Language-Grounded Dynamic Scene Graphs for
Interactive Object Search with Mobile Manipulation

- Supplementary Material -

Daniel Honerkamp'*, Martin Biichner'*, Fabien Despinoy?, Tim Welschehold!, Abhinav Valada'

In this supplementary material, we provide additional details
on the approach and the experimental setup, including the
simulation and real-world environments, the subpolicies, and
the baselines. Moreover, we provide additional results from
the experiments. Further examples of real-world experiments
are demonstrated in the video material.

S.1. HIGH-LEVEL ACTION SPACE

We design an object-centric action space, which is tightly
intertwined with the different granularities of the scene repre-
sentation. It consists of the following high-level actions:

e navigate(room_name, object_name): Navigation to
an object in a room via an A* planner in the explored
BEV-map B;, inflated by 0.1 m. It first navigates to the
Voronoi node associated with the object, then to the most
central, free point on an arc around the object. This enables
robust navigation to objects in partially explored space
and ensures navigation to the correct room through the
Voronoi assignment detailed in Sec. III-A. Navigation is
considered successful if the agent reaches within 1.5 m
of the object.

e go_to_and_open(room_name, object_name): Navi-
gation to a specific object, then open it. For doors, continue
to navigate into the opened door frame.

e close(room_name, object_name): Equivalent to the
opening action.

o explore(room_name): Move to an unexplored frontier
within this room. Deemed successful if the agent reaches
within 0.5 m of the frontier point.

¢ done(): Terminate the episode and evaluate if the target
object has been found.

Ambiguities of multiple instances of the specified class in
a room are resolved by selecting the closest instance. The
subpolicies then generate actions in the low-level action
space and return once they succeed or encounter a failure.
Throughout their execution, they continuously update the scene
representations.

*These authors contributed equally.

I Department of Computer Science, University of Freiburg, Germany.
2Toyota Motor Europe (TME)

Project page: http://moma-1lm.cs.uni-freiburg.de

S.2. SIMULATION ENVIRONMENT
A. Task Generation

We implement the task in the iGibson scenes [19], consisting
of 15 interactive apartments based on scans of real houses.
At the beginning of an episode, all doors are closed and the
agent is given a task description in natural language. The task
is deemed successful if the agent has observed an instance of
the target category and calls done().

We make the following modifications to the iGibson scenes:

o We close all exterior doors and filter them out of the scene
graph as they lead out to empty space.

« We scale the size of the Fetch robot by a factor of 0.85 as
otherwise it is too large to navigate a significant number
of areas.

« We remove six doors that block the robot’s pathway
when opening (door_52 in Pomaria_0_int, door_75 in
scene Beechwood_1_int and door_106 in Ihlen_I_int,
door_90 in Merom_1_int, door_138 and door_139 in
Wainscott_0_int).

« We rename four object categories, with misleading asset
names, such as renaming breakfast_table (which can be
found e.g. in bedrooms) to table.

The iGibson scenes contain realistic furniture and room
distributions, but few other objects are placed in relation to
this. We provide a method to enrich the scenes with realistic
object placements, both within receptacles and on top of
furniture, by extending and matching previously introduced
prior distributions PP"%" over room and object relations [20].
Given a valid scene instantiation, we then draw a target category
g ~ U(scene) from all categories in the scene. This results
in the procedural generation of a wide range of tasks over 84
possible target classes.

We first align the rooms and objects with the prior dis-
tribution. We manually match room labels and use cosine
similarities of object name embeddings to match objects. We
embed the object names from the scene and from the prior
distribution with SBERT [1]. We then define a match as a
cosine similarity < 0.7 and being in the top 50 matched
categories. As PP"°" only contains two “inside” relationships,
we enrich these relationships by assuming that all objects
that can be found on top of an object and that fit in size,
can also be found inside it and vice-versa. This results in
an extended distribution PP7"¢¥' We then procedurally
enrich each episode by drawing additional objects from the set
of admissible room-object-relations for all existing furniture


http://moma-llm.cs.uni-freiburg.de

in the iGibson scenes. We keep drawing until the physical

placement of a relation succeeds or the distribution is exhausted.

Given a valid scene instantiation, we draw a target category
g ~ U(scene) from all categories in the scene. We reject
targets as infeasible if no target instance is reachable from the
agent’s random start position. We also reject all episodes in
which the target object is immediately visible. We terminate an
episode early if the agent reaches 50 high-level steps, indicating
being stuck.

B. Perception

The robot in simulation is equipped with a differential drive
and an RGB-D camera with a resolution of 256 x 256 pixels
and a vertical field of view of 120°. As the focus of this work
is on decision making, we abstract from imperfect perception
and assume access to ground truth instances and semantic
segmentation from the simulator. For a realistic detection range,
we restrict all sensors (depth, semantics) to a maximum range
of 5m and set a threshold of 50 segmented pixels before an
object is considered detected - except for object with a volume
below 0.01 m3. We furthermore assume accurate detection of
whether an articulated object is open or closed and assume
that objects within receptacles are detected after opening the
object. We construct all maps at a resolution of 0.075m and
remap the floor and carpet categories as free space.

C. Execution

All methods start by fully turning around in-place to initialize
the scene graph.

Low-level action space: The subpolicies act in a low-level
action space consisting of the following actions:

« move forward by 7.5 cm

« turn-left by up to 35rad

o turn-right by up to 35rad

« open articulated object

« close articulated object

« done: end the episode and evaluate the success

Navigation: To reduce run-time, navigation actions are executed
without physical simulation, but rather by directly setting the
state of the robot. If no complete path in free space exists, the
navigation policy will consider unexplored areas as traversable
and replan with newly revealed free space. It will return ’failed’

if it cannot find a path or reaches too many replanning attempts.

Object interactions: We follow previous work [2], [9] and
execute articulated object manipulations as “magic actions” in
simulation. These actions directly set the joint values of the
object to their minimum or maximum. In the calculation of
the efficiency curves and AUC-E, we weigh these actions by
a time factor of 30 to make their time cost comparable to an
execution duration of roughly 30 seconds.

The go_to_and_open() action is implemented as follows:

1) Navigate to the Voronoi node closest to the object

mirror
bathroom
oap  bin

door X

sink
mirror :
toothbrush  toilet toilet

paper

unexplored area

hallway

coathanger

shelf

cabinet picnic blanket
shelf

shoes

;. scotch
py armchair 5D drawer
-~ "

teapot

coffee table .
amepad

s bin walls

living room door box

fan

cabinet
clock g
plate

lemon
-

orange
chair
glass
table

- unexplored area
chair

cabinet

kitchen

cereals

. frying pan

oven fridge olive oil * coffee

Fig. S.1. Map of the real-world environment. Different intensities represent
different object instances in the environment. Room annotations are for
illustration and not used by our model. Object labels denote approximate
object positions.

2) Navigate to the most central free space in front of the
object and turn toward it
3) Trigger the magic open action

S.3. REAL-WORLD ENVIRONMENT

The HSR robot is equipped with an RGB-D camera and
a 270° LiDAR. We replace the navigation policies with the
ROS Nav Stack and the manipulation actions with the N>M?
manipulation policies [21]. We rely on the same assumptions
as in simulation and assume access to localization, accurate
semantic perception, and handle detection. We implement
this by pre-recording a map with the robot’s LiDAR and
annotating it with semantic labels. At test time, we create an
occupancy map from the robot’s RGBD camera and reveal the
corresponding part of the semantic map to the agent. The pre-
recorded map is also used for localization. To detect handles,
we use AR-Markers placed on each object.

A. Map

Fig. S.1 shows the map of the real-world environment.
Different object instances are indicated in different intensities.
The environment covers five different room types and 54
different object categories, including furniture such as tables,
chairs, and a coat hanger, as well as small and less common
objects such as soap, gamepad, or scotch tape. We set start
positions for the robot in the kitchen, living room, and hallway.
We ensure the same initial positions and targets for all evaluated
methods.



B. Execution

Navigation: We use the default manufacturer versions of the
ROS NavStack as developed by Toyota for navigation. It uses
the robot’s LiDAR and depth cameras for dynamic obstacle
detection and navigates in a map inflated by 0.25m.

Mobile manipulation: Articulated object interactions are exe-
cuted with pretrained N?M? manipulation policies [21]. The
policy receives the handle pose, detected through AR-Markers,
and uses a local occupancy map constructed from the LiDAR
of the robot for obstacle avoidance. For each articulated object,
we collect a single demonstration of opening the object. This
demonstration consists of a set of poses of the robot’s wrist link
during the opening motion. These poses are then interpolated
with splines to generate an end-effector motion. This agent’s
aim is to follow this end-effector motion to complete the object
interaction. We evaluate whether the motion was successful
based on whether the marker on the object changed its position
after the execution of the subpolicy. For doors, we do not lock
the spring-loaded door latch, as the robot is not strong enough
to press the handle down.

The only exception to this is the door between the kitchen
and living room. We found that the robot was unable to
localize itself during the opening motion, as the moving door
occupies the overwhelming majority of the robot’s LiDAR
measurements. As a result, it was not possible to follow the
opening demonstration whenever the marker moved out of the
robot’s view. Instead, we use a simpler pushing motion from
the inside and abstain from opening it in the other direction.

S.4. SCENE GRAPH CONSTRUCTION

In the following, we provide additional insights into the
construction of the navigational Voronoi graph:

« In order to increase robustness, we first inflate 5; using
an Euclidean signed distance field (ESDF) formulation
before computing the Voronoi graph. After inflation, we
overwrite free space coordinates as given in JF; as zero.

o After obtaining 1V, we exclude all nodes that lie in the
immediate vicinity of obstacles or do not reside within
the occupied map boundaries.

« Throughout our experiments, we found that extracting
the largest connected component of the graph provides
the robot-centric Voronoi graph while other components
commonly lie outside the explored area. Lastly, we sparsify
Gy to obtain fewer navigational nodes.

o The object-to-room assignment relies on the following
optimization objective:

nf = arg min path(ne, n., ) + d(o, no)A + d(vp,nv,), (1)

noeG{f

where n,,n,, € g{} are the closest Voronoi nodes to

the object o as well as the camera viewpoint position vy,

respectively. The path(;) denotes a shortest-path on Gi}.

In order to provide more insights regarding the open-set
room classification scheme used, we show the utilized prompt
in Fig. S.2.

system: You are a helpful assistant, visiting a new apartment.

user: You observe 2 rooms, they contain the following objects:

- room-0 contains [4 armchairs, closed bottom-cabinet, carpet,
pict lves, 2 tabl , table-lamp,
- room-1 contains [b . binet, document,
2 closed doors, 2 shelves, clos windo opened door] .

Please classify the rooms. If you are unsure, classify them as other room
Output Response Format: A list with bullet points of the form
- room-X: room type

assistant: The first room seems to be a living room, and the
second room appears to be a bedroom.

Output Response Format:

- room-0: living room

- room-1: bedroom

Fig. S.2. Room Classification Prompt: based on the objects and room clusters
of the scene graph, an LLM performs open-vocabulary classification.

TABLE S.1
MAPPING OF DISTANCES TO NATURAL LANGUAGE.

< Distance | Encoding
3.0 very close
10.0 near
20.0 far
00 distant

S.5. LANGUAGE ENCODING

GPT Versions: Unless otherwise noted, we use gpt-4-1106-
preview for the high-level reasoning and gpt-3.5-turbo-1106
for the simpler room classification task [17].

Distances: We encode distance to natural language based on a
discrete mapping, following the principle of [15]. The mapping
is reported in Tab. S.1.

History Re-alignment: As the scene graph changes dynamically,
the previous room- and object-centric function calls may no
longer match the current scene. Instead, we keep track of
interaction positions, and then re-align the previous actions
by matching the positions to their closest Voronoi nodes and
associated room labels. We then provide the LLM with a list
of the re-aligned function call.

S.6. BASELINES

In this section, we provide additional details regarding the
baselines:

ESC-Interactable: Co-occurrences are based on similarities
of a finetuned Deberta-v3 language model [22], following the
authors’ instructions. To isolate the impact of the decision
making, we use the same scene graph and low-level policies
as for our method.

We adapt HIMOS [9] by giving it the same subpolicies as
our approach and scale it to the much larger number of objects
in our scenes by restricting the instance navigation to target
and articulated objects.

The Unstructured LLM baseline receives the same instruc-
tions “remember” notes as our approach. The full JSON-
formatted prompt of this baseline is depicted in Fig. S.3. We



system: You are a robot in an unexplored house. Your task is to find an oven.

You have the following actions available that you can use to achieve this task:

1. navigate(room_name, object_name): navigate to this object in this room.

2. go_to_and_open(room_name, object name): go to this articulated object, door or container and open it.
3. close(room_name, object_name): close this articulated object, door or container.

4. explore(room_name): explore the unknown space near one of the rooms that is not fully explored yet.
5. done(): call when the task is completed or if you are unable to take any further actions.

output Response Format:

Analysis: describe where you could find the objects of interest and what actions you need to execute to get there.
Reasoning: justify why the next action is important to solve the task.

Command: function call

user: Scene Graph: {nodes: [{frontier_points: {((-3.9749999999999996, 7.725), <FRONTIER CLASSIFICATION.LEADING OUT: 1>), ((2.85, 6.825), <FRONTIER CLASSIFICATION.LEADING_OUT: 1>), ((-4.125, 5.325),
<FRONTIER _CLASSIFICATION.LEADING OUT: 1>), ((-3.3, 7.574999999999999), <FRONTIER CLASSIFICATION.WITHIN: ©>), ((0.375, 9.15), <FRONTIER CLASSIFICATION.LEADING OUT: 1>), ((-0.75, 8.1),
<FRONTIER_CLASSIFICATION.WITHIN: 0>), ((-1.5, 6.75), <FRONTIER_CLASSIFICATION.WITHIN: 0>)}, closed_doors: set(), id: living room, node_type: room}, {id: room-1}, {id: room-4}, {frontier_points:
set(), closed_doors: set(), id: bedroom, node_type: room}, {id: room-©}, {id: room-2}, {id: room-3}, {frontier_points: set(), closed_doors: set(), id: bathroom-1, node_type: room},
{frontier_points: set(), closed_doors: set(), id: other room, node_type: room}, {frontier_points: set(), closed doors: set(), id: bathroom-2, node_type: room}, {id: room-5}, {frontier_points:
{((-2.3249999999999997, 1.95), <FRONTIER CLASSIFICATION.LEADING_OUT: 1>)}, closed doors: set(), id: bathroom-3, node_type: room}, {id: alarm 10037, room: bedroom, node type: object}, {id:
straight_chair_9, room: bedroom, node_type: object}, {id: console_table_10, rool bedroom, node_type: object}, {id: table_1011, room: bedroom, node_type: object}, {id: table_lamp_12, room: bedroom,
node_type: object}, {id: swivel_chair_13, room: bedroom, node_type: object}, {i table_lamp_14, room: bedroom, node_type: object}, {id: table_1015, room: bedroom, node_type: object}, {id:
table_1016, room: bedroom, node_type: object}, {id: table_1017, room: bedroom, node_type: object}, {id: table_lamp_18, room: bedroom, node_type: object}, {id: pot_plant_19, room: bedroom,
node_type: object}, {id: console_table_26, room: bedroom, node_type: object}, {id: table_1021, room: living room, node_type: object}, {id: notebook_10041, room: bedroom, node_type: object}, {id:
armchair_23, room: living room, node_type: object}, {id: sofa_24, room: living room, node_type: object}, {id: soap_10046, room: bathroom-2, node_type: object}, {id: console_table_25, room: living
room, node_type: object}, {id: bottom_cabinet_26, room: living room, state: closed, node_type: object}, {id: floor_lamp_27, room: living room, node_type: object}, {id: coffee_table_28, room: living
room, node_type: object}, {id: bed_49, room: bedroom, node_type: object}, {id: bottom_cabinet_54, room: bedroom, state: closed, node_type: object}, {id: bottom_cabinet_55, room: bedroom, state:
closed, node_type: object}, {id: carpet_56, room: bedroom, node_type: object}, {id: sofa_57, room: bedroom, node_type: object}, {id: picture_58, room: living room, node_type: object}, {id: sink_59,
room: bathroom-1, node_type: object}, {id: pen_10040, room: bedroom, node_type: object}, {id: toilet 66, room: bathroom-1, node_type: object}, {id: mirror_61, room: bathroom-1, node_type: object},
{id: shower_62, room: bathroom-1, node_type: object}, {id: picture_63, room: bathroom-1, node_type: object}, {id: towel_rack_64, room: living room, node_type: object}, {id: towel_rack_65, room:
bathroom-2, node_type: object}, {id: toilet_66, room: bathroom-3, node_type: object}, {id: sink_67, room: bathroom-3, node_type: object}, {id: powder_bottle_10043, room: bathroom-1, node_type:
object}, {id: paper_towel 10045, room: bathroom-3, node_type: object}, {id: mirror_68, room: bathroom-3, node_type: object}, {id: picture_69, room: bathroom-3, node_type: object}, {id:
grandfather_clock 70, room: living room, node_type: object}, {id: mirror_71, room: living room, node_type: object}, {id: picture_72, room: living room, node_type: object}, {id: picture_73, room:
living room, node_type: object}, {id: carpet_74, room: living room, node_type: object}, {id: picture_76, room: living room, node_type: object}, {id: window_115, room: bedroom, state: closed,
node_type: object}, {id: window_116, room: bedroom, state: closed, node_type: object}, {id: window_117, room: bedroom, state: closed, node_type: object}, {id: window_118, room: bedroom, state:
closed, node_type: object}, {id: window_121, room: living room, state: closed, node_type: object}, {id: window_122, room: bathroom-1, state: closed, node_type: object}, {id: window_123, room:
bedroom, state: closed, node_type: object}, {id: window_125, room: bedroom, state: closed, node_type: object}, {id: window_127, room: living room, state: closed, node_type: object}, {id:
alarm_10007, room: bedroom, node_type: object}, {id: floor_lamp_10008, room: bedroom, node_type: object}, {id: pencil_box_10014, room: bedroom, node_type: object}, {id: light_bulb_10016, room:
bedroom, node_type: object}, {id: plate_10017, room: bedroom, node_type: object}, {id: pencil _box_10018, room: living room, node_type: object}, {id: pencil_box_ 10020, room: living room, node_type:
object}, {id: pencil_box_10021, room: living room, node_type: object}, {id: document_10024, room: living room, node_type: object}, {location: living room, id: robot}], links: [bathroom-1 -
shower_62, bathroom-3 - sink_67, bedroom - pot_plant_19, living room - coffee_table_28, living room - picture_72, bedroom - swivel_chair_13, bathroom-2 - soap_10046, bedroom - table_1017, living
room - mirror_71, room-1 - bathroom-1, living room - grandfather_clock_70, room-4 - bathroom-3, living room - picture_73, bathroom-2 - room-5, bedroom - alarm_10037, bedroom - floor_lamp_10008,
bathroom-2 - towel rack_65, bedroom - straight_chair_9, living room - picture_76, bedroom - room-@, bedroom - carpet 56, living room - carpet_74, bedroom - sofa_57, bedroom - table_ lamp_14,
bathroom-3 - mirror_68, bedroom - table_1015, bedroom - window_117, living room - pencil_box_10018, bedroom - bottom_cabinet_55, living room - robot, bedroom - pencil_box_10014, living room -
window_127, bedroom - window_116, bedroom - console_table_10, living room - sofa_24, living room - towel_rack_64, bedroom - window_118, bathroom-1 - powder_bottle_10043, room-1 - other room,
bedroom - light_bulb_16016, bedroom - console_table_20, bathroom-3 - toilet_66, bedroom - plate_10017, bedroom - table_1011, living room - picture_58, bedroom - notebook_10041, bedroom - bed_49,
bedroom - table_ lamp_18, living room - table 1621, bedroom - bottom_cabinet_ 54, living room - bottom_cabinet 26, bathroom-1 - picture_63, bedroom - table 1016, living room - armchair_23, living
room - document_10024, bedroom - window_115, bathroom-1 - toilet_6@, bathroom-1 - sink_59, living room - room-4, bedroom - window_123, living room - pencil_box_10021, living room -
console_table_25, bedroom - window_125, bathroom-1 - mirror_61, living room - pencil _box_10020, living room - window_121, bathroom-3 - paper_towel 10045, bedroom - alarm_10007, living room -
room-1, bedroom - room-2, living room - floor_lamp_27, bathroom-1 - window_122, bedroom - pen_1004@, room-© - bathroom-2, bedroom - table_lamp_12, bedroom - room-3, bathroom-3 - picture_69]},\
History: go_to_and_open(living room, room-1) - invalid argument, go_to_and_open(living room, room-2) - invalid argument, go_to_and_open(living room, room-3) - invalid argument,
go_to_and_open(living room, room-@) - invalid argument, go_to_and_open(other room-2, door) - invalid argument, go_to_and_open(bathroom-2, door) - invalid argument, explore(bedroom) - success,
explore(living room) - success, explore(living room) - success.

What is the best next action to complete the task as efficiently as possible? I you don't think that the object can be found in a known room, prioritize opening doors over exploring a room.
Remember :

1. Respond with a function call

2. You can only use the objects and rooms that you have already found. Object names have to match the description exactly.

3. You can only explore rooms that are listed as having unexplored space
4
5

. If you have found the object you are looking for, directly call done(). You do not need to navigate to it or interact with it.
. If some actions failed repeatedly, they may not be possible.

assistant: Analysis:

The oven is typically located in the kitchen, which is not explicitly listed in the scene graph. However, there are rooms that have not been explored yet, as indicated by the
presence of frontier points. Since the oven has not been found in the known rooms and the priority is to open doors over exploring rooms when the object cannot be found in a
known room, the next step should be to open any unopened doors that may lead to new rooms, potentially the kitchen.

The scene graph does not list any closed doors in the known rooms, but there are frontier points in the living room and bathroom-3 that suggest there are areas leading out or not
fully explored. Since the living room has already been explored multiple times without finding an oven, and the bathroom is an unlikely location for an oven, the next logical
step is to explore the frontier point in bathroom-3, which may lead to a new room.

Reasoning:

Exploring the frontier point in bathroom-3 could reveal a new room, possibly the kitchen where the oven is likely to be found. Since the oven has not been located in any of the
currently known

rooms and there are no closed doors to open, exploring the frontier point is the next best action to potentially discover the kitchen.\n

Command :
" “explore(bathroom-3) "

Fig. S.3. Prompt of the Unstructured-LLM baseline. It receives the same instructions and notes as our approach, but instead of a structured knowledge
encoding, it receives a pure JSON encoding of the scene-graph.

TABLE S.2
SCENE GRAPH EVALUATION

find that the much less structured and longer prompt leads
to more frequent invalid actions or hallucinations (cf. Tab. I),
such as trying to open objects that do not exist or are already

. e Envi t Open-Set | Purity GII  Room Cat A
opened. If stuck for repeated steps, this can result in failed fvironmen pen-Set | Purity GE  Room Category Accuracy
episodes. A second source of failures are wrong terminations, ~ 19ibson x 0.609 0276

Real-World v - 0.901

in which the LLM calls done() while it has not found the
correct object of interest.

accurate dynamically created scene graphs. Most importantly,
the obtained representation varies a lot throughout the course
of the exploration of the environment. In the following, all
reported numbers denote the average across all high-level steps
until an episode is finished to reflect this.

S.7. ADDITIONAL RESULTS
A. Scene Graph Accuracy

Our proposed room separation scheme relies on separating

Voronoi graphs at door positions. Thus, it is prone to under-
segmentation whenever faced with open room layouts or, e.g.,
missing doors to hallways. Downstream decision-making is
performed at every high-level policy step, which requires

Tab. S.2 provides additional insights into the accuracy of
the utilized scene graph representations. First, we evaluate
the purity of the separated Voronoi graph components by
evaluating the underlying ground-truth room label per node in



(env-0.3. 000 cmmtngrem. s dor sccen: e )

[ r— )]

2 - l

7
Dot Cainets and (o3 CABINELS that Nave Nt Deen CApIGrEd yet.
o 5 St Unexpices s

ince the Mog¢ and some cabinets have sready deen coered without faGng 8 wire botie
o etner oo
et Coul contain the R, It 1 more efRclent 15 exaust o optins In the curent

)

Fig. S.4. Examples of the reasoning of Voronoi graph and identified frontiers (left), scene graph (middle), MoMa-LLM (left). The green environment feedback
is not provided to the LLM. Black-white: agent trace, red crosses: closed doors, red rectangles: undiscovered target objects, green stars: next selected navigation
/ interaction points. The bottom figure illustrates a subpotimal room clustering, which results in a very large room. We find the model to be robust against

these clusterings.

the simulation. The purity measures to which degree clusters
only contain a single class. In our case, each separated Voronoi
graph (representing a room) takes the role of a cluster. Next,
we quantify how many ground-truth rooms are covered per the
predicted Voronoi graph. Thus, the graph purity describes the
degree of room under-segmentation apparent in the scene and
thus measures how well door-wise Voronoi graph separation
performs.

We observe an average purity throughout the exploration of
0.609 over 10 episodes across each of the iGibson test scenes.
Nonetheless, open room layouts still pose a considerable hurdle,
which would require additional perception inputs. More general
approaches to segment rooms in the iGibson environments have
shown inferior results. This is due to a large number of long
and narrow corridors, which are hard to segment using classical
morphological segmentation algorithms. Nonetheless, we found
our policy to be robust to under-segmented rooms even though
objects from multiple rooms were, e.g., considered part of a
single room. By relying on the camera pose from which an
object is observed we reduce the number of false object-room
assignments (through walls) to a minimum. We show multiple
resulting Voronoi graphs in Fig. S.4. In addition to the graph
purity, we also evaluate the semantic room categories predicted

by GPT-3.5. Even though MoMa-LLM uses open-set room
categories as described in the main manuscript, we evaluate
the performance on closed-set room category prediction to
allow comparison. To do so, we provided GPT-3.5 with all
room categories provided in the iGibson dataset in order to
pick the most suitable given the objects assigned to each
particular Voronoi component representing a room. Similar
to the purity evaluation, we report numbers that are averaged
over 10 episodes per scene as well as across all high-level
policy steps per episode. We compare the predicted room
category of each Voronoi node with the underlying ground-
truth room layout maps. Following this, we arrive at an average
predicted room category accuracy of 0.276. The number is
further affected by open room layouts as mentioned above.

To provide a comparison, we also evaluated the predicted
room categories in an open-set manner on the real-world map
shown in Fig. S.1. Across the 10 trials executed in the real world
as given in Tab. II, we follow the same evaluation protocol
and obtain an average room category accuracy of 90.1% as
detailed in Tab. S.2. Human-level assessment allows evaluating
errors such as entryway instead of hallway positively, which
drastically increases the metrics. Nonetheless, the real-world
map is less complex in terms of topology and object distribution



TABLE S.3
RESULTS ON THE FUZZY SEARCH TASKS IN THE REAL WORLD.

Task | Success

Reasoning

I am hungry. Find me something for breakfast. v
Find me something to wash my hands.

I feel sleepy. Find me something to wake up.
Find things to set the kitchen table.

Find me the book in the living room.

Found cereals, toast, coffee. Then opened fridge to look for milk or eggs. Found milk in the

fridge and decided these are sufficient items.

Searched kitchen for a sink. When not finding one, searches for storage room or bathroom

until it finds the sink in the bathroom.

The teapot is associated with tea that contains caffeine and can help someone wake up.
Explored kitchen, opening cabinets. Found knife, glasses, plates. Continued to look for forks
or spoons. When not finding them, called done. (No forks or spoons existed).
Explored until finding living room, then opened cabinet looking for book, found it inside.

Pour me a glass of milk.

Turn on the oven.
What’s the time?

SS NS SN N

Finds milk in fridge, glass on table. Navigates between the two, assuming to transport the
last object. Then terminates, reasoning that it has found and navigated to both.
Finds the oven and calls done(): “Turning on oven is implied as completion of the task”.
Finds the clock and calls done(): ”The clock is the object that will provide the time”.

Notes: Top: fuzzy search queries. Bottom: infeasible task queries. Success in these tasks is evaluated by human judgment as a reasonable response. The

reasoning has been qualitatively paraphrased for brevity.

compared to the iGibson environments, which feature, e.g.,
rooms with no objects contained.

B. Reasoning

This section provides additional examples of the scene
encodings and the model’s behavior. Tab. S.3 lists the queries
for the fuzzy search task, together with a summary of the
model’s behavior and reasoning. As discussed in Sec. IV, we
find that the model is well capable of handling these more
complex tasks, finding relevant objects and correctly evaluating
the task completion.

Fig. S.4 shows additional examples of the scene representa-
tions and the model reasoning. It depicts the Voronoi graph and
frontiers to unexplored areas (left), the BEV-map together with
the constructed scene-graph (middle) and the input prompt and
answers of the LLM (right). Additional video material with
full prompt reasoning is provided on the project website.

REFERENCES

[1] N. Reimers and I. Gurevych, “Sentence-BERT: Sentence embeddings
using Siamese BERT-networks,” in Proc. of the Conference on Empirical
Methods in Natural Language Processing and the International Joint
Conference on Natural Language Processing (EMNLP-IJCNLP), Nov.
2019, pp. 3982-3992.

[2] M. Shridhar, J. Thomason, D. Gordon, Y. Bisk, W. Han, R. Mottaghi,
L. Zettlemoyer, and D. Fox, “Alfred: A benchmark for interpreting
grounded instructions for everyday tasks,” in Proc. of the IEEE Conf. on
Computer Vision and Pattern Recognition, 2020, pp. 10740-10 749.

[3] F. Schmalstieg, D. Honerkamp, T. Welschehold, and A. Valada, “Learning
hierarchical interactive multi-object search for mobile manipulation,”
IEEE Robotics and Automation Letters, 2023.

[4] D. Honerkamp, T. Welschehold, and A. Valada, “N2m?2: Learning
navigation for arbitrary mobile manipulation motions in unseen and
dynamic environments,” IEEE Transactions on Robotics, 2023.

[5] G. Chalvatzaki, A. Younes, D. Nandha, A. T. Le, L. F. Ribeiro, and
I. Gurevych, “Learning to reason over scene graphs: a case study of
finetuning gpt-2 into a robot language model for grounded task planning,”
Frontiers in Robotics and Al, vol. 10, 2023.



	Simulation Environment
	Task Generation
	Perception
	Execution

	Baselines
	Additional Results
	Scene Graph Accuracy
	Reasoning

	References

