
Language-Grounded Dynamic Scene Graphs for

Interactive Object Search with Mobile Manipulation

- Supplementary Material -

Daniel Honerkamp1∗, Martin Büchner1∗, Fabien Despinoy2, Tim Welschehold1, Abhinav Valada1

In this supplementary material, we provide additional details

on the approach and the experimental setup, including the

simulation and real-world environments, the subpolicies, and

the baselines. Moreover, we provide additional results from

the experiments. Further examples of real-world experiments

are demonstrated in the video material.

S.1. HIGH-LEVEL ACTION SPACE

We design an object-centric action space, which is tightly

intertwined with the different granularities of the scene repre-

sentation. It consists of the following high-level actions:

• navigate(room_name, object_name): Navigation to

an object in a room via an A∗ planner in the explored

BEV-map Bt, inflated by 0.1m. It first navigates to the

Voronoi node associated with the object, then to the most

central, free point on an arc around the object. This enables

robust navigation to objects in partially explored space

and ensures navigation to the correct room through the

Voronoi assignment detailed in Sec. III-A. Navigation is

considered successful if the agent reaches within 1.5m
of the object.

• go to and open(room_name, object_name): Navi-

gation to a specific object, then open it. For doors, continue

to navigate into the opened door frame.

• close(room_name, object_name): Equivalent to the

opening action.

• explore(room_name): Move to an unexplored frontier

within this room. Deemed successful if the agent reaches

within 0.5m of the frontier point.

• done(): Terminate the episode and evaluate if the target

object has been found.

Ambiguities of multiple instances of the specified class in

a room are resolved by selecting the closest instance. The

subpolicies then generate actions in the low-level action

space and return once they succeed or encounter a failure.

Throughout their execution, they continuously update the scene

representations.

∗These authors contributed equally.
1Department of Computer Science, University of Freiburg, Germany.
2Toyota Motor Europe (TME)
Project page: http://moma-llm.cs.uni-freiburg.de

S.2. SIMULATION ENVIRONMENT

A. Task Generation

We implement the task in the iGibson scenes [19], consisting

of 15 interactive apartments based on scans of real houses.

At the beginning of an episode, all doors are closed and the

agent is given a task description in natural language. The task

is deemed successful if the agent has observed an instance of

the target category and calls done().

We make the following modifications to the iGibson scenes:

• We close all exterior doors and filter them out of the scene

graph as they lead out to empty space.

• We scale the size of the Fetch robot by a factor of 0.85 as

otherwise it is too large to navigate a significant number

of areas.

• We remove six doors that block the robot’s pathway

when opening (door 52 in Pomaria 0 int, door 75 in

scene Beechwood 1 int and door 106 in Ihlen 1 int,

door 90 in Merom 1 int, door 138 and door 139 in

Wainscott 0 int).

• We rename four object categories, with misleading asset

names, such as renaming breakfast table (which can be

found e.g. in bedrooms) to table.

The iGibson scenes contain realistic furniture and room

distributions, but few other objects are placed in relation to

this. We provide a method to enrich the scenes with realistic

object placements, both within receptacles and on top of

furniture, by extending and matching previously introduced

prior distributions P prior over room and object relations [20].

Given a valid scene instantiation, we then draw a target category

g ∼ U(scene) from all categories in the scene. This results

in the procedural generation of a wide range of tasks over 84

possible target classes.

We first align the rooms and objects with the prior dis-

tribution. We manually match room labels and use cosine

similarities of object name embeddings to match objects. We

embed the object names from the scene and from the prior

distribution with SBERT [1]. We then define a match as a

cosine similarity ≤ 0.7 and being in the top 50 matched

categories. As P prior only contains two ”inside” relationships,

we enrich these relationships by assuming that all objects

that can be found on top of an object and that fit in size,

can also be found inside it and vice-versa. This results in

an extended distribution P prior,ext. We then procedurally

enrich each episode by drawing additional objects from the set

of admissible room-object-relations for all existing furniture

http://moma-llm.cs.uni-freiburg.de

in the iGibson scenes. We keep drawing until the physical

placement of a relation succeeds or the distribution is exhausted.

Given a valid scene instantiation, we draw a target category

g ∼ U(scene) from all categories in the scene. We reject

targets as infeasible if no target instance is reachable from the

agent’s random start position. We also reject all episodes in

which the target object is immediately visible. We terminate an

episode early if the agent reaches 50 high-level steps, indicating

being stuck.

B. Perception

The robot in simulation is equipped with a differential drive

and an RGB-D camera with a resolution of 256 × 256 pixels

and a vertical field of view of 120◦. As the focus of this work

is on decision making, we abstract from imperfect perception

and assume access to ground truth instances and semantic

segmentation from the simulator. For a realistic detection range,

we restrict all sensors (depth, semantics) to a maximum range

of 5m and set a threshold of 50 segmented pixels before an

object is considered detected - except for object with a volume

below 0.01m3. We furthermore assume accurate detection of

whether an articulated object is open or closed and assume

that objects within receptacles are detected after opening the

object. We construct all maps at a resolution of 0.075m and

remap the floor and carpet categories as free space.

C. Execution

All methods start by fully turning around in-place to initialize

the scene graph.

Low-level action space: The subpolicies act in a low-level

action space consisting of the following actions:

• move forward by 7.5 cm
• turn-left by up to 35 rad
• turn-right by up to 35 rad
• open articulated object

• close articulated object

• done: end the episode and evaluate the success

Navigation: To reduce run-time, navigation actions are executed

without physical simulation, but rather by directly setting the

state of the robot. If no complete path in free space exists, the

navigation policy will consider unexplored areas as traversable

and replan with newly revealed free space. It will return ’failed’

if it cannot find a path or reaches too many replanning attempts.

Object interactions: We follow previous work [2], [9] and

execute articulated object manipulations as ”magic actions” in

simulation. These actions directly set the joint values of the

object to their minimum or maximum. In the calculation of

the efficiency curves and AUC-E, we weigh these actions by

a time factor of 30 to make their time cost comparable to an

execution duration of roughly 30 seconds.

The go to and open() action is implemented as follows:

1) Navigate to the Voronoi node closest to the object

Fig. S.1. Map of the real-world environment. Different intensities represent
different object instances in the environment. Room annotations are for
illustration and not used by our model. Object labels denote approximate
object positions.

2) Navigate to the most central free space in front of the

object and turn toward it

3) Trigger the magic open action

S.3. REAL-WORLD ENVIRONMENT

The HSR robot is equipped with an RGB-D camera and

a 270◦ LiDAR. We replace the navigation policies with the

ROS Nav Stack and the manipulation actions with the N2M2

manipulation policies [21]. We rely on the same assumptions

as in simulation and assume access to localization, accurate

semantic perception, and handle detection. We implement

this by pre-recording a map with the robot’s LiDAR and

annotating it with semantic labels. At test time, we create an

occupancy map from the robot’s RGBD camera and reveal the

corresponding part of the semantic map to the agent. The pre-

recorded map is also used for localization. To detect handles,

we use AR-Markers placed on each object.

A. Map

Fig. S.1 shows the map of the real-world environment.

Different object instances are indicated in different intensities.

The environment covers five different room types and 54

different object categories, including furniture such as tables,

chairs, and a coat hanger, as well as small and less common

objects such as soap, gamepad, or scotch tape. We set start

positions for the robot in the kitchen, living room, and hallway.

We ensure the same initial positions and targets for all evaluated

methods.

B. Execution

Navigation: We use the default manufacturer versions of the

ROS NavStack as developed by Toyota for navigation. It uses

the robot’s LiDAR and depth cameras for dynamic obstacle

detection and navigates in a map inflated by 0.25m.

Mobile manipulation: Articulated object interactions are exe-

cuted with pretrained N2M2 manipulation policies [21]. The

policy receives the handle pose, detected through AR-Markers,

and uses a local occupancy map constructed from the LiDAR

of the robot for obstacle avoidance. For each articulated object,

we collect a single demonstration of opening the object. This

demonstration consists of a set of poses of the robot’s wrist link

during the opening motion. These poses are then interpolated

with splines to generate an end-effector motion. This agent’s

aim is to follow this end-effector motion to complete the object

interaction. We evaluate whether the motion was successful

based on whether the marker on the object changed its position

after the execution of the subpolicy. For doors, we do not lock

the spring-loaded door latch, as the robot is not strong enough

to press the handle down.

The only exception to this is the door between the kitchen

and living room. We found that the robot was unable to

localize itself during the opening motion, as the moving door

occupies the overwhelming majority of the robot’s LiDAR

measurements. As a result, it was not possible to follow the

opening demonstration whenever the marker moved out of the

robot’s view. Instead, we use a simpler pushing motion from

the inside and abstain from opening it in the other direction.

S.4. SCENE GRAPH CONSTRUCTION

In the following, we provide additional insights into the

construction of the navigational Voronoi graph:

• In order to increase robustness, we first inflate Bt using

an Euclidean signed distance field (ESDF) formulation

before computing the Voronoi graph. After inflation, we

overwrite free space coordinates as given in Ft as zero.

• After obtaining V , we exclude all nodes that lie in the

immediate vicinity of obstacles or do not reside within

the occupied map boundaries.

• Throughout our experiments, we found that extracting

the largest connected component of the graph provides

the robot-centric Voronoi graph while other components

commonly lie outside the explored area. Lastly, we sparsify

GV to obtain fewer navigational nodes.

• The object-to-room assignment relies on the following

optimization objective:

n
R = argmin

no∈GR
V

path(no, nvp) + d(o, no)
λ + d(vp, nvp), (1)

where no, nvp ∈ GR
V

are the closest Voronoi nodes to

the object o as well as the camera viewpoint position vp,

respectively. The path(,̇)̇ denotes a shortest-path on GR
V

.

In order to provide more insights regarding the open-set

room classification scheme used, we show the utilized prompt

in Fig. S.2.

assistant: The first room seems to be a living room, and the
second room appears to be a bedroom.
Output Response Format:
- room-0: living room
- room-1: bedroom

system: You are a helpful assistant, visiting a new apartment.

user: You observe 2 rooms, they contain the following objects:
- room-0 contains [4 armchairs, closed bottom-cabinet, carpet,
 closed door, picture, 4 shelves, 2 tables, table-lamp,
 opened window, closed window, opened door].
- room-1 contains [basket, bed, closed bottom-cabinet, document,
 2 closed doors, 2 shelves, closed window, opened door].
Please classify the rooms. If you are unsure, classify them as other room.
Output Response Format: A list with bullet points of the form
- room-X: room type

Fig. S.2. Room Classification Prompt: based on the objects and room clusters
of the scene graph, an LLM performs open-vocabulary classification.

TABLE S.1
MAPPING OF DISTANCES TO NATURAL LANGUAGE.

≤ Distance Encoding

3.0 very close
10.0 near
20.0 far
∞ distant

S.5. LANGUAGE ENCODING

GPT Versions: Unless otherwise noted, we use gpt-4-1106-

preview for the high-level reasoning and gpt-3.5-turbo-1106

for the simpler room classification task [17].

Distances: We encode distance to natural language based on a

discrete mapping, following the principle of [15]. The mapping

is reported in Tab. S.1.

History Re-alignment: As the scene graph changes dynamically,

the previous room- and object-centric function calls may no

longer match the current scene. Instead, we keep track of

interaction positions, and then re-align the previous actions

by matching the positions to their closest Voronoi nodes and

associated room labels. We then provide the LLM with a list

of the re-aligned function call.

S.6. BASELINES

In this section, we provide additional details regarding the

baselines:

ESC-Interactable: Co-occurrences are based on similarities

of a finetuned Deberta-v3 language model [22], following the

authors’ instructions. To isolate the impact of the decision

making, we use the same scene graph and low-level policies

as for our method.

We adapt HIMOS [9] by giving it the same subpolicies as

our approach and scale it to the much larger number of objects

in our scenes by restricting the instance navigation to target

and articulated objects.

The Unstructured LLM baseline receives the same instruc-

tions ”remember” notes as our approach. The full JSON-

formatted prompt of this baseline is depicted in Fig. S.3. We

Fig. S.3. Prompt of the Unstructured-LLM baseline. It receives the same instructions and notes as our approach, but instead of a structured knowledge
encoding, it receives a pure JSON encoding of the scene-graph.

find that the much less structured and longer prompt leads

to more frequent invalid actions or hallucinations (cf. Tab. I),

such as trying to open objects that do not exist or are already

opened. If stuck for repeated steps, this can result in failed

episodes. A second source of failures are wrong terminations,

in which the LLM calls done() while it has not found the

correct object of interest.

S.7. ADDITIONAL RESULTS

A. Scene Graph Accuracy

Our proposed room separation scheme relies on separating

Voronoi graphs at door positions. Thus, it is prone to under-

segmentation whenever faced with open room layouts or, e.g.,

missing doors to hallways. Downstream decision-making is

performed at every high-level policy step, which requires

TABLE S.2
SCENE GRAPH EVALUATION

Environment Open-Set Purity GR
V

Room Category Accuracy

iGibson × 0.609 0.276
Real-World ✓ - 0.901

accurate dynamically created scene graphs. Most importantly,

the obtained representation varies a lot throughout the course

of the exploration of the environment. In the following, all

reported numbers denote the average across all high-level steps

until an episode is finished to reflect this.

Tab. S.2 provides additional insights into the accuracy of

the utilized scene graph representations. First, we evaluate

the purity of the separated Voronoi graph components by

evaluating the underlying ground-truth room label per node in

Fig. S.4. Examples of the reasoning of Voronoi graph and identified frontiers (left), scene graph (middle), MoMa-LLM (left). The green environment feedback
is not provided to the LLM. Black-white: agent trace, red crosses: closed doors, red rectangles: undiscovered target objects, green stars: next selected navigation
/ interaction points. The bottom figure illustrates a subpotimal room clustering, which results in a very large room. We find the model to be robust against
these clusterings.

the simulation. The purity measures to which degree clusters

only contain a single class. In our case, each separated Voronoi

graph (representing a room) takes the role of a cluster. Next,

we quantify how many ground-truth rooms are covered per the

predicted Voronoi graph. Thus, the graph purity describes the

degree of room under-segmentation apparent in the scene and

thus measures how well door-wise Voronoi graph separation

performs.

We observe an average purity throughout the exploration of

0.609 over 10 episodes across each of the iGibson test scenes.

Nonetheless, open room layouts still pose a considerable hurdle,

which would require additional perception inputs. More general

approaches to segment rooms in the iGibson environments have

shown inferior results. This is due to a large number of long

and narrow corridors, which are hard to segment using classical

morphological segmentation algorithms. Nonetheless, we found

our policy to be robust to under-segmented rooms even though

objects from multiple rooms were, e.g., considered part of a

single room. By relying on the camera pose from which an

object is observed we reduce the number of false object-room

assignments (through walls) to a minimum. We show multiple

resulting Voronoi graphs in Fig. S.4. In addition to the graph

purity, we also evaluate the semantic room categories predicted

by GPT-3.5. Even though MoMa-LLM uses open-set room

categories as described in the main manuscript, we evaluate

the performance on closed-set room category prediction to

allow comparison. To do so, we provided GPT-3.5 with all

room categories provided in the iGibson dataset in order to

pick the most suitable given the objects assigned to each

particular Voronoi component representing a room. Similar

to the purity evaluation, we report numbers that are averaged

over 10 episodes per scene as well as across all high-level

policy steps per episode. We compare the predicted room

category of each Voronoi node with the underlying ground-

truth room layout maps. Following this, we arrive at an average

predicted room category accuracy of 0.276. The number is

further affected by open room layouts as mentioned above.

To provide a comparison, we also evaluated the predicted

room categories in an open-set manner on the real-world map

shown in Fig. S.1. Across the 10 trials executed in the real world

as given in Tab. II, we follow the same evaluation protocol

and obtain an average room category accuracy of 90.1% as

detailed in Tab. S.2. Human-level assessment allows evaluating

errors such as entryway instead of hallway positively, which

drastically increases the metrics. Nonetheless, the real-world

map is less complex in terms of topology and object distribution

TABLE S.3
RESULTS ON THE FUZZY SEARCH TASKS IN THE REAL WORLD.

Task Success Reasoning

I am hungry. Find me something for breakfast. ✓ Found cereals, toast, coffee. Then opened fridge to look for milk or eggs. Found milk in the
fridge and decided these are sufficient items.

Find me something to wash my hands. ✓ Searched kitchen for a sink. When not finding one, searches for storage room or bathroom
until it finds the sink in the bathroom.

I feel sleepy. Find me something to wake up. ✓ The teapot is associated with tea that contains caffeine and can help someone wake up.
Find things to set the kitchen table. ✓ Explored kitchen, opening cabinets. Found knife, glasses, plates. Continued to look for forks

or spoons. When not finding them, called done. (No forks or spoons existed).
Find me the book in the living room. ✓ Explored until finding living room, then opened cabinet looking for book, found it inside.

Pour me a glass of milk. ✓ Finds milk in fridge, glass on table. Navigates between the two, assuming to transport the
last object. Then terminates, reasoning that it has found and navigated to both.

Turn on the oven. ✓ Finds the oven and calls done(): ”Turning on oven is implied as completion of the task”.
What’s the time? ✓ Finds the clock and calls done(): ”The clock is the object that will provide the time”.

Notes: Top: fuzzy search queries. Bottom: infeasible task queries. Success in these tasks is evaluated by human judgment as a reasonable response. The
reasoning has been qualitatively paraphrased for brevity.

compared to the iGibson environments, which feature, e.g.,

rooms with no objects contained.

B. Reasoning

This section provides additional examples of the scene

encodings and the model’s behavior. Tab. S.3 lists the queries

for the fuzzy search task, together with a summary of the

model’s behavior and reasoning. As discussed in Sec. IV, we

find that the model is well capable of handling these more

complex tasks, finding relevant objects and correctly evaluating

the task completion.

Fig. S.4 shows additional examples of the scene representa-

tions and the model reasoning. It depicts the Voronoi graph and

frontiers to unexplored areas (left), the BEV-map together with

the constructed scene-graph (middle) and the input prompt and

answers of the LLM (right). Additional video material with

full prompt reasoning is provided on the project website.

REFERENCES

[1] N. Reimers and I. Gurevych, “Sentence-BERT: Sentence embeddings
using Siamese BERT-networks,” in Proc. of the Conference on Empirical

Methods in Natural Language Processing and the International Joint

Conference on Natural Language Processing (EMNLP-IJCNLP), Nov.
2019, pp. 3982–3992.

[2] M. Shridhar, J. Thomason, D. Gordon, Y. Bisk, W. Han, R. Mottaghi,
L. Zettlemoyer, and D. Fox, “Alfred: A benchmark for interpreting
grounded instructions for everyday tasks,” in Proc. of the IEEE Conf. on

Computer Vision and Pattern Recognition, 2020, pp. 10 740–10 749.

[3] F. Schmalstieg, D. Honerkamp, T. Welschehold, and A. Valada, “Learning
hierarchical interactive multi-object search for mobile manipulation,”
IEEE Robotics and Automation Letters, 2023.

[4] D. Honerkamp, T. Welschehold, and A. Valada, “N2m2: Learning
navigation for arbitrary mobile manipulation motions in unseen and
dynamic environments,” IEEE Transactions on Robotics, 2023.

[5] G. Chalvatzaki, A. Younes, D. Nandha, A. T. Le, L. F. Ribeiro, and
I. Gurevych, “Learning to reason over scene graphs: a case study of
finetuning gpt-2 into a robot language model for grounded task planning,”
Frontiers in Robotics and AI, vol. 10, 2023.

	Simulation Environment
	Task Generation
	Perception
	Execution

	Baselines
	Additional Results
	Scene Graph Accuracy
	Reasoning

	References

