
Published as a conference paper at ICLR 2024

THIN-SHELL OBJECT MANIPULATIONS WITH DIFFER-
ENTIABLE PHYSICS SIMULATIONS

Yian Wang1∗ Juntian Zheng2∗ Zhehuan Chen3 Zhou Xian4

Gu Zhang5 Chao Liu6 Chuang Gan1,7 †

1Umass Amherst 2Tsinghua University 3Peking University 4CMU
5SJTU 6MIT 7MIT-IBM

ABSTRACT

In this work, we aim to teach robots to manipulate various thin-shell materi-
als. Prior works studying thin-shell object manipulation mostly rely on heuris-
tic policies or learn policies from real-world video demonstrations, and only fo-
cus on limited material types and tasks (e.g., cloth unfolding). However, these
approaches face significant challenges when extended to a wider variety of thin-
shell materials and a diverse range of tasks. On the other hand, while virtual
simulations are shown to be effective in diverse robot skill learning and evalua-
tion, prior thin-shell simulation environments only support a subset of thin-shell
materials, which also limits their supported range of tasks. To fill in this gap,
we introduce ThinShellLab - a fully differentiable simulation platform tailored for
robotic interactions with diverse thin-shell materials possessing varying material
properties, enabling flexible thin-shell manipulation skill learning and evaluation.
Building on top of our developed simulation engine, we design a diverse set of
manipulation tasks centered around different thin-shell objects. Our experiments
suggest that manipulating thin-shell objects presents several unique challenges:
1) thin-shell manipulation relies heavily on frictional forces due to the objects’
co-dimensional nature, 2) the materials being manipulated are highly sensitive to
minimal variations in interaction actions, and 3) the constant and frequent alter-
ation in contact pairs makes trajectory optimization methods susceptible to local
optima, and neither standard reinforcement learning algorithms nor trajectory op-
timization methods (either gradient-based or gradient-free) are able to solve the
tasks alone. To overcome these challenges, we present an optimization scheme
that couples sampling-based trajectory optimization and gradient-based optimiza-
tion, boosting both learning efficiency and converged performance across various
proposed tasks. In addition, the differentiable nature of our platform facilitates a
smooth sim-to-real transition. By tuning simulation parameters with a minimal
set of real-world data, we demonstrate successful deployment of the learned skills
to real-robot settings. Video demonstration and more information can be found on
the project website1.

1 INTRODUCTION

Manipulating thin-shell materials is complicated due to a diverse range of sophisticated activities
involved in the manipulation process. For example, to lift an object using a sheet of paper, we
would instinctively create a slight bend or curve in the paper before initiating the lift (Figure 1
(a)). Human beings intuitively learn such thin-shell manipulation skills, such as folding a paper
to make a crease, drawing out a piece of sheet under a bottle, and even complicated card tricks.
However, existing robotic systems still struggle in handling these thin-shell objects as flexibly as
humans. Compared with manipulating rigid bodies or volumetric materials, manipulating thin-shell
materials poses several unique challenges. First, the physical forms of such materials are difficult to
handle. For example, picking up a flat sheet is intrinsically difficult due to its close-to-zero thickness,
preventing any effective grasping from the top. A more effective approach is to use friction force to

∗Equal contribution
†Corresponding author
1https://vis-www.cs.umass.edu/ThinShellLab/

1

https://vis-www.cs.umass.edu/ThinShellLab/

Published as a conference paper at ICLR 2024

(a) Lifting a block (b) Picking up paper (c) sim-to-real (d) real experiment

Figure 1: It’s common for us to interact with thin-shell materials, such as bending a paper to lift a
block (a) or picking up a piece of paper (b). Aiming to boost versatile robotic skill acquiring for
diverse thin-shell materials, we propose ThinShellLab, a fully differentiable simulation platform to-
gether with a set of benchmark tasks ((a) and (b) bottom). Moreover, to bring simulation in line with
the real-world, we adjust physical properties by utilizing the gradient and real-world observations
(c). After that, we successfully deploy our policy learned from simulation to the real world (d).

bend a curve of the sheet before grasping it (Figure 1 (b)). Secondly, thin-shell materials are highly
sensitive to even minimal variations in actions or contact points. For instance, in the lifting task
(Figure 1 (a)), even millimetric movements can lead to drastically different curvatures in the paper.
Furthermore, owing to the high complexity of rich contacts, gradient-based optimization methods,
which have been shown to be effective and efficient in solving a wide range of deformable object
manipulation tasks (Huang et al., 2021; Xian et al., 2023), suffers severely from the non-smooth
optimization landscape and local optima in thin-shell manipulations.

Many prior works have investigated thin-shell manipulation tasks in real-world. Ha & Song (2021)
and Xu et al. (2022b) design action primitives specifically for cloth unfolding. Zhao et al. (2023)
trains robots in real-world to learn paper flipping skills. Chi et al. (2022) studies goal conditioned
dynamics tasks including cloth placement and rope whipping. Namiki & Yokosawa (2015) studies
paper folding with motion primitives. However, all those works are designed for solving specific
tasks and are hard to scale up. Furthermore, another group of previous works build benchmarks
in simulation environment to boost robotic skill learning for thin-shell materials (Lin et al., 2020;
Chen et al., 2023), but they abstract away the physical contact behaviors between manipulators and
objects during interacting, and ignore the bending stiffness of thin-shell materials, making them
over-simplified for dexterous manipulation tasks. Some previous works also build differentiable
simulators for thin-shell materials (Qiao et al., 2020; 2021; Li et al., 2021; Gan et al., 2021; Li et al.,
2022), but they don’t include end-effectors to manipulate thin-shells nor include benchmark tasks for
thin-shell object manipulation. Finally, most of these simulation works consider thin-shell materials
as cloths, which is only a subset of thin-shell materials, and neglect materials with strong bending
stiffness and varying bending plasticity like papers, narrowing the scope of tasks they perform.

In this work, aiming to build a comprehensive benchmark for thin-shell manipulation skill acquiring,
we propose ThinShellLab, a fully differentiable simulation platform for developing robotic learning
algorithms with thin-shell manipulation tasks. It provides scenarios with various types of thin-shell
materials with or without bending plasticity and includes the coupling among thin-shell and volu-
metric materials. To build such an environment, we simulate the thin-shell materials and volumetric
materials following (Grinspun et al., 2003; Tamstorf & Grinspun, 2013), model the bending plastic-
ity of creases by performing a plastic deformation on a crease when it exceeds the preset tolerance
angle, implement frictional contact following (Li et al., 2020), and calculate the analytical gradient
through implicit time integration scheme. To make the simulator more suitable for robot learning
settings, we implement penalty-based contact to avoid time-consuming continuous collision detec-
tion and to make the gradient more smooth. To enable direct positional control of end-effectors, we
apply Stable Neo-Hookean (Smith et al., 2018a) that is robust to inversion. Our engine is developed
using Taichi (Hu et al., 2019), which supports massive parallel computation on GPUs or CPUs.

With the differentiable simulator, we evaluate gradient-based planning methods, sampling-based
trajectory optimization methods, and state-of-the-art reinforcement learning algorithms in our ma-
nipulation task settings like block lifting (Figure 1 (a)). As also pointed out by many previous works,
in our experiments, we found that reinforcement learning algorithms struggle to solve most of our
tasks due to sparse rewards and high dimensions. While gradient-based methods are shown to be

2

Published as a conference paper at ICLR 2024

effective in previous works (Li et al., 2023; Xian et al., 2023; Huang et al., 2021; Chen et al., 2023),
we find it easy to stuck in local optima when working on such thin-shell manipulation due to the
constant changes of contact pair, which results in different computational graph for gradient and
highly non-smooth optimization landscape. To address this challenge, we propose to combine the
sampling-based method and gradient-based trajectory optimization. Specifically, we use the sample-
based method to search an overall policy to offer initial contact points and avoid local minima, and
then apply the gradient to do refinement upon it, which would solve most of the tasks.

Besides the utilities in policy learning, we also provide inverse design tasks to find suitable material
parameters to maximize certain goal functions, given fixed action trajectories. Moreover, we employ
our gradients to address the sim-to-real gap by creating a simulator counterpart to the real world and
fine-tuning our system parameters based on real-world observations, as depicted in Figure 1 (c).
Following this process, the policy trained in our simulation can be deployed in the real world with
greater ease and a reduced simulation-to-real gap (Figure 1 (d)).

We summarize our main contribution as follows:

• We introduce ThinShellLab, a comprehensive benchmark for robotic learning in thin-shell material
manipulation. This benchmark is designed to facilitate the study of complex manipulation skills
across a diverse array of thin-shell materials. The benchmark provides a diverse collection of
manipulation tasks and a standardized interface for RL and trajectory optimization algorithms.

• At the core of ThinShellLab, we develop a fully differentiable simulation engine supporting vol-
umetric and thin-shell deformable objects and coupling between them. To the best of our knowl-
edge, it is the first simulation environment capable of conducting gradient-based optimization on
thin-shell object manipulation tasks.

• We benchmark the performance of gradient-based, sampling-based, and hybrid trajectory opti-
mization methods together with the state-of-the-art RL algorithms on our task collection, and show
a comprehensive analysis of the challenges and behaviors of each method in different scenarios.

• Besides the manipulation tasks, we demonstrate how our differentiable simulator can help solving
inverse design problem, and bridge the simulation scenes and the real-world robotics. We show the
the simulator’s capability of reconstructing real-world physics scene parameters via gradient, and
deploying learned skills to real robots.

2 RELATED WORK

Differentiable Simulation. The graphics and robotics community has been increasingly focusing
on differentiable simulation in recent years (Todorov et al., 2012; Coumans & Bai, 2016–2021;
Xu et al., 2022a). Researchers have developed differentiable simulation engines for deformable
objects (Chen et al., 2023; Du et al., 2021; Li et al., 2023; Huang et al., 2021) and fluids (Xian
et al., 2023). There are in general two approaches of building differentiable simulation. The first
approach is to train neural networks predicting forward dynamics (Schenck & Fox, 2018; Li et al.,
2019; Ummenhofer et al., 2020; Han et al., 2022), which serves as a simulator and is naturally
differentiable through the networks. This class of methods often requires collecting a large amount
of data, and suffers from problems on generalizability and large sim-to-real gap. The second class
is to explicitly build a simulation system and integrate gradient calculation into the system, through
auto-diff for explicit time integration (Hu et al., 2020; Qiao et al., 2020; 2021), or by adjoint methods
or implicit function differentiation for implicit time integration (Du et al., 2021; Li et al., 2022).

Thin-Shell Object Manipulation. Robotic manipulation on thin-shell materials is also widely in-
vestigated (Chi et al., 2022). One popular direction is garment folding or unfolding (Ha & Song,
2021; Xu et al., 2022b; Wu et al., 2023). Most of these previous works are trained in simulators
in which the cloth is modeled as mass-spring systems that perform no bending stiffness (Lin et al.,
2020) or learned directly from real-world data. Another line of works investigates robotic manipu-
lation on paper, which is of greater bending stiffness compared to cloths. Zhao et al. (2023) learns
how to flip bookpages using a soft gripper from real-world data. Namiki & Yokosawa (2015) stud-
ies folding a sheet of paper in the real-world by extracting motion primitives. While those previous
works can indeed solve tasks in the real-world, they are designed for specific tasks and are hard to
generalize. Compared with these works, our work aims to build a comprehensive benchmark for
thin-shell object manipulation.

3

Published as a conference paper at ICLR 2024

Simulator Integration Diff Bending Bending Plasticity Coupling Skill Learning
TDW Explicit ✓ ✓

Softgym Explicit ✓
DAXBENCH Explicit ✓ ✓

DiffSim Implicit ✓ ✓ ✓
DiffCloth Implicit ✓ ✓

C-IPC Implicit ✓

Ours Implicit ✓ ✓ ✓ ✓ ✓

Table 1: Comparison with previous simulators. we compare our work with other simulators sup-
porting thin-shell materials. Here Diff indicates differentiability, Bending and Bending Plasticity
indicates modelling of bending energy and its plasticity behavior, and Coupling refers to the seam-
less integration of thin-shell material manipulation with other dynamic objects.

For previous works that are also building simulators and benchmark tasks for thin-shell manipulation
(Lin et al., 2020; Chen et al., 2023), they typically model thin-shell materials as cloths with no
bending-stiffness by mass-spring model. Additionally, they abstract away the frictional contact in
thin-shell material grasping, which could lead to a substantial sim-to-real gap in cases when direct
grasping fails. Hence, we aim to build a simulator that can model diverse thin-shell materials with
a wide range of bending-stiffness and bending plasticity, as well as frictional contact between thin-
shell materials and our end-effectors to support various scenarios for robotic skill learning.

3 SIMULATION ENGINES

At the core of ThinShellLab, we present a fully differentiable simulation engine, implemented using
Taichi programming language (Hu et al., 2019; 2020), which enables hardware acceleration on both
GPUs and CPUs. The engine models a variety of thin-shell and volumetric materials, along with
their interactions. In forward simulation, we use an implicit time integration scheme to simulate the
dynamics of the whole system and apply Newton’s method to solve the forward dynamics equation.
Table 3 shows a comparison between ThinShellLab and other related simulation engines supporting
thin-shell object modelling.

3.1 MATERIAL MODELLING

Following the traditional finite-element methods, ThinShellLab represents both volumetric and thin-
shell deformable objects by spatially discretizing the objects into tetrahedral or triangular elements.
At each timestep t, the internal interaction of deformable objects is modeled by potential energy
U(xt) for each type of material, where xt represents the nodal positions of discretized vertices.
We also calculate the derivatives ∂U/∂xt and ∂2U/(∂xt)2, which correspond to the internal force
and force differential required by the implicit Euler solver. For volumetric materials, we maintain
the deformation gradient Ft

e ∈ R3×3 relative to the rest configuration at each tetrahedral element
e and calculate the Stable Neo-Hookean (Smith et al., 2018b) energy Ue(Ft

e) induced by internal
elastic force. For thin-shell materials, we follow the Kirchhoff-Love shell theory to define their
potential energy as the sum of stretching energy Us(∆At

e) and bending energy Ub(∆θte), which are
defined on the stretching ratio ∆At

e ∈ R4 of each triangular element e’s area and edge lengths,
and relative bending angle ∆θte ∈ R on each edge e connecting two adjacent elements, related to
their rest configuration θ

t

e ∈ R. The energy and forces in thin-shell materials are modeled based
on prior work (Grinspun et al., 2003; Tamstorf & Grinspun, 2013). We further model the bending
plasticity by setting up a yield criterion κ and change the rest configuration for the angle on edge e
if ∥∆θte∥ > κ. More details of materials and forward simulation are shown in Appendix A.1.

3.2 FRICTIONAL CONTACT MODELLING

We model frictional contact behavior by potential energies defined on the nodal positions. Before
every time step t, we detect all potential collision pairs using fast spacial hashing and express the
signed distance dtk ∈ R and tangential relative movement ut

k ∈ R2 as functions of vertices in the
k-th pair. A negative dtk means penetration and therefore should be penalized. The contact potential

4

Published as a conference paper at ICLR 2024

energy is the sum of a repulsive penalty potential Ur(d
t
k) and a friction potential Uf (u

t
k):

Ur(d
t
k) =

kr

2
max(dtk − ϵr, 0)

2, Uf (u
t
k) = µkλkf0(ϵv, ∥ut

k∥).

The penalty potential Ur is a quadratic penalty function approximating the barrier d > ϵr, in which
ϵr models the thickness of the contact surface and kr served as a stiffness parameter. The friction
potential Uf is a smooth friction model from Incremental Potential Contact (IPC) (Li et al., 2020),
which unifies the sticking and slipping modes by a smooth approximation. Here µk is the friction
coefficient, λk is the strength of the repulsive force at the last timestep and f0 is the smoothing
kernel proposed by IPC, with a parameter ϵv of accuracy tolerance. Benefiting from the robustness
of the iterative implicit solver, we can use large kr and tiny ϵv to achieve a high accuracy, while
maintaining a high numerical stability. The implementation details of the contact model are further
explained in Appendix A.3.

3.3 GRADIENT BACK-PROPAGATION

To enable the use of gradient-based optimization methods for our benchmark tasks and parameter
optimization, we’ve integrated a backward gradient solver into our simulation engine, making it
differentiable. Our approach formulates forward simulations as optimization problems concerning
energies at each time step (refer to Appendix A.1). In this framework, gradient back-propagation
is treated as implicit function differentiation as outlined in DiffPD (Du et al., 2021). Within each
time step, gradients of a specific objective function from the subsequent system state are propagated
backward to the current step’s state and material parameters. After that, we gather the nodal position
gradients and convert it into gradients related to the manipulator trajectory. For more details of the
calculations, please refer to Appendix A.2.

3.4 CONSTRAINT SIMULATION

To retain the position of a vertex during forward simulation, we enforce the corresponding dimension
of the vector ∂U/∂xt and the matrix ∂2U/(∂xt)2 to be zero. This ensures a invariable solution for
the vertex. For simulating a movable rigid body, we move it before each timestep and then fix it in
place during the subsequent timesteps.

4 THINSHELLLAB BENCHMARK

Based on the proposed differentiable simulation engine, we present a robotic skill learning bench-
mark providing a diverse collection of thin-shell object manipulation tasks equipped with differen-
tiable reward function, and a standardized interface for skill learning algorithms. We illustrate the
proposed tasks in Figure 2.

4.1 BENCHMARKING INTERFACE

Task formulation In each manipulation task, the robot employs 6-DoF manipulators or 7-DoF paral-
lel grippers. These components mimic real-world vision-based tactile sensors (see Section 5.3). We
simplify the model by omitting the robot arm’s link structure, as arm movement can be derived from
end-effector trajectories using inverse kinematics methods. For policy learning, each manipulation
task is formalized as the standard finite-horizon Markov Decision Process (MDP) with state space
S, action space A, reward function R : S × A × S → R, and transition function τ : S × A → S
which is determined by forward simulation of the physics engine. We optimize the agent to de-
vise a policy π(a|s) that samples an action sequence maximizing the expected cumulative return
Eπ [

∑∞
t=0 γ

tR(st, at)]. Details of reward setting are listed in Appendix B.

State space As mentioned in Section 3.1, the deformation state of non-rigid objects is characterized
by the positions of discretized vertices. To denote relevant quantities, we define Nv as the total
number of vertices, Ne as the total number of bending edges, and Nm as the total degrees of freedom
(DoF) for all manipulators. The complete simulation state for the system is represented as S =
(x, ẋ, r,M), where x, ẋ ∈ RNv×3 denote the positions and velocities of non-fixed vertices, r ∈ RNe

represents the rest configurations, and M ∈ RNm signifies the pose configurations of manipulators.

5

Published as a conference paper at ICLR 2024

Folding Lifting

Forming

SlidingPick-Folding

Folding-L

Separating Following Card Bouncing

Folding-U

Initial

Optimized

Figure 2: This figure shows 7 manipulation tasks on the left side and 3 inverse design tasks on the
right side. We display the initial and the final position for our manipulation tasks and we show the
target transparently in Lifting and Forming. For Sliding, we show the final goal with transparency
and show the results before and after optimization on the right column. For Bouncing, we show
the final state before and after optimization in transparency. We display the behavior of Card in
transparent and draw an array representing the target moving direction of the card.

Observation To facilitate learning and control algorithms, we employ downsampling to reduce the
dimension of observation space. We select Nd points within the scene and stack their positions
and velocities, forming a vector of dimensions Nd × 6. We uniformly sample Ns points from each
sheet and Nv points from each volumetric object, and therefore Nd = Nv + Ns. Furthermore, we
incorporate the manipulators’ poses into the final observation vector of dimensions Nd × 6 + Nm.

Action Space We assume that the elastic manipulators are attached to rigid-body base parts, which
have 6 DoFs for single manipulators and 7 DoFs for parallel grippers. The action space is then
defined as the pose change of all manipulators.

4.2 MANIPULATION TASKS

Lifting This task begins with a flat sheet with two manipulators on the bottom, one on the top,
and a block positioned on the opposite side. The objective is to raise the block using the sheet and
transport it to a different location.

Separating Given a sheet of paper on a table, a cube resting on it, and a parallel gripper gripping
the paper, the agent must pull out the paper and separate it from the cube horizontally, striving for
maximum separation distance.

Following In a scenario identical to Separating, this task involves moving the cube along with the
paper towards the right side as far as possible by pulling the paper.

Folding This task revolves around folding a sheet of paper to induce plastic deformation. The scene
comprises a bending strip on the table with one end fixed and a manipulator positioned on it. The
objective is to reinforce the crease, either on the upper or lower position of the curve, which split it
into two tasks: Folding-upper and Folding-lower (abbreviated as Folding-U and Folding-L).

Pick-Folding In this task, the agent operates two manipulators initialized on opposite sides of a
sheet of paper resting on an arched table. The objective is to skillfully pick up the paper and fold it,
with the specific aim of creating a robust crease in the middle of the paper.

Forming Beginning with a curved paper on the table, one side fixed, and a gripper on top, the agent’s
objective is to manipulate the paper using a single end-effector to achieve a predefined goal shape.
This shape is generated by executing a random trajectory and saving the final paper position.

4.3 INVERSE DESIGN TASKS

In this set of tasks, we maintain fixed manipulator trajectories and instead optimize system parame-
ters to achieve specific objectives.

6

Published as a conference paper at ICLR 2024

Sliding The scene consists of three sheets of paper stacked on a table, with a manipulator pressing
and sliding on them. The goal is to optimize the friction coefficient between the sheets to ensure
they all move together.

Bouncing We begin with a flat sheet on the table featuring two creases. The sheet initially bounces
due to the bending force exerted by the creases. The task’s objective is to optimize the bending
stiffness to achieve higher bounce height.

Card Initialization involves a card held by three manipulators, followed by executing a card shuf-
fling movement to launch the card. The aim in this task is to adjust the bending stiffness to project
the card as far to the right as possible.

5 EXPERIMENT

In this section, we quantitatively evaluate methods including the state-of-the-art RL algorithms,
together with sampling-based, gradient-based, and hybrid trajectory optimization on ThinShellLab’s
manipulation benchmark tasks, and analyze their behavior and performance on different tasks. We
also experiment with inverse design and real-world tasks including real-to-sim system identification
and real-world object manipulation.

5.1 METHOD EVALUATION WITH MANIPULATION TASKS

We conduct a comprehensive performance evaluation of various methods, including gradient-based
trajectory optimization (GD), model-free Reinforcement Learning (RL) algorithms (Soft Actor-
Critic - SAC (Haarnoja et al., 2018) and Proximal Policy Optimization - PPO(Schulman et al.,
2017)), and a sampling-based trajectory optimization method named Covariance Matrix Adapta-
tion Evolution Strategy (CMA-ES) (Hansen & Ostermeier, 2001). To ensure replicability, we use
open-source implementations for the RL algorithms (Raffin et al., 2021) and CMA-ES (Hansen
et al., 2019). For gradient-based trajectory optimization, we employ the Adam optimizer. Addition-
ally, we explore a hybrid approach, initializing optimization with CMA-ES and then transitioning
to gradient-based optimization (CMA-ES + GD). Considering the possibility that both CMA-ES
and RL algorithms may require numerous iterations to converge, we report the maximum scores
achieved within a specified number of episodes for performance insights. (see Table 2) We delve
into task behavior to highlight the inherent challenges, and analyze the strengths and limitations of
various methods in addressing these challenges.

Tasks Lifting Separating Following Folding-U Folding-L Pick-Folding Forming

PPO 2.22 ± 0.11 6.01 ± 0.02 -0.53 ± 0.03 1.13 ± 0.28 3.32 ± 1.19 0.17 ± 0.19 2.34 ± 0.33
SAC 1.81 ± 0.09 7.73 ± 0.89 2.81 ± 0.21 2.43 ± 0.02 3.49 ± 0.38 0.85 ± 0.84 3.00 ± 0.30

CMA-ES 1.42 ± 0.01 8.08 ± 0.18 3.36 ± 0.70 3.22 ± 0.04 3.93 ± 0.80 2.14 ± 2.14 3.51 ± 0.26

GD 4.15 6.80 -0.50 -0.03 1.26 0.03 1.69
CMA-ES + GD 2.51 ± 0.39 8.24 ± 0.27 3.43 ± 0.89 3.81 ± 0.03 4.68 ± 0.17 4.74 ± 2.11 3.63 ± 0.14

Tasks Sliding Bouncing Card Tasks Sliding Bouncing Card

CMA-ES 4.47 ± 0.09 0.62 ± 0.04 -1.02 ± 0.01 GD 4.34 ± 0.03 0.75 ± 0.01 -1.00 ± 0.04

Table 2: We show the maximum reward within a fixed number of episodes and the standard deviation
of it. Since GD has no randomness in different trials, it has no standard deviation.

Task Behavior Our investigation reveals that, despite the structural similarity of the defined Folding
tasks, they exhibit markedly divergent behavioral patterns, with Folding-upper displaying notably
higher complexity compared to Folding-lower. Specifically, in Folding-lower, the agent simply
needs to establish contact with or below the upper curve and subsequently push in a left-downward
direction. Conversely, in the case of Folding-upper, the agent must delicately harness both bending
and friction forces to navigate the upper curve towards the right side before proceeding with the
folding action. Among the tasks we examined, Pick-Folding poses the greatest challenge. This can
be attributed to several factors: 1) the necessity for initial contact points in close proximity to the

7

Published as a conference paper at ICLR 2024

Figure 3: Reward curves for all methods. We plot the prefix maximum for the CMA-ES method.
We observe that the hybrid method of CMA-ES + GD achieves the best performance in most tasks.

center; 2) the task’s high reliance on precise management of friction forces; 3) the sparse reward
structure associated with this task. Separating shows intriguing behavior: the gripper initially grabs
the paper towards the block object to impart an initial speed to the block before extracting the paper.
Subsequently, we demonstrated the increased efficiency of this approach in real-world scenarios.
Additionally, we explored the replacement of paper with a tissue characterized by lower bending
stiffness, resulting in observable variations in agent behavior. For more tasks and experiments, we
include them in Appendix B.

RL Algorithms As depicted in Figure 3, RL algorithms, while not achieving optimal efficiency, ex-
hibit reasonable performance in tasks characterized by straightforward behaviors, such as Folding-
lower and Forming. Given their nature of random searching, these methods generally yield higher
maximum scores compared to direct GD, which often encounters local optima in most tasks. How-
ever, it is important to acknowledge the inherent limitations of RL algorithms. 1) RL algorithms
are notably deficient in sample efficiency, requiring a considerable number of steps to converge. 2)
They demonstrate limited progress in tasks that demand fine-grained control, as evident in Lifting,
or when tasks become progressively more detailed, such as Forming. 3) RL algorithms face sig-
nificant challenges when confronted with demanding tasks, such as Pick-Folding, which features
sparse rewards, or Folding-upper, characterized by intricate behavioral requirements.

CMA-ES CMA-ES exhibits reasonable performance across most tasks, effectively evading local
minima and providing improved initial policies for gradient-based methods. However, it encounters
challenges Lifting. Although it manages to acquire the ability to bend the paper to prevent the
block from falling, it struggles to advance the block closer to its intended destination. This difficulty
can be attributed to the intricate interplay of the three end-effectors, coupled with the sensitivity
of the task’s dynamics, rendering the sample-based CMA-ES method less suited for this particular
challenge. Furthermore, our observations indicate that CMA-ES experiences a decelerated learning
curve in later episodes and requires an extended number of episodes to achieve convergence. This
characteristic, while beneficial for searching for an initial policy, proves less suitable for addressing
finer-grained tasks that demand more rapid progress and adaptation.

Gradient-based Trajectory Optimization In all the tasks considered, our gradients effectively
guide the policy towards improved performance within the initial time steps. However, it is note-
worthy that this process often becomes ensnared in local optima. This phenomenon is especially
evident in the Folding tasks, as illustrated in Figure 3. We attribute this behavior to the limitations
of the gradient-based method, which does not account for changes in contact pairs and is sensitive
to even minimal alterations in the action sequence.

Hybrid method To address local optima and enhance fine-grained control, we combined the sample-
based and gradient-based methods. Initially, the sample-based approach identifies contact points and
establishes an initial policy. Subsequently, the gradient-based method fine-tunes the trajectory. This
hybrid approach excels in most manipulation tasks, except for Lifting, where it eventually converges
to a similar reward level as the gradient-based method, albeit less efficiently.

8

Published as a conference paper at ICLR 2024

5.2 RESULTS OF INVERSE DESIGN TASKS

For inverse tasks, we evaluate CMA-ES and GD methods. As evident in Figure 3, both the gradient-
based and sample-based methods perform effectively in these tasks. However, the gradient-based
method exhibits a faster and smoother growth in inverse design tasks, benefiting from its guidance by
physical principles. Notably, in the Card and Sliding tasks, the standard deviation of the GD method
diminishes over time. This trend indicates that, despite commencing with distinct initial system
parameters, our gradient-based method converges these parameters towards a uniform outcome.

While the Bouncing task necessitates a higher bending stiffness and the Sliding task requires an
increased friction coefficient, the Card task poses a more intricate challenge. In the case of the
Card task, the bending stiffness must strike a delicate balance. If it is too high, the card reaches
a greater distance but tends to flip out prematurely due to limited curvature by the end-effectors,
resulting in a shorter overall moving distance. Furthermore, altering the bending stiffness can lead
to changes in contact pairs, contributing to a larger standard deviation in the later time steps of the
Card task compared to the other two inverse design tasks.

5.3 REAL-WORLD EXPERIMENT

In this section, we leverage the differentiability of our simulator to fine-tune physics parameters ac-
cording to real-world data. We further conduct experiments of transferring skills learned from the
simulator to real-world robotic systems, showing the capability of ThinShellLab’s learning frame-
work to bridge between simulation and real-world scenarios.

Real-to-sim System Identification. In the real-to-sim process, we initiate real-world manipulation
experiments employing a robotic system equipped with force and tactile sensors. Subsequently,
we construct corresponding simulation environments that integrate a differentiable loss function,
quantifying the disparities between simulation outcomes and real-world results. Leveraging the
differentiability of our physics engine, we back-propagate gradients to adjust material parameters
and employ gradient descent methods for optimization, as outlined in Section 5.2. Our real-to-sim
system identification tasks encompass Tactile, Friction, and Bending, serving as demonstrations of
ThinShellLab’s capacity to reconstruct real-world scenes from collected data. For comprehensive
results and additional details, we refer readers to Appendix C.

Real-world Manipulation Experiment. After reconstructing physics parameters, we transferred
the Separating manipulation task from simulation to a real-world robotic system. We optimize the
task in the virtual scene with reconstructed parameters and deploy it to a real scenario with a robotic
arm and parallel gripper. Our optimized trajectory, as described in Section 5.1, successfully gener-
ated an initial velocity on the object to prevent sticking during sheet retraction, proving effective in
the real world. In contrast, a straightforward heuristic policy of dragging at a constant speed failed
due to insufficient relative speed. For more details, please refer to Appendix D.

6 CONCLUSION AND FUTURE WORK

We introduced ThinShellLab, a comprehensive robotic learning benchmark for thin-shell object ma-
nipulation based on a fully differentiable simulation engine, presented with a standardized interface
for skill learning methods and a set of benchmark tasks. Through these benchmark tasks, we identify
challenges like non-continuous optimization landscapes due to complex contacts and high material
sensitivity for thin-shell manipulation. To tackle these challenges, we found that a hybrid approach,
combining sample-based and gradient-based optimization, performs best across most tasks. We con-
ducted real-world experiments, fine-tuning system parameters to match real-world observations, and
successfully deployed our learned skills in real-world scenarios.

While we are working on the real-to-sim process to address the simulation-to-real gap, our current
approach relies only on tactile and force sensors. However, it’s important to note that there might
still be a residual gap due to our contact model and inherent real-world instability, leading to random
errors. Hence, future research could explore the integration of visual observations and advanced
simulation-to-real techniques to further minimize this gap.

9

Published as a conference paper at ICLR 2024

ACKNOWLEDGEMENT

We thank Tiantian Liu for the insightful discussions and help with the experiments. Special appreci-
ation goes to Meshy, where the first author completed an internship and conducted a portion of this
research. We thank the anonymous reviewers for their helpful suggestions. This work is funded in
part by grants from Google, Amazon, Cisco, Toyota Motor North America, and Mitsubishi Electric
Research Laboratories.

REFERENCES

Siwei Chen, Yiqing Xu, Cunjun Yu, Linfeng Li, Xiao Ma, Zhongwen Xu, and David Hsu. Daxbench:
Benchmarking deformable object manipulation with differentiable physics. In The Eleventh In-
ternational Conference on Learning Representations, 2023. URL https://openreview.
net/forum?id=1NAzMofMnWl.

Cheng Chi, Benjamin Burchfiel, Eric Cousineau, Siyuan Feng, and Shuran Song. Iterative resid-
ual policy for goal-conditioned dynamic manipulation of deformable objects. In Proceedings of
Robotics: Science and Systems (RSS), 2022.

Erwin Coumans and Yunfei Bai. Pybullet, a python module for physics simulation for games,
robotics and machine learning. http://pybullet.org, 2016–2021.

Tao Du, Kui Wu, Pingchuan Ma, Sebastien Wah, Andrew Spielberg, Daniela Rus, and Wojciech
Matusik. Diffpd: Differentiable projective dynamics. ACM Trans. Graph., 41(2), nov 2021.
ISSN 0730-0301. doi: 10.1145/3490168. URL https://doi.org/10.1145/3490168.

Chuang Gan, Jeremy Schwartz, Seth Alter, Damian Mrowca, Martin Schrimpf, James Traer, Ju-
lian De Freitas, Jonas Kubilius, Abhishek Bhandwaldar, Nick Haber, Megumi Sano, Kuno Kim,
Elias Wang, Michael Lingelbach, Aidan Curtis, Kevin Tyler Feigelis, Daniel Bear, Dan Gutfre-
und, David Daniel Cox, Antonio Torralba, James J. DiCarlo, Joshua B. Tenenbaum, Josh Mc-
dermott, and Daniel LK Yamins. ThreeDWorld: A platform for interactive multi-modal phys-
ical simulation. In Thirty-fifth Conference on Neural Information Processing Systems Datasets
and Benchmarks Track (Round 1), 2021. URL https://openreview.net/forum?id=
db1InWAwW2T.

Eitan Grinspun, Anil N. Hirani, Mathieu Desbrun, and Peter Schröder. Discrete Shells. In D. Breen
and M. Lin (eds.), Symposium on Computer Animation. The Eurographics Association, 2003.
ISBN 1-58113-659-5. doi: 10.2312/SCA03/062-067.

Huy Ha and Shuran Song. Flingbot: The unreasonable effectiveness of dynamic manipulation for
cloth unfolding. In Conference on Robotic Learning (CoRL), 2021.

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy
maximum entropy deep reinforcement learning with a stochastic actor. In International confer-
ence on machine learning, pp. 1861–1870. PMLR, 2018.

Jiaqi Han, Wenbing Huang, Hengbo Ma, Jiachen Li, Joshua B. Tenenbaum, and Chuang Gan. Learn-
ing physical dynamics with subequivariant graph neural networks. In Thirty-Sixth Conference on
Neural Information Processing Systems, 2022.

Nikolaus Hansen and Andreas Ostermeier. Completely derandomized self-adaptation in evolution
strategies. Evolutionary computation, 9(2):159–195, 2001.

Nikolaus Hansen, Youhei Akimoto, and Petr Baudis. Cma-es/pycma on github. zenodo, doi:
10.5281/zenodo. 2559634.(feb. 2019), 2019.

Yuanming Hu, Tzu-Mao Li, Luke Anderson, Jonathan Ragan-Kelley, and Frédo Durand. Taichi: a
language for high-performance computation on spatially sparse data structures. ACM Transac-
tions on Graphics (TOG), 38(6):201, 2019.

Yuanming Hu, Luke Anderson, Tzu-Mao Li, Qi Sun, Nathan Carr, Jonathan Ragan-Kelley, and
Frédo Durand. Difftaichi: Differentiable programming for physical simulation. ICLR, 2020.

10

https://openreview.net/forum?id=1NAzMofMnWl
https://openreview.net/forum?id=1NAzMofMnWl
http://pybullet.org
https://doi.org/10.1145/3490168
https://openreview.net/forum?id=db1InWAwW2T
https://openreview.net/forum?id=db1InWAwW2T

Published as a conference paper at ICLR 2024

Zhiao Huang, Yuanming Hu, Tao Du, Siyuan Zhou, Hao Su, Joshua B. Tenenbaum, and Chuang
Gan. Plasticinelab: A soft-body manipulation benchmark with differentiable physics. In Interna-
tional Conference on Learning Representations, 2021. URL https://openreview.net/
forum?id=xCcdBRQEDW.

Zizhou Huang, Davi Colli Tozoni, Arvi Gjoka, Zachary Ferguson, Teseo Schneider, Daniele
Panozzo, and Denis Zorin. Differentiable solver for time-dependent deformation problems with
contact. arXiv preprint arXiv:2205.13643, 2022.

Minchen Li, Zachary Ferguson, Teseo Schneider, Timothy Langlois, Denis Zorin, Daniele Panozzo,
Chenfanfu Jiang, and Danny M. Kaufman. Incremental potential contact: Intersection- and
inversion-free large deformation dynamics. ACM Trans. Graph. (SIGGRAPH), 39(4), 2020.

Minchen Li, Danny M. Kaufman, and Chenfanfu Jiang. Codimensional incremental potential con-
tact. ACM Trans. Graph. (SIGGRAPH), 40(4), 2021.

Sizhe Li, Zhiao Huang, Tao Chen, Tao Du, Hao Su, Joshua B. Tenenbaum, and Chuang Gan.
Dexdeform: Dexterous deformable object manipulation with human demonstrations and dif-
ferentiable physics. In International Conference on Learning Representations, 2023. URL
https://openreview.net/forum?id=LIV7-_7pYPl.

Yifei Li, Tao Du, Kui Wu, Jie Xu, and Wojciech Matusik. Diffcloth: Differentiable cloth simulation
with dry frictional contact. ACM Trans. Graph., 42(1), oct 2022. ISSN 0730-0301. doi: 10.1145/
3527660. URL https://doi.org/10.1145/3527660.

Yunzhu Li, Jiajun Wu, Russ Tedrake, Joshua B. Tenenbaum, and Antonio Torralba. Learning particle
dynamics for manipulating rigid bodies, deformable objects, and fluids, 2019.

Xingyu Lin, Yufei Wang, Jake Olkin, and David Held. Softgym: Benchmarking deep reinforcement
learning for deformable object manipulation. In Conference on Robot Learning, 2020.

Miguel Angel Zamora Mora, Momchil Peychev, Sehoon Ha, Martin Vechev, and Stelian Coros.
Pods: Policy optimization via differentiable simulation. In International Conference on Machine
Learning, pp. 7805–7817. PMLR, 2021.

Akio Namiki and Shuichi Yokosawa. Robotic origami folding with dynamic motion primitives. In
2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 5623–
5628, 2015. doi: 10.1109/IROS.2015.7354175.

Yi-Ling Qiao, Junbang Liang, Vladlen Koltun, and Ming C. Lin. Scalable differentiable physics for
learning and control. In ICML, 2020.

Yi-Ling Qiao, Junbang Liang, Vladlen Koltun, and Ming C. Lin. Differentiable simulation of soft
multi-body systems. In Conference on Neural Information Processing Systems (NeurIPS), 2021.

Antonin Raffin, Ashley Hill, Adam Gleave, Anssi Kanervisto, Maximilian Ernestus, and Noah Dor-
mann. Stable-baselines3: Reliable reinforcement learning implementations. The Journal of Ma-
chine Learning Research, 22(1):12348–12355, 2021.

Connor Schenck and Dieter Fox. Spnets: Differentiable fluid dynamics for deep neural net-
works. ArXiv, abs/1806.06094, 2018. URL https://api.semanticscholar.org/
CorpusID:49207686.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

Eftychios Sifakis and Jernej Barbic. Fem simulation of 3d deformable solids: a practitioner’s guide
to theory, discretization and model reduction. In Acm siggraph 2012 courses, pp. 1–50. 2012.

Breannan Smith, Fernando de Goes, and Theodore Kim. Stable neo-hookean flesh simula-
tion. ACM Transactions on Graphics (TOG), 37:1 – 15, 2018a. URL https://api.
semanticscholar.org/CorpusID:4338346.

11

https://openreview.net/forum?id=xCcdBRQEDW
https://openreview.net/forum?id=xCcdBRQEDW
https://openreview.net/forum?id=LIV7-_7pYPl
https://doi.org/10.1145/3527660
https://api.semanticscholar.org/CorpusID:49207686
https://api.semanticscholar.org/CorpusID:49207686
https://api.semanticscholar.org/CorpusID:4338346
https://api.semanticscholar.org/CorpusID:4338346

Published as a conference paper at ICLR 2024

Breannan Smith, Fernando De Goes, and Theodore Kim. Stable neo-hookean flesh simulation.
ACM Trans. Graph., 37(2), mar 2018b. ISSN 0730-0301. doi: 10.1145/3180491. URL https:
//doi.org/10.1145/3180491.

Rasmus Tamstorf and Eitan Grinspun. Discrete bending forces and their jacobians. Graph.
Model., 75:362–370, 2013. URL https://api.semanticscholar.org/CorpusID:
9946950.

Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A physics engine for model-based control.
In 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 5026–5033.
IEEE, 2012. doi: 10.1109/IROS.2012.6386109.

Benjamin Ummenhofer, Lukas Prantl, Nils Thuerey, and Vladlen Koltun. Lagrangian fluid simu-
lation with continuous convolutions. In International Conference on Learning Representations,
2020. URL https://openreview.net/forum?id=B1lDoJSYDH.

Ruihai Wu, Chuanruo Ning, and Hao Dong. Learning foresightful dense visual affordance for
deformable object manipulation. In IEEE International Conference on Computer Vision (ICCV),
2023.

Zhou Xian, Bo Zhu, Zhenjia Xu, Hsiao-Yu Tung, Antonio Torralba, Katerina Fragkiadaki, and
Chuang Gan. Fluidlab: A differentiable environment for benchmarking complex fluid manipula-
tion. In International Conference on Learning Representations, 2023.

Jie Xu, Sangwoon Kim, Tao Chen, Alberto Rodriguez Garcia, Pulkit Agrawal, Wojciech Matusik,
and Shinjiro Sueda. Efficient tactile simulation with differentiability for robotic manipulation.
In 6th Annual Conference on Robot Learning, 2022a. URL https://openreview.net/
forum?id=6BIffCl6gsM.

Zhenjia Xu, Cheng Chi, Benjamin Burchfiel, Eric Cousineau, Siyuan Feng, and Shuran Song. Dex-
tairity: Deformable manipulation can be a breeze. In Proceedings of Robotics: Science and
Systems (RSS), 2022b.

Chao Zhao, Chunli Jiang, Junhao Cai, Michael Wang, Hongyu Yu, and Qifeng Chen. Flipbot:
Learning continuous paper flipping via coarse-to-fine exteroceptive-proprioceptive exploration.
pp. 10282–10288, 05 2023. doi: 10.1109/ICRA48891.2023.10160774.

Shaokun Zheng, Zhiqian Zhou, Xin Chen, Difei Yan, Chuyan Zhang, Yuefeng Geng, Yan Gu, and
Kun Xu. Luisarender: A high-performance rendering framework with layered and unified in-
terfaces on stream architectures. ACM Trans. Graph., 41(6), nov 2022. ISSN 0730-0301. doi:
10.1145/3550454.3555463. URL https://doi.org/10.1145/3550454.3555463.

A IMPLEMENTATION DETAILS

A.1 FORWARD SIMULATION

We apply implicit time-stepping scheme in our simulation engine. Let n be the total DoF of the
whole system and xt,vt ∈ Rn be the generalized coordinates and velocities at time-step t. Then the
implicit time integration would be formulated as:

xt+1 = argmin
x

g(x) = argmin
x

1

2h2
∥x− yt∥2M + U(x),

in which yt = xt + hvt + h2M−1fext and M is the mass matrix of the system, fext is the total
external force. This is equivalent to the following gradient form (Du et al., 2021):

0 = ∇g(x) =
1

2h2
M(x− yt)− fint(x),

in which fint refers to the internal forces, i.e., −∇U(x). Since ∇g(x) is in general non-linear, this
equation is solved iteratively using Newton’s method at each time step. To fix the j-th variable in
simulation, we only need to set the j-th value of vector ∇g(x) to zero and set the j-th row and
column of its Hessian matrix to zero in Newton’s method. Further details of energy calculation will
be discussed in Appendix A.4.

12

https://doi.org/10.1145/3180491
https://doi.org/10.1145/3180491
https://api.semanticscholar.org/CorpusID:9946950
https://api.semanticscholar.org/CorpusID:9946950
https://openreview.net/forum?id=B1lDoJSYDH
https://openreview.net/forum?id=6BIffCl6gsM
https://openreview.net/forum?id=6BIffCl6gsM
https://doi.org/10.1145/3550454.3555463

Published as a conference paper at ICLR 2024

A.2 GRADIENT BACK-PROPAGATION

We can back-propagate the gradient through the implicit function ∇g(x) = 0. As also mentioned
in DiffPD (Du et al., 2021), we calculate the derivative between xt, and xt+1 and xt−1 to deliver the
gradient of the loss function ∂L

∂xt−1 = ∂L
∂xt+1

∂xt+1

∂xt−1 + ∂L
∂xt

∂xt

∂xt−1 . Note that we also have to calculate
the loss gradient for ∂θt in all the time steps, since we are modeling the plasticity of thin-shell
materials. To start with, we first rewrite the function as follows:

0 = ∇g(x) =
1

2h2
M(x− 2xt + xt−1 − h2M−1fext)− fint(x,x

t
fixed,x

t, θ
t
, η),

where xt and xt−1 are node positions of tth and (t − 1)th timestep, θ
t

are undeformed angles for
tth timestep, xt

fixed are positions of fixed nodes in the beginning of (t + 1)th timestep, and η is

the material parameters. Here, θ
t

is actually a function of xt and θ
t−1

, and the friction force is a
function of xi and xi−1. We then back-propagate the loss gradient through this implicit function to
obtain gradients for each time step. These gradients, applied to a subset of xt

fixed corresponding
to the manipulator’s rigid base part, are aggregated to the gradient of manipulator trajectories, as
mentioned in Section 4.1.

A.3 COLLISION DETECTION AND CONTACT HANDLING

The collision detection is done by fast grid hashing of the contact surfaces. We spatially split the
whole 3D space into grids. For each triangular face in a object, we store its information in grid that
the triangle’s circumcentre is occupying. When querying the contact state of an incoming vertex, we
search in the nearby 3 × 3 × 3 grids and detect collisions with all triangles involved in these grids.
In order to ensure the correctness of hashing, we set the edge size of grids to be greater than half of
the maximal diameter of all triangles.

Since our contact handling uses quadratic penalty potential instead of strict barrier functions, we
design a mechanism to avoid crashes caused by penetration between vertices and thin-shell objects.
Once a collision has been detected, we record the normal direction of contact surface, and then
keep it unchanged until the collision state is removed. In this way, the contacting vertices will not
penetrate to the opposite side of the thin-shell object, and therefore make the simulation robust and
stable.

While the logarithmic barrier employed in IPC imposes strict non-penetration, it tends to signif-
icantly slow down convergence in Newton’s method. Moreover, it demands continuous collision
detection during the solution of forward dynamics and can introduce instability into gradients dur-
ing back-propagation. Hence, given that extreme accuracy isn’t always imperative in robotics tasks,
we simplify the calculation of the penalty function by retaining the normal direction of contact pairs.
This approach remains stable even in scenarios where penetration occurs.

A.4 ENERGY CALCULATION

A.4.1 CONTACT ENERGY

According to Section 3.2, the contact energies Ur and Uf are defined as

Ur(d) =
kr
2

max(d− ϵr, 0)
2, Uf (u) = µλf0(ϵv, ∥u∥),

where the distance d is a signed distance between vertex p and its projection to a triangle
(p1,p2,p3), whose normal direction is represented by (p2 − p1) × (p3 − p1). kr stands for a
constant stiffness parameter, µ stands for a friction coefficient, and λ stands for the contact force

13

Published as a conference paper at ICLR 2024

along normal direction at last timestep. The signed distance d is then calculated as

d =
(p− p1) · [(p2 − p1)× (p3 − p1)]

∥(p2 − p1)× (p3 − p1)∥

=
(p− p1) · det[p2 − p1,p3 − p1, (x̂, ŷ, ẑ)]

∥(p2 − p1)× (p3 − p1)∥

=
det[p2 − p1,p3 − p1,p− p1]

∥(p2 − p1)× (p3 − p1)∥
,

in which the 3D vertices are represented as column vectors. Let x = [p1,p2,p3,p] ∈ R12 denote
the involved variables, we implemented tool functions in Taichi to calculate

D(x) = det[p2 − p1,p3 − p1,p− p1],

C(x) = ∥(p2 − p1)× (p3 − p1)∥,

together with the gradients ∂D/∂x, ∂C/∂x and Heissan matrices ∂2D/∂x2, ∂2C/∂x2. With the
help of SymPy library for symbolic computation, we optimized the computation graph and hard
coded it into Taichi snippets. The repulsive energy Ur is then a composition function on D(x), C(x),
and therefore we use the chain rule to calculate its gradient and Hessian matrix.

For the friction energy Uf (u), we follow IPC (Li et al., 2020) to calculate the f0(ϵv, ∥u∥) func-
tion, its derivative f1(ϵv, ∥u∥) and second derivative f2(ϵv, ∥u∥). Once we get the ∂Uf/∂∥u∥ and
∂2Uf/∂∥u∥2, we transform it back to the tangential space to get ∂Uf/∂u and ∂2Uf/∂u

2.

A.4.2 ELASTIC ENERGY

We follow Stable Neo-Hookean (Smith et al., 2018b) to define the elastic energy as

Ue(F) =
µ

2
(IC − 3)− µ(J − 1) +

λ

2
(J − 1)2,

in which F denotes the deformation gradient of one tetrahedral element, IC = tr(FTF), and J =
detF. The motivation for replacing the original log J term in the Neo-Hookean model with J − 1
is that J − 1 is stable even for J ≤ 0. Therefore, even if the whole tetrahedral element is inverted,
this Stable Neo-Hookean model still works robustly and can provide gradients and Hessian matrices
to recover the element (see the original paper of Stable Neo-Hookean (Smith et al., 2018b)). This
situation is common in our simulator, since the robot manipulator involves a moving boundary and
can easily cause inversion when the moving speed is large. We observe that the Stable Neo-Hookean
perfectly addresses this problem.

The gradient ∂Ue/∂F can be computed easily. To compute the Hessian matrix ∂2Ue/∂F
2, we first

enumerate the differential δFij for single entry and then calculate the correponding force differential
δ(∂Ue/∂F). We follow a well-known tutorial on FEM (Sifakis & Barbic, 2012) to calculate the
force differentials, and then concatenate them into the Hessian matrix ∂2Ue/∂F

2.

A.4.3 THIN-SHELL ENERGY

Following Grinspun et al. (2003), we apply the stretching energy Us and the bending energy Ub for
thin-shell materials. We further divide the stretching energy into Ue

s and Ua
s , representing stretching

energy for edges and areas of triangles. The energy formula is as follows:

Ue
s =

∑
e

Ke(1− |e|/|e|)2|e|,

Ua
s =

∑
A

Ka(1− |A|/|A|)2|A|,

Ub =
∑
e

Kb(θe − θe)
2|e|/|he|,

where e represents all the edges, A represents all the triangles, and θe represents the angle on edge e.
|e|, |A|, |he|, and θe respectively represent the rest length of the edge, the rest area for the triangle,

14

Published as a conference paper at ICLR 2024

one-third of the average height of the two adjacent triangles of the edge, and the rest angle on this
edge. Ke, Ka, and Kb are the coefficients.

For Ue
s , it’s simple to calculate the derivatives and Hessian matrix. The derivative of the length |e|

to the nodal point positions x0 and x1 is ∂|e|
∂x0

= (x0 − x1)/|e|. The Hessian matrix will require the

calculation of ∂2|e|
∂a2

0
and ∂2|e|

∂a0∂b0
due to symmetry, where x0 = (a0, b0, c0).

For Ua
s , it becomes more complex to compute the derivatives and Hessian matrix. Assume the

triangle is (x0, x1, x2) and x0 = (a0, b0, c0). Similar to the calculation of the contact energy, we
use math tools to generate the symbolic formula of the derivative ∂|A|

∂a0
and hard code it with Taichi;

then, we can calculate all the derivatives due to symmetry. For the Hessian matrix, we use math
tools to generate formulas for ∂2|A|

∂a2
0

, ∂2|A|
∂a0∂a1

, ∂2|A|
∂a0∂b0

, ∂2|A|
∂a0∂b1

; then, we can calculate the full matrix
using symmetry.

For Ub, the Hessian matrix is too complex to compute, even when we try to use some math tools.
As a result, we follow Tamstorf & Grinspun (2013) to compute the derivatives and Hessian matrix
for bending energy. This paper discusses how to compute the Hessian matrix of bending energy in a
simplified form.

A.4.4 BACK-PROPAGATION

This part has been briefly discussed in Appendix A.2. The equation to be solved in forward simula-
tion is

0 = ∇g(x) =
1

2h2
M(x− 2xt + xt−1 − h2M−1fext)− fint(x,x

t
fixed,x

t, θ
t
, η), (1)

where xt and xt−1 are node positions of tth and (t − 1)th timestep, θ
t

are undeformed angles for
tth timestep, xt

fixed are positions of fixed nodes in the beginning of (t + 1)th timestep, and η is

the material parameters. Here, θ
t

is actually a function of xt and θ
t−1

, and the friction force is a
function of xi and xi−1. DiffPD (Du et al., 2021) discusses the general idea of how to pass gradient
in the implicit time integration:

∂∇g(x)

∂x

∂x

∂y
+

∂∇g(x)

∂y
=

∂

∂y
0

∂

∂x
[
1

h2
M(x− y) +∇E(x)]

∂x

∂y
+

∂

∂y
[
1

h2
M(x− y)] = 0

[
1

h2
M+∇2E(x)]

∂x

∂y
− 1

h2
M = 0

∂x

∂y
=

1

h2
[∇2g(x)]−1M

With ∂x
∂y in hand, we can backpropagate the gradient from xt+1 to yt. Given yt = 2xt − xt−1 +

h2M−1fext, we can deliver the gradient to both xt and xt−1.

Similarly, by substituting y in the above equation with other variables like xt
fixed or θ

t
, we can

calculate the gradient. The remaining challenge is computing the term ∂∇g(x)
∂y in the first line when

changing y into other variables. For these variables, this term will involve the Jacobian matrix for
the force, as shown in Equation (1).

For θ
t

and η, their relationship to the forces is linear, allowing us to calculate the Jacobians directly.
Regarding xt

fixed, the Jacobians are computed during forward simulation, where they are set to
zeros. We can apply the same procedure in forward simulation and retain the Jacobians during the
backpropagation process.

Concerning xt, it primarily influences the friction force since we utilize the pressure force, contact
surface, and the original projected point from the last timestep. We observe that Huang et al. (2022)
calculates the derivative for friction similarly to our approach. The distinction lies in our choice not
to pass the gradient through the surface change during backpropagation.

15

Published as a conference paper at ICLR 2024

Task µtable
object µtable

cloth µmanipulator
cloth µobject

cloth bending stiffness action range

Lifting - - 5.0 5.0 100 0.001
Separating 0.0 0.2 5.0 0.2 100 0.002
Following 0.0 0.2 5.0 0.2 100 0.002
Folding-U - 5.0 5.0 - 400 0.001
Folding-L - 5.0 5.0 - 400 0.001

Pick-Folding - 0.1 5.0 - 200 0.001
Forming - 5.0 5.0 - 200 0.001
Sliding - 0.4 1.0 - 1000 -

Bouncing - 0.5 - - - -
Card - 1.0 1.0 - - -

Table 3: Detailed parameters.

A.5 RENDERING

We have customized LuisaRender (Zheng et al., 2022), a ray-tracing rendering framework, to facil-
itate the rendering of our simulation results. This tailored version of the renderer boasts support for
a wide range of material models and possesses the capability to generate highly realistic rendering
outcomes.

B DETAILS OF MANIPULATION TASKS

B.1 TASK DETAILS

In RL algorithms, we employ downsampling of nodal points to construct the observation input.

In all our tasks, we consistently utilize a simulation step of 5e-3 seconds, and we establish a max-
imum action range specific to each task to ensure system stability. For the majority of our tasks,
we confine the action range to 1 millimeter per timestep. However, for tasks that inherently de-
mand higher speeds, such as the Separate and Following tasks, we extend the action range to 2
millimeters.

In the case of RL and CMA-ES, we employ a heuristic approach to truncate the action range. In
contrast, for gradient-based trajectory optimization, we employ a loss function to softly regulate
action speed. These adjustments help maintain the stability and effectiveness of our reinforcement
learning algorithms in various tasks.

We further list our detailed parameter for each task in Table B.1.

B.2 REWARD

The positive direction of the x-axis is defined as pointing towards the interior of the table for all
tasks.

Lifting The reward for successful completion is determined by taking the negative sum of the
squared distances between each point of the block and its target position. For better distinguish
the difference we use −lg(−reward) as the new reward when plotting and filling the table.

Separating The reward for this task is computed as the difference between the sum of the x-
coordinates of the block and the sum of the x-coordinates of the paper, multiplied by the ratio of the
total number of nodal points on the block to that on the paper.

Following In the context of this task, the reward is calculated as the negative average x-coordinate
of the block.

Folding For Folding-upper, the reward is determined as the sum of the upper crease rest angles
minus the sum of lower crease rest angles, whereas for Folding-lower, it is the opposite.

16

Published as a conference paper at ICLR 2024

Pick-Folding The reward for this task is the sum of crease angles for the edges located in the middle
of the sheet.

Forming The reward for this task is the negative sum of the squared distances between each point
on the paper and its respective target position. Similar to Lifting we apply −lg(−reward) as the
new reward.

Sliding The reward for this task is determined as the negative sum of the x-coordinates of the bottom
paper.

Bouncing The reward function for this task is defined as the sum of the z-coordinates of the points
located on two creases.

Card In this task, the reward is defined as the negative sum of the x-coordinates for every nodal
point on the card.

The loss is generally negative rewards in those tasks, while for GD method we include another loss
to limit the action range.

B.3 MORE ANALYSIS

Although we attempted to guide the learning process in Pick-Folding by introducing a small reward
for increasing the angle of the middle curve and observing slight improvements in gradient-based
methods, the optimization process frequently became trapped in local optima. Furthermore, sample-
based trajectory optimization also grappled with finding a viable solution, with some trials failing to
identify a suitable initial solution, leading to significant variance in the final reward across different
trial runs. Nonetheless, it is noteworthy that the CMA-ES + GD method demonstrated rapid learning
capability when provided with a reasonably well-initialized solution for Pick-Folding. This may be
attributed to the task’s dynamic simplification after the sheet is picked up.

We list the detailed design and analysis of the hybrid method as follows.

• Parameters: We opt for a population size of 40 in CMA-ES with zero-initialized trajec-
tories. The initial variance is set to 1.0, corresponding to 0.0003 in each dimension of
manipulator movement per timestep. The maximum movement within one timestep is ei-
ther 0.001 or 0.002, depending on the task. Generally, we execute CMA-ES for 80 percents
of the total episodes, where episodes are defined by the number of rollouts. For the Pick-
Folding task, which demands more extensive training, we set the CMA-ES episode count
to 1000 and supplement it with an additional 150 episodes of gradient descent.

• Design: To enhance the effectiveness of the CMA-ES method, we filter out non-feasible
states, such as instances where there is no contact between manipulators and thin shell
or when the manipulator is experiencing excessive force. In these situations, we directly
assign a low reward value and save the time for executing the rest actions.

• Analysis: Some curves in Figure 3 exhibit large variance. Specifically, in Folding-U, Fol-
lowing, and Separating, the variance arises from the sensitivity of thin-shell manipulation
results to minor changes, as previously discussed in the introduction section. In the case
of Pick-Folding, although sensitivity contributes to the variance, the primary factor is oc-
casional failure of the CMA-ES method. Failures result in rewards near 0, and successful
runs yield rewards greater than 6, leading to substantial variance in the outcomes.

B.4 SUCCESS INDICATOR

Defining the level of success in certain tasks proves challenging due to uncertainty regarding the op-
timal performance achievable within the current settings using the best policy. Currently, we gauge
the success of a policy by visually inspecting the results. Nevertheless, we aim to enhance analytical
insight by presenting the scores of human-designed heuristic policies alongside theoretically optimal
scores. Subsequently, we can formulate a success indicator based on an analysis of these scores.

• Human Designed To elucidate the meaning of reward values, we present the scores of human-
designed policies for each task in the table below. Notably, generated policies occasionally out-

17

Published as a conference paper at ICLR 2024

perform human-designed counterparts, particularly in tasks requiring meticulous manipulation and
where certain policies exhibit unexpected effectiveness (as observed in Separating).

• Oracle In addition to human-designed policies, we also present the theoretically maximum scores
for each task, disregarding certain physical constraints. For Pick-Folding, we calculate this score
by assuming the entire middle curve is fully folded. In the case of Separating, we assume the paper
is affixed to the manipulator, while the block experiences no friction force with the paper. For Fol-
lowing, we assume both the manipulator and the block are affixed to the paper. In both Folding-L
and Folding-U, we assume that the target curve is fully folded while the other one is completely
flattened. For tasks involving Lifting and Forming, we assume a perfect match with the target. It
is important to note that although certain Oracle scores, such as those for Pick-Folding and Sepa-
rating, are exceptionally high, they are not physically feasible within the current experimental
settings. We present

• Success Score To make it further concrete, we design the score of success for each task. Con-
cretely, we define the score of success as min(HumanDesign,Oracle/2) for Pick-Folding, Sepa-
rating, and Following, and Oracle/2 for Folding-U and Folding-L since human-designed policies
perform poorly in those two tasks. The successful score of Forming and Lifting is −3× 10−4.

• Success Rate Finally, we calculate the success rate of our CMA-ES + GD method according to the
mean and standard deviation.

Pick-Folding Separating Following Folding-L Folding-U Forming Lifting

Human Design 5.49 7.23 5.05 1.63 -0.24 0.0 -0.001

Oracle 42.24 20.47 7.35 6.42 6.42 0.0 0.0

Success 5.49 7.23 3.68 3.21 3.21 -0.0003 -0.0003

Success rate 0.36 1.0 0.39 1.0 1.0 0.76 1.0

Table 4: Success Indicator.

C REAL-TO-SIM SYSTEM IDENTIFICATION TASKS

We conduct three real-to-sim system identification tasks Tactile, Friction and Bending to assess
ThinShellLab’s capability of reconstructing real-world scenes. In the Tactile task, we push a vision-
based tactile sensor to a flat desktop and then optimize the Young’s modulus and Poisson’s ratio of
the elastomer using collected data of exerted force and shifting of surface dot matrix. In the Friction
task, we push the same tactile sensor to a sheet of paper and then drag the paper to create slipping
friction between it and the desktop. We optimize the friction coefficient to make the simulated
friction force matched with collected data. Finally, the Bending task involves a piece of thin-shell
sheet object with non-negligible bending stiffness, such as poker card, card paper or metallic ruler,
whose stiffness parameter is to be identified. We fix the object on the desktop’s edge, and then push
it using a tactile sensor as shown in Figure 1(c). We optimize the bending stiffness to match the
simulated and collected force data. Figure 4 shows the optimization curve of these tasks. Figure 5
shows the dot matrix of tactile sensor after optimizing the Tactile task.

We provide additional insights into the Tactile task, as illustrated in Figure 6. Initially, we perform
an action sequence involving Pressing Down and subsequently optimize the Young’s modulus and
Poisson’s ratio of the elastomer using collected data on exerted force and the shifting of the surface
dot matrix. Following this optimization, we further refine the system by optimizing the friction
coefficient through the execution of Pressing and Sliding. Once these parameters are determined,
we evaluate the outcomes in a novel action sequence involving Pressing and rotating along the
x-axis. The results indicate minimal discrepancies in this new action sequence.

In the Bending task, we have encountered challenges in accurately retrieving small-scale bending
stiffness from the real world using tactile sensors. This difficulty arises from the sensitivity of results
to the Poisson ratio of the tactile material.

18

Published as a conference paper at ICLR 2024

Figure 4: Optimization curve of system identification tasks.

Figure 5: Tactile dot matrix after optimization.

D REAL-WORLD MANIPULATION EXPERIMENT

We transfer the Separating and Folding tasks into the real world. In the Folding tasks designed to
align with the real-world, we optimize it with a rigid manipulator with 3 DoFs (which we deem is
enough to solve the task). As illustrated in Figure 7, we successfully execute both the Separating
and Folding tasks in a real-world setting. Upon comparing the simulation results with the real-
world executions, we observe highly similar behaviors, albeit not precisely identical, indicating a
minimal sim-to-real gap. Notably, in the Separating task, the model generates an initial velocity,
showcasing the successful approximation of bending stiffness in our real-to-sim process, where the

19

Published as a conference paper at ICLR 2024

Pressing
down

Pressing
and

Sliding

Before optimization

Before optimization

After optimization

After optimization

Optimization Curve

Optimization Curve

Pressing and rotate
along x-axis

Figure 6: Real-to-sim tactile task. We show the final stage of the tactile marker before and after
optimization. The red points are the 2d marker position in real world and the blue points are in
simulator.

Separating

Sim Real Real-heuristic
Folding-L Folding-U

RealReal
Figure 7: Real-world manipulation results.

bending stiffness is estimated to be sufficiently large to impart velocity to the object. The success in
the Folding task further demonstrates the model’s awareness of the dynamic properties of the paper,
a result attributed to the effectiveness of our real-to-sim process.

E SPEED PERFORMANCE

In ThinShellLab, both the forward and backward passes are parallelized on a single GPU. The
major bottlenecks of the running time are 1) linear equation solving at each iteration of Newton’s
method and 2) Hessian matrices building and SPD projecting. For Hessian matrices, we use
the Taichi programming language to process the submatrices for independent elements in parallel.
We also implement the QR iteration in Taichi to project each submatrix onto a manifold of SPD

20

Published as a conference paper at ICLR 2024

(symmetric positive definite) matrices. For linear equation solving, we use a Python binding of the
cuSPARSE library, which supports solving sparse matrices using Cholesky Factorization on GPU.
The remaining parts of the simulation (e.g., line search and collision detection) are fast enough and
therefore can be negligible. Collision detection is efficiently solved by space hashing using Taichi’s
sparse data structure.

To benchmark the running speed of the simulation, we test our simulator on the Forming task, which
contains a typical scene with 1698 DoFs involving both volumetric and thin-shell deformable bodies.
The test is done on a single RTX 4090. On average, the forward/backward passes take 36.41 s / 4.67
s respectively for 100 timesteps, i.e., framerates of 2.74 fps / 21.41 fps. In comparison, DiffCloth
reports framerates at 0.73 fps / 2.72 fps using the same Newton-Cholesky method and 7.14 fps
/ 17.54 fps using the fast PD acceleration, both under a scene with 2469 DoFs. C-IPC reports a
framerate at 0.024 fps for forward simulation of a thin-shell scene with 18.3K DoFs.

In practice, it takes about 3 hours to train a policy for one task.

While we run our experiments on a single GPU, it is also possible to run multiple environments on
different GPUs in parallel. We didn’t do this because gradient-based trajectory optimization methods
do not benefit from parallel environments.

F FUTURE DIRECTIONS

Through the evaluation of various methods in our benchmark tasks of thin-shell manipulation, we
have concluded that reinforcement learning algorithms exhibit limited data efficiency. This inef-
ficiency arises from the sensitivity of thin-shell materials and the heightened complexity of their
states. Simultaneously, gradient-based methods face challenges in reliability within contact-rich
scenarios.While sample-based methods, such as CMA-ES, generally perform well, they suffer from
reduced data efficiency in later episodes and intricate settings. Consequently, we propose a hybrid
approach that combines the strengths of CMA-ES and gradient-based methods to achieve superior
results.

In terms of future work, we recommend exploring closed-loop control under varied parameters,
initializations, and tasks. Currently, our focus has primarily been on open-loop methods like CMA-
ES and gradient-based methods. We posit that an avenue worth exploring involves leveraging the
synergy between reinforcement learning and gradient methods (Mora et al., 2021) for improved
data efficiency in closed-loop control. Additionally, an alternative strategy could involve collecting
successful trajectories under diverse settings using open-loop methods and subsequently employing
a neural network for imitation learning. This approach aims to address generalization challenges
rather than optimization problems.

21

	Introduction
	Related Work
	Simulation Engines
	Material Modelling
	Frictional Contact Modelling
	Gradient Back-propagation
	Constraint Simulation

	ThinShellLab Benchmark
	Benchmarking Interface
	Manipulation Tasks
	Inverse Design Tasks

	Experiment
	Method Evaluation with Manipulation Tasks
	Results of Inverse Design Tasks
	Real-world Experiment

	Conclusion and Future Work
	Implementation Details
	Forward Simulation
	Gradient Back-propagation
	Collision Detection and Contact Handling
	Energy Calculation
	Contact Energy
	Elastic Energy
	Thin-Shell Energy
	Back-Propagation

	Rendering

	Details of Manipulation Tasks
	Task Details
	Reward
	More Analysis
	Success indicator

	Real-to-sim System Identification Tasks
	Real-world Manipulation Experiment
	Speed Performance
	Future Directions

