M

√
b

m
.

Proof. Raginsky et al. [29] derived the upper bound of the gradient as ∥∇f(w, z)∥ ≤ M∥w∥+B
by assuming the the following condition: ∥∇f(0, z)∥ ≤ B (B > 0). We replace the constant B by

M
√

b
m based on Lemma 2.

Lemma 4 (Modified version from Xu et al. [41]). Suppose that Assumptions 2 and 3 are satisfied.
Then, for any z ∈ Z , we have

E∥∇FS(w)−∇F (w,B)∥2 ≤
8(n− k)M2(∥w∥2 + k

m )

k(n− 1)
:= 8δM2

(
∥w∥2 + k

m

)
,

where δ := n−k
k(n−1) ∈ (0, 1].

Proof. Xu et al. [41] assumed that ∇FS(w) is dissipative. In contrast, we posed the dissipative
assumption on ∇f(w, z) for each z following Farghly and Rebeschini [10]. We then modified the
upper bound of the stochastic gradient shown in Xu et al. [41].

Lemma 5 (Modified version from Raginsky et al. [29] and Xu et al. [41]). Suppose that Assumptions 2
and 3 are satisfied. Let η ∈ (0, 1 ∧ m

5M2 ) be fixed. Then, for any z ∈ Z and any t ∈ N, we have

E∥Wt+1∥2 ≤ (1− 2ηm+ 10η2M2)E∥Wt∥2 + 2η

(
b+ 10ηM2 b

m
+

d

β

)
,

and

E∥Wt+1∥2 ≤

{
2η(b+ 10ηM2 b

m + d
β ) (Aη,m,M ≤ 0)

(1− 2ηm+ 10η2M2)tE∥W0∥2 + 2
b+10ηM2 b

m+ d
β

m−5ηM2 (0 ≤ Aη,m,M ≤ 1),
(19)

where Aη,m,M := (1− 2ηm+ 10η2M2). Combining the inequalities in Eq. (19), we have

E∥Wt∥2 ≤ E∥W0∥2 + 2

(
1 ∨ 1

m

)(
b+ 10ηM2 b

m
+

d

β

)
≤ s2 + 2

(
1 ∨ 1

m

)(
b+ 10ηM2 b

m
+

d

β

)
=: C0,

where C0 is independent of η and β and s2 is the square moment of the initial distribution.

Proof. We slightly modified the coefficients of the upper bound of the l2 norm of the parameter
shown in Raginsky et al. [29] and Xu et al. [41] based on the upper bound of the stochastic gradient
Lemma 4.
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Combining Lemmas 3 and 5, we have the following upper bound for the stochastic gradient.
Lemma 6. Suppose that Assumptions 2 and 3 are satisfied. Let η ∈ (0, 1 ∧ m

5M2 ) be fixed. Then, for
any z ∈ Z any t ∈ N, we have

E∥∇F (Wt, B)∥2 ≤{
2M2η2(b+ 4ηM2 b

m + d
β ) +M2 b

m (Aη,m,M ≤ 0)

M2(1− 2ηm+ 10η2M2)tE∥W0∥2 + 2M2 b+4ηM2 b
m+ d

β

m−ηM2 +M2 b
m (0 ≤ Aη,m,M ≤ 1),

where Aη,m,M := (1− 2ηm+ 10η2M2). Combining the above inequalities, we have

E∥∇F (Wt, B)∥2 ≤ M2C0 +M2 b

m
.

Proof. We obtain the result by combining Lemma 3 and 5 and using the Jensen inequality.

F Proofs of the generalization error bound with surrogate loss in Section 3

This section provides the complete proof of Theorem 4 restated as follows.
Theorem 4. Suppose that Assumptions 1, 2, 3, and 4 are satisfied. Then, for any β ≥ 2/m and
η ∈ (0, 1 ∧ m

5M2 ∧ 4βcLS) and any T ∈ N, we have

|gen(µ, PWT |S ;L)| ≤

√
2c1σ2

g

n

(
1 ∧ ηT

4βcLS

)
(V∇ + c2), (6)

where c1, c2, and V∇ are the positive constant terms w.r.t. {M,m, b, d, β, s2}.

Our proof consists of the following three steps. We construct the FP equations for the density of
the parameters under two different datasets and derive the time evolution of the KL divergence
as the upper bound of the MI (Appendix F.1). We then analyze this time evolution by using the
parametrix method (Appendix F.2) for solving the FP equation. The distinction between this section
and Section 3.3 lies in the focus of SGLD, which employs stochastic gradients and random noise
from N (0, Id), as opposed to the continuous Langevin diffusion that employs full-batch gradients
and standard Brownian motion.

F.1 FP equation for SGLD and time evolution of the KL divergence

As the first step, we construct the two different FP equations for the parameter density.

We define a one-step SGLD at the initial step as follows:

dWt = −∇F (W0, B0)dt+
√
2β−1dHt.

Note that, at time t = η,

Wη = W0 − η∇F (W0, B0) +
√

2ηβ−1Hη,

is distributionally equivalent to

Wη = W0 − η∇F (W0, B0) +
√
2ηβ−1ξ,

where ξ ∼ N(0, Id).

The distribution ρt of Wt depends on random variables W0 and B0. We thus denote the joint
distribution of {W0,Wt, B0} under a dataset S as ρ0tB(W0,Wt, B0), where ρ0 is the distribution
of W0 and U is the uniform distribution of B0. Then, its conditional and marginal distribution is
expressed as

ρ0tB(W0,Wt, B0) = ρ0(w0)U(B0)ρt|0,B(Wt|W0, B0) = ρtB(Wt, B)ρ0|t,B(W0|Wt, B0).

Since we have introduced so many notations, for the sake of simplicity, we allow the abuse of notation
and let ρt|0B and ρt denote both the distribution and density.
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On the basis of these facts, we can obtain the FP equation for ρt|0B(wt) as

∂ρt|0B

∂t
= ∇ ·

(
1

β
∇ρt|0B + ρt|0B∇F (w0, B0)

)
, (20)

and its marginal process as

∂ρt
∂t

= ∇ ·
(
1

β
∇ρt + ρtEρ0B|t [∇F (w0, B0)|wt = w]

)
, (21)

which is derived in Vempala and Wibisono [32] and Kinoshita and Suzuki [19]. As shown above,
the randomness associated with the dataset can be handled by simply taking the expectation for
conditional gradients with respect to a uniform distribution U . To avoid cumbersome discussions, we
omit descriptions related to the expectation with respect to B0 from here on.

As with the first step, we can define a one-step SGLD with the joint density γ0t(w0, wt) and the
conditional distribution γ0(w0)γt|0(wt|w0) under a dataset S′( ̸= S), where γ0(w0)γt|0(wt|w0)
corresponds to the marginal distribution, i.e., γ0(w0)γt|0(wt|w0) = γt(wt)γ0|t(w0|wt). We also can
obtain the FP equation and its marginal process in the form of ρt|0 and ρt replaced by γt|0 and γt in
Eqs. (20) and (21).

In Section 3.3, we obtain the upper bound of the MI as follows:

I(Wt;S) ≤ ES,S′KL(PWt|S |PWt|S′) = ES,S′KL(ρt|γt).
By taking the derivation w.r.t. t, we have

∂KL(ρt|γt)
∂t

=

∫
dw

(
∂ρt
∂t

log
ρt
γt

)
−
∫

dw

(
ρt
γt

∂γt
∂t

)
. (22)

The first and second terms can be expressed as∫
dw

(
∂ρt
∂t

log
ρt
γt

)
= − 1

β

∫
dw∇ log ρt · ∇ log

ρt
γt

−
∫

dwρ0t∇ log
ρt
γt

· ∇F (w0, B0),

and ∫
dw

(
ρt
γt

∂γt
∂t

)
= − 1

β

∫
dw∇ρt

γt
· ∇γt −

∫
dw

ρt
γt
∇ log

ρt
γt

· γ0t∇F (W ′
0, B

′
0),

where W ′
0 follows γ0, which is the density of the initial distribution and B′

0 is the stochastic gradient
based on S′.

According to these facts, Eq. (22) can be rewritten as

∂KL(ρt|γt)
∂t

= − 1

β
Eρt

∥∇ log ρt −∇ log γt∥2

−
∫

ρ0tdw∇ log
ρt
γt

· ∇F (W0, B0) +

∫
dw

ρt
γt
∇ log

ρt
γt

· γ0t∇F (W ′
0, B

′
0)

= − 1

β
Eρt

∥∇ log ρt −∇ log γt∥2 −
∫

ρtdw∇ log
ρt
γt

· Eρ0|t [∇F (w0, B0)|Wt = w]

+

∫
dw

ρt
γt
∇ log

ρt
γt

· γtEγ0|t [∇F (w′
0, B

′
t)|Wt = w)]

= − 1

β
Eρt∥∇ log ρt −∇ log γt∥2

−
∫

ρtdw∇ log
ρt
γt

· (Eρ0|t [∇F (W0, B0)|Wt = w]− Eγ0|t [∇F (W ′
0, B

′
t)|Wt = w])

≤ − 1

2β
Eρt∥∇ log ρt −∇ log γt∥2

+
β

2

∫
ρtdw∥Eρ0|t [∇F (W0, B0)|Wt = w]− Eγ0|t [∇F (W ′

0, B
′
t)|Wt = w]∥2,
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where the final inequality comes from the Cauchy–Schwartz inequality. We define Ṽ∇t
:=∫

ρtdw∥Eρ0|t [∇F (W0, B0)|Wt = w] − Eγ0|t [∇F (W ′
0, B

′
t)|Wt = w]∥2 for simplicity. We eval-

uate this term in Appendix F.2.3.

In the same way as Section 3.3, we have the following inequality by introducing the logarithm of the
stationary distribution ∇ log π(w) into E∥∇ log ρt −∇ log γt∥2 in the above:

− Eρt
∥∇ log ρt −∇ log γt∥2

= −Eρt
∥∇ log ρt∥2 − Eρt

∥∇ log γt∥2 + 2Eρt
∇ log ρt · ∇ log γt

≤ −1

2
Eρt

∥∇ log ρt −∇ log π∥2 + Eρt
∥∇ log π∥2 + 2Eρt

∇ log ρt · ∇ log γt,

where we used −x2 ≤ −∥x− y∥2/2+ y2 for all x, y ∈ Rd. To simplify the notation, we express the
second and third terms as Ω(ρt, γt, π) := Eρt∥∇ log π∥2 + 2Eρt∇ log ρt · ∇ log γt. From the above
fact, we obtain

∂KL(ρt|γt)
∂t

≤ − 1

4β
Eρt

∥∇ log ρt −∇ log π∥2 + 1

2β
Ω(ρt, γt, π) +

β

2
Ṽ∇t

≤ − 1

4βcLS
KL(ρt|π) +

1

2β
Ω(ρt, γt, π) +

β

2
Ṽ∇t

≤ − 1

4βcLS

(
KL(ρt|γt) + Eρt

log
γt
π

)
+

1

2β
Ω(ρt, γt, π) +

β

2
Ṽ∇t

, (23)

where the second inequality is from the LSI [2]. In the above, the LSI constant cLS is defined by Bakry
et al. [2] as follows:

cLS ≤ λl := 2D1 + 2ρ−1
0 (D2 + 2),

ρ−1
0 ≤ 2C(d+ bβ)

mβ
exp

(
2

m
(M +B)(bβ + d) + β(A+B)

)
+

1

mβ(d+ bβ)
,

where D1 = 2m2+8M2

βm2M , D2 ≤ 6M(d+β)
m , and C is the universal constant (see also Appendices B and

E in Raginsky et al. [29]).

Multiplying e
t

4βcLS for both hands in Eq. (23) yields

e
t

4βcLS
∂KL(ρt|γt)

∂t
≤ −e

t
4βcLS

1

4βcLS
Eρt

log
γt
π

+
1

2β
e

t
4βcLS Ω(ρt, γt, π) +

β

2
Ṽ∇t

.

By integrating time t = 0 → η, we obtain

e
η

4βcLS KL(ρη|γη) ≤ KL(ρ0|γ0)−
∫ η

0

dte
t

4βcLS
1

4βcLS
Eρt

log
γt
π

+

∫ η

0

dt
1

2β
e

t
4βcLS Ω(ρt, γt, π) +

β

2

∫ η

0

dte
t

4βcLS Ṽ∇t
. (24)

We later evaluate the second and third terms of Eq. (24) in Appendix F.2. We then evaluate the fourth
term Ṽ∇t

of Eq. (24) as Ṽ∇t
≤ D1, where D1 is problem dependent constant that can be independent

of η, in Appendix F.2.3.

F.2 The solution for the FP equation via the parametrix method

In this section, we evaluate the second and third terms in Eq. (24) by utilizing the parametrix method
for the FP equation [12, 27].

F.2.1 Consequences of the parametrix method for the FP equation

We summarize two essential consequences of the parametrix method used in Appendix F.2.2.
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Solution expansion of the FP equation. The first consequence of this method is as follows. Given
the following FP equation,

∇ ·
(
1

β
∇ρt(w) + ρt(w)b(w, t)

)
− ∂ρt(w)

∂t
= 0,

and initial condition ρt=0 = ρ0, the solution can be expanded as

ρt(w) = Eξ∼ρ0
Z(w, t; ξ, 0) + Eξ∼ρ0

∫ t

0

∫
Rd

dzZ(w, t; z, τ)Φ(z, τ ; ξ, 0), (25)

where

Z(x, t; z, τ) :=
1

( 4πβ (t− τ))d/2
e−

β∥x−z∥2
4(t−τ) ,

and

Φ(z, τ ; ξ, t) :=

∞∑
n=1

LnZ(z, τ ; ξ, t). (26)

In Eq. (26), LnZ(z, τ ; ξ, t) is defined through

Ln+1Z(x, τ ; ξ, t) :=

∫ τ

t

∫
Rd

dsdy(LZ(x, τ ; y, s))(LnZ(y, s; ξ, t)),

where

LZ(x, τ ; ξ, t) := b(x, τ) · ∇xZ(x, τ ; ξ, t),

and thus L1Z(x, τ ; ξ, t) = LZ(x, τ ; ξ, t).

The above expansion requires the convergence of Eq. (26). Fortunately, this condition holds for the
Langevin diffusion, for example, because ρ0(w) and b(w, t) = ∇F (w, S) satisfies the following two
assumptions for the initial state and b(w, t) from Lemma 3 and Assumption 4: (i) there exist positive
constants a and b such that ρ0(w) ≤ aeb∥w∥2

< ∞ for all w ∈ W , and (ii) there exist some positive
constants a′ and b′ such that ∥b(w, t)∥ < a′∥w∥+ b′ for all w ∈ W .

Parametrix solution is twice differentiable. Another important consequence is that the parametrix
solution ρt(w) is twice differentiable with respect to w. Under the initial distribution N (0, s2Id)
with Assumption 4, we can obtain the following facts according to Friedman [12] and Pavliotis [27]:

ρt(w) ≤
1

(2π(s2 + 2t
β ))d/2

e
− ∥w∥2

2(s2+ 2t
β

) +

(
s2 +

2t

β

)1/2
C0

(2π(s2 + 2t
β ))d/2

e
− ∥w∥2

2(s2+ 2t
β

) , (27)

d∑
i=1

∣∣∣∣∂ρt(w)∂wi

∣∣∣∣ ≤ C1

(2π(s2 + 2t
β ))(d+1)/2

e
− ∥w∥2

2(s2+ 2t
β

) +
C2

(2π(s2 + 2t
β ))d/2

e
− ∥w∥2

2(s2+ 2t
β

) , (28)

and
d∑

i,j=1

∣∣∣∣∂2ρt(w)

∂wi∂wi

∣∣∣∣ ≤ C3

(2π(s2 + 2t
β ))(d+2)/2

e
− ∥w∥2

2(s2+ 2t
β

)

+

(
s2 +

2t

β

)−1/2
C4

(2π(s2 + 2t
β ))d/2

e
− ∥w∥2

2(s2+ 2t
β

) , (29)

where {C0, C1, C2, C3, C4} are positive constants w.r.t. {m,M, β, d, b, s2}.

Eqs. (27) and (28) can be derived by following the proof of Theorem 11 in Friedman [12]. The
statement of this theorem is about the transition kernel; therefore, it corresponds to the case where
the expectation with respect to ξ ∼ ρ0 is excluded from Eq. (25). In light of this fact, we take the
convolution by the initial distribution ξ ∼ ρ0 for the beginning part of the proof of Theorem 11.
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This approach is equivalent to taking convolutions in the overall discussion of Section 4 described
by Friedman [12]. After convolution, following the proof of Theorem 11 leads to Eqs. (27) and
(28). Theorem 11 does not yield results related to second-order differentials; however, we can derive
Eq. (29) by combining Lemma 3 from Friedman [12] into the proof of Theorem 11 and employing
a similar way as described above. While it is assumed that the coefficients of the FP equation are
bounded in Friedman [12], we can relax this assumption to unbounded coefficients as shown in
subsequent work such as Deck and Kruse [7].

F.2.2 Applying the parametrix method for SGLD’s FP equations

Now, we get back to the SGLD setting. First of all, it should be mentioned that we do not lose
generality by focusing solely on the initial iteration, i.e., t = 0 → η. This reason is as follows.

For the initial iteration (t = 0 → η), we can see that b(x, t) = Eρ0|t [∇F (W0, B0)|Wt = w] from
Eq. (21). As we explained in Appendix F.2.1, the condition of the expansion is satisfied under
Lemma 3 and Assumption 4. Thus, the solution and its differentiation can be obtained via the
parametrix solution, expressed as Eqs. (27), (28), and (29) with the constants {C0, C1, C2, C3, C4}
that depend on the problem except η. When considering the second iteration (t = η → 2η), the
initial distribution is expressed as ρη. The concern here is whether the solution of the FP for SGLD
satisfies the conditions of the parametrix method in this case. Fortunately, these conditions are also
satisfied in the second iteration. The initial condition of the expansion is satisfied from Eq. (27), and
the condition b(x, t) = Eρη|t [∇F (Wη, B1)|Wt = w] also satisfies the condition of the FP expansion
from Lemma 3. We thus have the same form of the solution in Eqs. (27), (28), and (29) at time
t = η → 2η. In the same way, the solution at t ∈ (sη, (s+ 1)η] for s ∈ N can be expanded as the
same parametrix expansion.

Bounding Ω(ρt, γt, π) (related to the third term in Eq. (24)). We can decompose Ω(ρt, γt, π) as

Eρt
∥∇ log π∥2 + 2Eρt

∇ log ρt · ∇ log γt = Eρt
∥∇ log π∥2 + 2

∫
dw∇ρt · ∇ log γt.

To derive the upper bound of the right-hand side, we focus on the following facts:∫
dw∇ρt · ∇ log γt =

∫
dw

d∑
i=1

∂ρt
∂wi

∂ log γt
∂wi

. (30)

For the i-th dimension, we have∫
dw

∂ρt
∂wi

∂ log γt
∂wi

= −
∫

dw
∂2ρt
∂w2

i

log γt ≤
∫

dw

∣∣∣∣∂2ρt
∂w2

i

∣∣∣∣ |log γt| , (31)

where we used the integration by parts from the fact that ∂ρt

∂wi
→ 0 as ∥w∥ → 0 according to the

expansion in Eq. (28). Details of this argument can be found in Mou et al. [24].By using the result in
Eq. (27) for ρt and γt, we have∫

dw

∣∣∣∣∂2ρt
∂w2

i

∣∣∣∣ |log γt| ≤ C ′
1

(2π(s2 + 2t
β ))1/2

+ C ′
2, (32)

where the Gaussian integral is used for ∂2ρt

∂w2
i

in Eq. (29) and ρt in Eq. (27) is replaced to γt. We note

that C ′
1 and C ′

2 only depend on {m,M, β, d, b, s2}.

Substituting Eqs. (31) and (32) into Eq. (30), we obtain∫
dw∇ρt · ∇ log γt ≤

dC ′
1

(2π(s2 + 2t
β ))1/2

+ dC ′
2. (33)

From Lemma 6, we have
Eρt

∥∇ log π∥2 ≤ β2Eρt
∥∇FS(w)∥2

≤ β2M2

(
s2 + 2

(
1 ∨ 1

m

)(
b+ 10M2 b

m
+

d

β

))
+ β2M2 b

m
. (34)

Eqs. (33) and (34) leads to Ω(ρt, γt, π) ≤ D2, where

D2 := β2M2

(
s2 + 2

(
1 ∨ 1

m

)(
b+ 10M2 b

m
+

d

β

)
+

b

m

)
+

dC ′
1

(2π(s2 + 2t
β ))1/2

+ dC ′
2.(35)
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Bounding −Eρt log
γt

π (related to the second term in Eq. (24)). By using the Kolmogorov
solution of the FP equation [2], we have

γt(w) = EWT
[γ0(WT )|W0 = w]

= EWT

[
1

(2πs2)d/2
e−

∥WT ∥2

2s2

∣∣∣∣W0 = w

]
≥ 1

(2πs2)d/2
e−

EWT
[∥WT ∥2|W0=w]

2s2 , (36)

where the last inequality comes from Jensen’s inequality. The above inequality gives us

−EW̃T
log γt(W̃T ) = −EW̃T

logEWT
[γ0(WT )|W0 = W̃T ]

≤ −EW̃T
EWT

[log γ0(WT )|W0 = W̃T ]

≤ d

2
log(2πs2) +

1

2s2
EW̃T

EWT
[∥WT ∥2|W0 = W̃T ],

where W̃T is the independent copy of WT and the first and second inequalities are obtained from
Jensen’s inequality and Eq. (36), respectively. By using Lemma 5 twice, we obtain

−EW̃T
log γt(W̃T ) ≤

d

2
log(2πs2) +

1

2s2

(
EW̃T

∥W̃T ∥2 + 2

(
1 ∨ 1

m

)(
b+ 10M2 b

m
+

d

β

))
≤ d

2
log(2πs2) +

1

2s2

(
s2 + 4

(
1 ∨ 1

m

)(
b+ 10M2 b

m
+

d

β

))
︸ ︷︷ ︸

=:B1

.

In addition, from Lemma 8, we have

Eρt
log π = βMEρt

∥W∥2 + βb

2m
+A

≤ βM

(
s2 + 2

(
1 ∨ 1

m

)(
b+ 10M2 b

m
+

d

β

))
+

βb

2m
+A︸ ︷︷ ︸

=:B2

.

Thus, we have the upper bound of −Eρt
log γt

π as

−Eρt log
γt
π

≤ B1 +B2 =: D3, (37)

where D3 is the positive constant only depends on {m,M, β, d, b, s2}.

F.2.3 Bounding the stability term and finalizing proof

Finally, we show the upper bound of the stability term expressed as Ṽ∇t
in Eq. (24). Similarly to

Appendix F.2.2, we focus on the initial iteration t = 0 → η. From the definition of Ṽ∇t , we have

Ṽ∇t
=

∫
ρtdw∥Eρ0|t [∇F (W0, B0)|Wt = w]− Eγ0|t [∇F (W ′

0, B
′
t)|Wt = w]∥2

≤ 2

∫
ρtdw∥Eρ0|t [∇F (W0, B0)|Wt = w]∥2 + 2

∫
ρtdw∥Eγ0|t [∇F (W ′

0, B
′
t)|Wt = w]∥2.

The first term of the above can be rewritten as∫
ρtdw∥Eρ0|t [∇F (W0, B0)|Wt = w]∥2 ≤ Eρ0

∥∇F (W0, B0)∥2,

by using Jensen’s inequality for the conditional distribution. Since Eρ0∥∇F (W0, B0)∥2 can be
bounded by using Eq. (34), we have∫

ρtdw∥Eρ0|t [∇F (W0, B0)|Wt = w]∥2

≤ M2

(
s2 + 2

(
1 ∨ 1

m

)(
b+ 10M2 b

m
+

d

β

))
+M2 b

m
=: D4. (38)
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Next, we derive the upper bound of∫
ρtdw∥Eγ0|t [∇F (W ′

0, B
′
t)|Wt = w]∥2 = Eρt

Eγ0|t [∥∇F (W ′
0, B

′
t)|Wt = w]∥2.

From Lemma 3, we have ∥∇F (W ′
0, B

′
t)∥2 ≤ 2M2∥W ′

0∥2 + 2M2 b
m . Thus, we need to evaluate

Eρt
Eγ0|t [∥W ′

0∥2|W ′
t = w]; however, it is difficult to analyze this expectation because the densities ρ

and γ at time t and 0 are different.

Fortunately, we can circumvent this difficulty by using the reverse process formulae shown in
Haussmann and Pardoux [16]. According to the fact that the conditional expectation Eγ0|t [·] implies
the reverse process of Eq. (20). This formulae gives us the following reverse process for time
s (0 ≤ s ≤ t):

dW̃s = [∇F (W̃s=t, B
′
s=t) + 2β−1∇ log γt−s]dt+

√
2β−1dHs, W̃0 ∼ γt. (39)

In the above, B′
s=t implies B′

0 in the original forward process and thus a mini-batch sample is fixed.
We obtain the relationship γ̃s = γt−s, where γ̃s is the distribution of W̃s. This relationship reflects
the inverse process of γt, and we also have γ̃t = γ0 and γ̃0 = γt. We can analyze Eq. (39) by
using the parametrix method [7]. We refer to Remark 3 for the explanation that Eq. (39) satisfies the
assumptions of the parametrix method [7].

Let us express pγ(y, s|x, s′) as the transition kernel of Eq. (39). For simplicity, we express the
conditional distribution given W̃0 ∼ γ̃0 as γ̃s=t|s=0, which corresponds to the above transition kernel:
γ̃s=t|s=0(y) = pγ(y, s|x = w, s′ = 0). By fixing W̃0 as w, we obtain Eγ0|t [∥W ′

0∥2|W ′
t = w] =

Eγ̃s=t|s=0
[∥W̃t∥2|W̃0 = w]. By analyzing the reverse process of γt, we can evaluate the second term

in the upper bound of Ṽ∇t
, i.e.,

∫
ρtdw∥Eγ0|t [∇F (W ′

0, B
′
t)|Wt = w]∥2.

We consider approximating γ̃s=t|s=0 by the parametrix method to derive the upper bound of
Eγ̃s=t|s=0

[∥W̃t∥2|W̃0 = w]. By using the upper bound of the transition kernel provided by the
parametrix method in Deck and Kruse [7], we obtain

pγ(y, s|x, s′) ≤ K1(s− s′)−d/2e−K2
∥y−x∥2

s−s′ ,

where K1 and K2 are positive and problem-dependent constants and do not depend on s− s′. From
the above inequality, by setting x = w and s− s′ = t, we have

Eγ0|t [∥W0∥2|Wt = w] ≤ C̃0(∥w∥2 + C̃1t
2),

where C̃0 and C̃1 are positive and problem-dependent constants. Thus, we have

EρtEγ0|t [∥∇F (W ′
0, B

′
t)|Wt = w]∥2

≤ 2M2C̃0

(
C̃1t

2 + s2 + 2

(
1 ∨ 1

m

)(
b+ 10M2 b

m
+

d

β

))
+ 2M2 b

m
=: D5. (40)

In the above, C̃1t
2 is negligibly much smaller than the other terms within 0 ≤ t ≤ η.

From Eq. (38) and Eq. (40), we obtain

Ṽ∇t
≤ 2(D4 +D5) := D1. (41)

We conclude this section by finalizing the proof of Theorem 4. By combining Eqs. (35), (37), and
(41) with Eq. (24) and taking the expectation with respect to all of the randomness, we obtain

ES,S′KL(ρη|γη) ≤ e
−η

4βcLS ES,S′KL(ρ0|γ0) + (1− e
−η

4βcLS )D2

+ 2cLS(1− e
−η

4βcLS )D3 + 2β2cLS(1− e
−η

4βcLS )D1,

where we used the following fact:∫ η

0

dte
t

4βcLS = 4βcLS(e
η

4βcLS − 1).
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Since e
−η

4βcLS ≥ 1− η
4βcLS

from the assumption, we have

ES,S′KL(ρη|γη) ≤ e
−η

4βcLS ES,S′KL(ρ0|γ0) +
η

4βcLS
D2 +

η

2β
D3 +

ηβ

2
D1.

This concludes the proof.

Remark 3. We show that Eq. (39) satisfies the assumption of the parametrix method [7]. First, Deck
and Kruse [7] assumes the strong regularity condition for the diffusion coefficient, which is satisfied
because the diffusion coefficient in our setting is a constant. Next, we confirm the assumptions that
the drift coefficient b(w, s) := ∇F (W̃s=t, B

′
s=t) + 2β−1∇ log γt−s must satisfy. Specifically, the

following two assumptions for b(w, s) must be satisfied: (i) the locally Hölder continuous condition
on some bounded subset in Rd and (ii) the global growing condition, that is, ∥b(w, s)∥ ≤ c0(∥x∥+1)
with some positive constant c0. Fortunately, for ∇F in b(w, s), the assumption (i) is satisfied by
Assumption 2, and the assumption (ii) holds from Lemma 3. Furthermore, ∇ log γt−s in b(w, s) also
satisfies the assumption (ii) from Lemma E.1 in Mou et al. [24]. According to the fact that ∇γt−s

satisfies the Hölder continuous as shown in [12], we can see that 1
γt−s

is bounded by considering the
bounded set in Rd. This means that ∇ log γt−s = 1

γt−s
∇γt−s in b(w, s) is Hölder continuous and

satisfies the assumption (i).

F.3 On relaxing Gaussian condition in Assumption 4

The Gaussian initial distribution assumption for W0 could be relaxed. Let us consider the case when
the initial distribution PW0

is a mixture of Gaussian distribution, where each component of PW0

satisfies Assumption 4. In our original proof, the Gaussian assumption is used when deriving the
upper bound of the finite second moment at the initial state, and when analytically marginalizing out
the initial state of the transition kernel given by the fundamental solution of the parametrix method.
Even when using the mixture of Gaussian distribution as the initial distribution, it is possible to satisfy
these conditions. The finite second-moment condition can easily be satisfied and the integration of
the transition kernel can be executed by focusing on each component of the mixture distribution.
Thus, by repeating the similar derivation in Appendices F.1 and F.2, we get the similar upper bound
of ES,S′KL(ρη|γη) even when the initial distribution is the Gaussian mixture distribution.

F.4 Proof of Theorem 5

We first show the proof of Theorem 5.

Theorem 5. Suppose that Assumptions 1 and 2 are satisfied and that F (w, z) is R-strongly convex
(0 < R < ∞). Then, for any T ∈ R+, we have

∂KL(ρt|γt)
∂t

≤ −R

4
KL(ρt|γt) +

β

2
E∥∇F (Wt, S)−∇F (Wt, S

′)∥2, (15)

and

|gen(µ, PWT |S ;L)| ≤

√
2βσ2

g

n

∫ T

0

e−
(T−t)R

4 E∥∇F (Wt, S)−∇F (Wt, S′)∥2dt. (16)

Proof. Since f(w, z) is R-strongly convex function for any z, we have

∂KL(ρt|γt)
∂t

≤ − 1

2β
E∥∇ log ρt −∇ log γt∥2 +

β

2
E∥∇F (Wt, S)−∇F (Wt, S

′)∥2

≤ −R

4
KL(ρt|γt) +

β

2
E∥∇F (Wt, S)−∇F (Wt, S

′)∥2,

where we utilized the local LSI in Theorem 5.5.2 of Bakry et al. [2]. Since the stationary distribution
si π ∝ exp(−βF (x)), From Theorem 5.5.2 of Bakry et al. [2], γt satisfies the LSI with the LSI
constant 2/(βR). By integrating e

tR
4

∂KL(ρt|γt)
∂t over t ∈ [0, T ] and rearranging the above, we obtain

the upper bound of I(Wt;S). This concludes the proof.
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We can obtain the similar result for bounded non-convex losses with l2-regularization F (w, z) =
F0(w, z) +

λ
2 ∥w∥

2 (0 < λ < ∞), where F0(w, z) is C-bounded (0 ≤ C < ∞) with the initial
distribution π0 ∝ e−

βλ
2 ∥w∥2

. From Lemma 34 in Li et al. [20], γt satisfies the LSI with the constant
λ

e8βC . Then, following the way in the proof of Theorem 5, we obtain the bound with replacing R of
Eq. (16) to λ

e8βC .

G Proofs of generalization analyses directly using a training loss

In this section, we provide our proof for our generalization bounds in the case when the same loss
is used for training and the generalization performance evaluation (Corollaries 1 and 2). The key
to deriving these bounds is showing that f in SGLD is sub-exponential under Assumptions 2, 3
(Theorem 6). Therefore, we explain how to obtain this result in Appendices G.1 and G.2 before
introducing the details of proofs for our bounds in Appendices G.3 and G.4.

G.1 Preparation for the proof of sub-exponential property

We introduce some auxiliary lemmas that assure the existence of bounded local minima. These are
used later for showing the sub-exponential property of a loss function in SGLD.
Lemma 7. Suppose that Assumptions 2 and 3 are satisfied. Then, for each z ∈ Z , there exists a
positive constant A such that

|f(0, z)| ≤ A.

Proof. Denote w̃∗
z as a global minima of f(·, z) for each z ∈ Z . By using Taylor’s theorem around

w̃∗
z , for t ∈ (0, 1], we obtain the following equation with a parameter w̃z = tw̃∗

z :

f(0, z) = f(w̃∗
z , z) +∇f(w̃∗

z , z) · w̃∗
z +

1

2
w̃∗

z · ∇2f(w̃z, z) · w̃∗
z .

According to Assumption 2 and the fact that w̃∗
z is the global minima (i.e., ∇f(w̃∗

z , z) = 0), we
obtain

f(0, z) ≤ f(w̃∗
z , z) +

1

2
M∥w̃∗

z∥2. (42)

Farghly and Rebeschini [10] has shown that all the local minima w̃∗
z are inside the ball in the Euclidean

space. That is, for each z ∈ Z , all w̃∗
z are located in B(0, r) with r =

√
b/m, where B(x, r) (r > 0)

is the ball in the Euclidean space defined as B(x, r) := {x ∈ Rd : ∥x− y∥ < r} and B(x, r) is the
closure of B(x, r). From this fact, we obtain ∥w̃∗

z∥2 ≤ b/m and Eq. (42) can be upper bounded as

f(0, z) ≤ f(w̃∗
z , z) +

Mb

2m
.

Next, we show that, for each z ∈ Z , the global minima f(w̃∗
z , z) is bounded uniformly. Since

f(w̃z, z) is continuous with respect to w for each z ∈ Z under Assumption 2, it is continuous in C

when considering the closed set C := B(0, r) with r =
√

b/m. From the property of the continuous
function in the closed set, the maximum and minimum value of f(w̃z, z) is always bounded, i.e., we
have f(w̃∗

z , z) < ∞ for each z ∈ Z . By considering the largest global minimum and denote it as Ã,
we obtain f(w̃∗

z , z) ≤ Ã and thus

f(0, z) ≤ Ã+
Mb

2m
.

This concludes the proof.

Under Lemma 7, we can modify the upper and lower bound for f(w, z) in Raginsky et al. [29] as
follows.
Lemma 8 (Modified version from Raginsky et al. [29]). Suppose that Assumptions 2 and 3 are
satisfied. Then, for any z ∈ Z , we have

m

3
∥w∥2 − b

2
log 3 ≤ f(w, z) ≤ M

2
∥w∥2 +M

√
b

m
∥w∥+A.
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Proof. Raginsky et al. [29] assumed that for any z ∈ Z , there exists constant A such that ∥f(0, z)∥ ≤
A. Instead, we show the existence of such A by Lemma 7. On the basis of this fact, we obtain the
claim in the same way with Raginsky et al. [29].

Finally, we provide the following useful lemma from Farghly and Rebeschini [10].
Lemma 9 (Lemma B.2 in Farghly and Rebeschini [10]). Suppose that Assumptions 2, 3 and 4 are
satisfied. Then, for any η ∈ (0, 1 ∧ m

5M2 ), T ∈ N and p ∈ N, we have

E∥WT ∥2p2 ≤ E∥W0∥2p2 + c(p), (43)

where

c(p) :=
1

m

(
6

m

)p−1(
1 +

22pp(2p− 1)d

mβ

)[(
2b+ 8

M2

m2
b

)p

+ 1 + 2

(
d

β

)p−1

(2p− 1)p

]
.

If, for any p ≥ 1, the Lp norm of a random variable X is upper-bounded as (E[Xp])
1/p ≤ C

√
p

with some positive constant C, then X is a sub-Gaussian random variable (see Proposition 2.5.2 in
Vershynin [33]). According to the fact that p2 ≤ e2p, it is evident that WT is a sub-Gaussian random
variable from Eq. (43).

G.2 Sub-exponential property for a loss function

We now provide the complete proof of Theorem 6. We first show the fact that a loss function in
SGLD has the sub-exponential property (Appendix G.2) and explain how to evaluate the constants in
the sub-exponential condition for deriving our generalization bounds (Appendix G.3).

Recall that the statement of Theorem 6 is as follows.
Theorem 6. Suppose that Assumptions 2, 3 and 4 are satisfied. Let PWT

= ES [PWT |S ] be the
marginal distribution of the output obtained using the SGLD algorithm at the T -th iteration. Then,
for any η ∈ (0, 1 ∧ m

5M2 ) and T ∈ N, f(WT , Z) is sub-exponential under the distribution PWT
⊗ µ.

That is, there exist positive constants σ2
e and ν w.r.t. {m,β,M, b, d, s2} such that

logEWT⊗Z

[
eλ(f(WT ,Z)−EWT ⊗Z [f(WT ,Z)])

]
≤ σ2

eλ
2

2
for all |λ| < 1

ν
.

Proof. Now, we proceed to the proof of sub-exponential property. To show the sub-exponential prop-
erty for f(w, z), it is sufficient to show that there exists a positive number c0 such that Eeλf(w,z) < ∞
for all |λ| ≤ c0 (see Theorem 2.13 in Wainwright [34]). To show this, we follow the proof of Propo-
sition 2.7.1 in Vershynin [33], which uses the Taylor expansion of the exponential moment. By
considering the Taylor expansion, we have

Eeλ(f(WT ,Z)−Ef(WT ,Z)) ≤ 1 + E
∞∑
p=2

λp(f(WT , Z)− Ef(WT , Z))p

p!

≤ 1 + E
∞∑
p=2

(λe)p(f(WT , Z)− Ef(WT , Z))p

pp

where we used p! ≥ (p/e)p, which is obtained by the Stirling’s approximation. Later, we restrict the
λ such that this series converges, and thus, we can swap the sum and expectation. From the fact that
(x+ y)p ≤ 2p−1xp + 2p−1yp for x, y ≥ 0, we obtain

E(f(WT , Z)− Ef(WT , Z))p ≤ 2p−1E[|f(WT , Z)|p] + 2p−1(| − E[f(WT , Z)]|)p.
Given the marginal distribution of the parameters obtained by the T -th iterate of the SGLD algorithm,
i.e., WT ∼ p(WT ), we have the following fact by using the result of Lemma 8 and the Cauchy–
Schwartz inequality:

m

3
∥WT ∥2 −

b

2
log 3 ≤ f(WT , Z) ≤ M

2
∥WT ∥2 +M

√
b

m
∥WT ∥+A ≤ M∥WT ∥2 +

b

2m
+A.

(44)
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By using Eq. (44) and the inequality (x+ y)p ≤ 2p−1xp + 2p−1yp for x, y ≥ 0, we have
Ef(WT , Z)p ≤ E|f(WT , Z)|p

≤
(
2p−1MpE∥WT ∥2p2 + 2p−1

(
b

2m
+A

)p)
∨
(
2p−1

(
m

3

)p

E∥WT ∥2p2 + 2p−1

(
b

2
log 3

)p)
.

(45)

The term E∥WT ∥2p2 in Eq. (45) can further be upper bounded by utilizing Eq. (43) in Lemma 9. As
discussed immediately below Lemma 9, WT is a sub-Gaussian random variable. Thus, for any p ∈ N,
(E[W p

T ])
1/p ≤ C

√
p holds with some positive constant C. Combining Eq. (45) and the above fact

leads to
Ef(WT , Z)p ≤ Cp

0 + Cp
1p

p,

where C0 and C1 are positive constants that only depend on s2,m,M, b, d, A, and β. For the latter
purpose, we introduce C5 as

Ef(WT , Z)p ≤ C5p
p,

where C5 only depends on s2,m,M, b, d, A and β. Then, we have

Eeλ(f(WT ,Z)−Ef(WT ,Z)) ≤ 1 +

∞∑
p=2

(λe)pC5p
p

pp
= 1 +

∞∑
p=2

(λeC5)
p = 1 +

(λeC5)
2

1− λeC5
,

where λeC5 < 1. Moreover, by setting λeC5 < 1/2, we have

Eeλ(f(WT ,Z)−Ef(WT ,Z)) ≤ 1 + 2λ2e2C2
5 ≤ e2λ

2e2C2
5 .

From the above, we can see that f(WT , Z) is a sub-exponential function with the following constants:
σ2
e := 4e2C2

5 and ν := 1
2eC5

where C5 only depends on s2,m,M, b, d and A.

G.3 Proof of generalization error bound directly using a training loss

Here, we provide the complete proof of Corollary 1.
Corollary 1. Suppose that Assumptions 2, 3, and 4 are satisfied. Then, for any β ≥ 2/m, η ∈
(0, 1 ∧ m

5M2 ∧ 4βcLS), and T ∈ N, we obtain

|gen(µ, PWT |S ;F )| ≤ Ψ∗−1

(
c1
n

(
1 ∧ ηT

4βcLS

)
(V∇ + c2)

)
,

where

Ψ∗−1(y) =

{√
2σ2

ey if y ≤ σ2
e

2ν

νy +
σ2
e

2ν otherwise
,

c1 and c2 are the same as in Theorem 4, and σ2
e and ν are the same as in Theorem 6.

Proof. We use the following theorem in Bu et al. [3] to derive the generalization error for sub-
exponential losses.

Theorem 7 (Bu et al. [3]). Suppose that there exist positive constants σ2
e and ν such that

logEWT⊗Z

[
eλ(f(WT ,Z)−EWT ⊗Z [f(WT ,Z)])

]
≤ σ2

eλ
2

2
for all |λ| < 1

ν
.

Then, we have

|gen(µ, PWT |S ;F )| ≤ Ψ∗−1

(
I(WT ;S)

n

)
,

where

Ψ∗−1(y) =

{√
2σ2

ey if y ≤ σ2
e

2ν

νy +
σ2
e

2ν otherwise.

Substituting the constants of the sub-exponential property shown in Theorem 6 and the upper bound
of I(WT ;S) in Theorem 4 into the above completes the proof.
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G.4 Proof of an excess risk

We rewrite our corollary as follows.
Corollary 2. Suppose that Assumptions 2, 3, and 4 are satisfied. Then, for any β ≥ 2/m, η ∈
(0, 1 ∧ m

5M2 ∧ 4βcLS), and T ∈ N, we obtain

Excess(µ, PWT |S) = O
(√

(ηT ∧ 1)

n
+ e−ηT/cLS +

√
η + cerr

)
,

where cerr is the positive constant w.r.t. {M,m, b, d, β} corresponding to the optimization error.

Proof. We can decompose the excess risk at T as

Excess(µ, PWT |S) = EWT ,S [Fµ(WT )− FS(WT ) + FS(WT )− Fµ(w
∗)]

= gen(µ, PWT |S ;F ) + EWT ,S [FS(WT )− Fµ(w
∗)],

where the last term is called the optimization error. The optimization error can be bounded as

EWT ,S [FS(WT )− Fµ(w
∗)] = EWT ,S [FS(WT )−min

w
FS(w) + min

w
FS(w)− FS(w

∗)]

≤ EWT ,S [FS(WT )−min
w

FS(w)],

where the above inequality comes from the fact that EWT ,S [minw FS(w) − FS(w
∗)] ≤ 0. Let us

denote ϵopt as EWT ,S [FS(WT )−minw FS(w)]. Then, we can express the upper bound of the excess
risk as follows:

Excess(µ, PWT |S) ≤ |gen(µ, PWT |S ;F )|+ ϵopt.

We first bound the ϵopt term. Using the Gibbs distribution π(dw) ∝ exp(−βF (w, S)) and the
triangle inequality, we obtain

ϵopt≤|EWT ,SFS(WT )−Eπ,SFS(W )|+|Eπ,SFS(W )−min
w

FS(w)|, (46)

where we express the expectation under the joint distribution µN ⊗ π as Eπ,S . The first term on the
right-hand side of Eq. (46) is the convergence error of the SGLD algorithm, which can be seen as
O(e−kη/βcLS +

√
η). From Lemma 6 in Raginsky et al. [29], we have

|EWT ,SFS(WT )−Eπ,SFS(WT )| ≤

(
Mσ +M

√
b

m

)
ESW2(PWT |S , π),

where σ2 := EPWT |S∥WT ∥2 ∨ Eπ∥W∥2 and W2 is the 2-Wasserstein distance. By using the T2

inequality, we obtain W2(PWT |S , π) ≤
√

cLSKL(PWT |S∥π). From Theorem 1 in Vempala and
Wibisono [32], we further obtain KL(PWT |S∥π) ≤ O(e−2kη/βcLS + η). Combining these results
leads to |EWT ,SFS(WT )−Eπ,SFS(WT )| = O(e−kη/βcLS +

√
η).

The second term |Eπ,SFS(WT )−minw FS(w)| corresponds to the minimization error, which can

be upper-bounded by cerr :=
d
2β log

(
eM
m

(
bβ
d + 1

))
according to Proposition 11 in Raginsky et al.

[29]. This completes the proof.
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