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A Sample Complexity Results from Existing Literature

In this section we discuss how to adapt existing linear bandit results (mostly in the regret setting) to
sample complexity results.

A.1 Sample Complexity Lower Bounds

For the large action regime (i.e., min{ln
∑
s |As|, d} = d), the lower bound ≈ d2/ε2 follows by

using the same hypercube construction as Lattimore and Szepesvári (2020, Theorem 24.1).

For the small action regime (i.e., min{ln
∑
s |As|, d} = ln

∑
s |As|). If O(|A|) = d, and we ignore

the ln
∑
s |As| term in sample complexity, the lower bound ≈ d/ε2 follows by considering a bandit

instance with (d) orthogonal arms in Rd. This is equivalent to a multi armed bandit problem, and
the sample complexity lower bound then follows from Mannor and Tsitsiklis (2004, Theorem 1).

A.2 Sample Complexity Upper Bounds

The upper bounds come from an instantiations of a general reduction in Jin et al. (2018, Section
3.1).
Lemma 3 (Regret to sample complexity). Running the algorithm in Abbasi-Yadkori et al. (2011)
for Ω(d

2

ε2 ) steps induces a ε-optimal policy.

Proof. First of all, Abbasi-Yadkori et al. (2011) achieve a regret after N timesteps of at most d
√
N ,

meaning that
∑N
t=1(r(st, π

?(st))− r(st, πt(st))) ≤ O(d
√
N).

Note that πt is independent of st, by the Azuma martingale concentration bound we get∑N
t=1(Esr(s, π?(s)) − Esr(s, πt(s))) ≤ O(d

√
N). Consider the average policy π(s) =

πt(s) w.p. 1/N . We get EπEs[r(s, π(s))] ≥ Es[r(s, π?(s))] − O(d/
√
N). So when N ≥ Ω(d

2

ε2 )
the average policy played from timestep 1 to N is at most ε-suboptimal.

B Proof of Theorem 1

Proof. We start by invoking Proposition 2 (Linear Regression with Union Bound). Define a short-
hand for the RHS of proposition 2√

β
def
= min{α1, α2}+

√
λreg‖θ?‖2 (13)

With a rescaling on δ we write

P

∀(s, a) : |φ(s, a)>(θ? − θ̂)| . ‖φ(s, a)‖(Σ′N )−1 ln(N)
√
β︸ ︷︷ ︸

E1

 ≥ 1− δ

4
. (14)

Notice that under the event E1 above

Es∼µ max
a∈As

|φ(s, a)>(θ? − θ̂)| ≤ ln(N)
√
β Es∼µ max

a∈As
‖φ(s, a)‖(Σ′N )−1 = ln(N)

√
βu′N
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Recall that K is the number of policy switches by the sampler and Lemma 16 gives K = Õ(d). We
set

λreg = Ω(ln(d/δ)), (15)

M = Ω

(
KN

λreg
ln

d2N

λregδ

)
, (16)

then Lemma 4 (Relations between Offline and Online Uncertainty) relates the expected online un-
certainty u′N with the expected offline uncertainty uM

P

u′N . uM︸ ︷︷ ︸
E2

 ≥ 1− δ

2
(17)

Finally, the expected offline uncertainty is bounded by in Lemma 5 (Offline Expected Uncertainty)
chained with Lemma 7 (Sum of Observed Uncertainties)

P

uM .
1

M
ln

1

δ
+

√
1

αM
d ln

(
dλreg +M

d

)
︸ ︷︷ ︸

E3

 ≥ 1− δ

4
. (18)

A union bound over the events E1, E2, E3 and chaining the statements now produces with probability
at least 1− δ

Es∼µ max
a∈As

|φ(s, a)>(θ? − θ̂)| . ln(N)
√
β

M
ln

1

δ
+ ln(N)

√
β

αM
d ln

(
dλreg +M

d

)
(19)

.
ln(N)

√
β

M
ln

1

δ
+ ln(N)

√
β

N
d ln

(
dλreg +M

d

)
(20)

after recalling α = N/M . As a result, we set

N = Ω

(
dβ

ε2
ln3

(
λreg +

d2β

λregεδ

))
and

M = Ω

(
Kdβ

λregε2
ln4

(
λreg +

d2β

λregεδ

))
.

As a result, we satisfy the preconditions in Eq. (16) because

KN

λreg
ln

d2N

λregδ

=
K dβ

ε2 ln3
(
λreg + d2β

λregεδ

)
λreg

ln

(
d2

λregδ

dβ

ε2
ln3

(
λreg +

d2β

λregεδ

))
.

Kdβ

λregε2
ln3

(
λreg +

d2β

λregεδ

)
3 ln

(
d

λregδ

dβ

ε
ln

(
λreg +

d2β

λregεδ

))
(Note that dβ

λregδ
≥ 1)

.
Kdβ

λregε2
ln4

(
λreg +

d2β

λregεδ

)
.

Note that ε ≤ Kd
√
β/λreg. Then

ln(N)
√
β

M
ln

1

δ
.

ε ln(N)

ln4
(
λreg + d2β

λregεδ

) ln
1

δ
(21)

By the facts ln(x ln(y)) ≤ ln(xy) ≤ 2 ln(max(x, y)) and ln(xk) = k ln(x), we have

ln(N) = ln

(
dβ

ε2
ln3

(
λreg +

d2β

λregεδ

))
≤ 3 ln

(
dβ

ε
ln

(
λreg +

d2β

λregεδ

))
(22)
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≤ 6 ln

(
max

(
dβ

ε
, λreg +

d2β

λregεδ

))
≤ 6 ln

(
λreg +

d2β

λregεδ

)
., (23)

since λ is at most d so d
λδ ≥ 1. Continuing Eq. (21), we get

ln(N)
√
β

M
ln

1

δ
.

ε ln(N)

ln4
(
λreg + d2β

λregεδ

) ln
1

δ
. ε. (24)

Note also that under this choice for N the right most term of Eq. (20) can be upper bounded by

ln(N)

√
β

N
d ln

(
dλreg +M

d

)
. ε ln(N)

√
ln−3

(
λreg +

d2β

λregεδ

)
ln

(
dλreg +M

d

)
. (25)

Recall that K = Õ(d) ≤ O(d2). The logarithmic term can be upper bounded by

ln

(
dλreg +M

d

)
= ln

(
λreg +

Kβ

λregε2
ln4

(
λreg +

d2β

λregεδ

))
(26)

. ln

(
λreg +

d2β

λregε2
ln4

(
λreg +

d2β

λregεδ

))
(27)

≤ 4 ln

(
λreg +

d2β

λregε
ln

(
λreg +

d2β

λregεδ

))
(28)

≤ 8 ln

(
λreg +

d2β

λregεδ

)
. (29)

Now we continue with Eq. (25)

ε ln(N)

√
ln−3

(
λreg +

d2β

λregεδ

)
ln

(
dλreg +M

d

)

. ε ln(N)

√
ln−2

(
λreg +

d2β

λregεδ

)

. ε ln

(
λreg +

d2β

λregεδ

)√
ln−2

(
λreg +

d2β

λregεδ

)
. ε. (By Eq. (23))

Rescaling ε by a constant, we ensure

P

(
Es∼µ max

a∈As
|φ(s, a)>(θ? − θ̂)| ≤ ε

)
≥ 1− δ. (30)

Now we prove Eq. (6). Let π?(s)
def
= arg maxa∈As φ(s, a)>θ?. Define ∆(s)

def
=

maxa∈As |φ(s, a)>(θ? − θ̂)| for shorthand. It follows immediately that

φ(s, π̂(a))
>
θ? ≥ φ(s, π̂(a))

>
θ̂ −∆(s), (31)

φ(s, π?(a))
>
θ? ≤ φ(s, π?(a))

>
θ̂ + ∆(s). (32)

By the definition of π̂, we have

φ(s, π̂(a))
>
θ̂ ≥ φ(s, π?(a))

>
θ̂. (33)

Combining Eqs. (31), (32), and (33) we get

φ(s, π̂(a))
>
θ? ≥ φ(s, π?(a))

>
θ? − 2∆(s). (34)

Consequently,

Es∼µ
[
(φ(s, π?(a))− φ(s, π(a)))

>
θ?
]
≤ 2Es∼µ [∆(s)]. (35)

As a result, under the same event indicated by Eq. (30), we get

Es∼µ
[
(φ(s, π?(s))− φ(s, π̂(s)))

>
θ?
]
≤ 2ε, (36)

which is exactly Eq. (6).
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C Linear Regression

Proposition 1 (Linear Regression Non-Adaptive Setting). Consider drawing n i.i.d. copies of φi
from some fixed distribution, and define

θ̂ =

(
n∑
i=1

φiφ
>
i + λregI

)−1 n∑
i=1

φiyi

where
yi = φ>i θ

? + ηi (37)
for some fixed θ? and ηi is mean zero 1-subgaussian conditioned on φi. Then for any fixed vector x

P

(
x>(θ? − θ̂) ≤ ‖x‖Σ−1

(√
2 ln

2

δ
+
√
λreg‖θ?‖2

))
≥ 1− δ.

Proof.

x>(θ? − θ̂) = x>θ? − x>
(

n∑
i=1

φiφ
>
i + λregI

)−1( n∑
i=1

φi
(
φ>i θ

? + ηn
)

+ λregθ
? − λregθ?

)
(38)

= −x>Σ−1
n∑
i=1

φiηi + λregx
>Σ−1θ?. (39)

Using Cauchy-Schwartz we have

λregx
>Σ−1θ? ≤ λreg‖x‖Σ−1‖θ?‖Σ−1 . (40)

We have that λreg‖θ?‖Σ−1 ≤
√
λreg‖θ?‖2. Since the feature vectors φi’s are sampled from a fixed

distribution, conditioned on the sampled state-actions φi, both the covariance matrix Σ is fixed and
the noise ηi is independent and 1 sub-Gaussian. Define vi = xTΣ−1φiηi. Then conditioned on
the sampled state-actions φi, the vs are independent random (xTΣ−1φi)

2 sub-Gaussian random
variables and we can apply Hoeffding’s inequality, conditioned on the observed state-action features
φi:

P

| n∑
i=1

x>Σ−1φiηi| ≤

√√√√2

n∑
i=1

(x>Σ−1φi)2 ln
2

δ
= ‖x‖Σ−1

√
2 ln

2

δ

 ≥ 1− δ. (41)

Combining with the regularization part, we conclude.

Proposition 2 (Linear Regression with Union Bound). In the same setting as proposition 1 we have
that

P
(
∀(s, a) : φ(s, a)>(θ? − θ̂) ≤ ‖φ(s, a)‖Σ−1

(
min{α1, α2}+

√
λreg‖θ?‖2

))
≥ 1− δ.

where

α1
def
=

√
2 ln 2|

∑
s

As|+ ln
1

δ
(42)

α2
def
= 2

√
2d ln 6 + ln

1

δ
(43)

Proof. The proof essentially follows from taking the sharper of two results obtained as follows:

1. Invoke proposition 1 with a union bound over the state-action space (this gives the bound
with the α1 term)

2. This follows from a discretization argument; see e.g., (Lattimore and Szepesvári, 2020), in
particular, their equation 20.3.
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D Bounding the Uncertainty

We use the notation um = Em Um and u′n = E′n U ′n for short.

Lemma 4 (Relations between Offline and Online Uncertainty). If λreg = Ω(ln d
δ ) and M =

Ω
(
KN
λreg

ln dNK
λregδ

)
, upon termination of algorithms 1 and 2 it holds that

P (u′N . uM ) ≥ 1− δ

2

where the probability is over the offline context dataset C = {s1, . . . , sM} and the online context
dataset C′ = {s′1, . . . , s′N}.

Proof. Let d1, . . . , dM be the conditional distributions of the feature vectors sampled at timesteps
1, . . . , n in algorithm 1 after the algorithm has terminated. Conditioned on FM = σ(s1, . . . , sM ),
the di’s are non-random; let

Σ = α

M∑
i=1

Eφ∼di φφ> + λregI (44)

be the conditional expectation of the cumulative covariance matrix and let

Σ′n =

n∑
i=1

(φ′i)(φ
′
i)
> + λregI (45)

be the cumulative covariance matrix experienced in algorithm 2 where φ′i
def
= φ(s′n, a

′
n) is the

sampled feature during the execution of algorithm 1. If λreg = Ω(ln d
δ ) andM = Ω

(
KN
λreg

ln dNK
λregδ

)
we obtain from Lemma 14 (Matrix Upper Bound Offline Phase) and Lemma 15 (Matrix Upper
Bound Online Phase)

P
(
∀x, ‖x‖2 ≤ 1 : ‖x‖

Σ
−1 ≤ 3 ‖x‖Σ−1

M

)
≥ 1− δ

4
(46)

P
(
∀x, ‖x‖2 ≤ 1 : ‖x‖(Σ′N )−1 ≤ 9 ‖x‖

Σ
−1

)
≥ 1− δ

4
. (47)

Define the policy maximizing the online uncertainty

π′n(s) = arg max
a∈As

‖φ(s, a)‖(Σ′n)−1 . (48)

Under the two above events we can write

u′N
def
= Es∼µ max

a∈As
‖φ(s, a)‖(Σ′N )−1 (49)

= Es∼µ ‖φ(s, π′N (s))‖(Σ′N )−1 (50)

≤ 9Es∼µ ‖φ(s, π′N (s))‖
Σ
−1 (51)

≤ 27Es∼µ ‖φ(s, π′N (s))‖Σ−1
M

(52)

≤ 27Es∼µ max
a
‖φ(s, a)‖Σ−1

M
(53)

≤ 27Es∼µ max
a
‖φ(s, a)‖Σ−1

M
(54)

= 27uM . (55)

Lemma 5 (Offline Expected Uncertainty). We have that

P

(
uM ≤

1

M

M∑
m=1

um .
1

M

[
ln

1

δ
+

M∑
m=1

Um

]
def
=
R(M, δ4 )

M

)
≥ 1− δ

4
.
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Proof. Consider the event that the sum of the predictable means
∑M
m=1 um =

∑M
m=1 E[Um | Fm]

does not deviate significantly from
∑M
m=1 Um:

E(δ)
def
=

{
M∑
n=1

um ≤
1

4

c1(δ) +

√√√√c21(δ) + 4

(
M∑
m=1

Um + c2(δ)

)2

def
= Rhs(M, δ)

}
. (56)

Using Theorem 3 (Reverse Bernstein for Martingales) (which also defines c1, c2) we obtain

P (E(δ/4)) ≥ 1− δ

4
. (57)

From Lemma 6 (Decreasing Uncertainty) we know that the sequence {un}N+1
n=1 is surely decreasing,

which means that the last element must be less than the average:

uM ≤
1

M

M∑
n=1

um =
Rhs(M, δ/4)

M
(58)

where in particular the equality holds under the event E(δ). Finally using Cauchy-Schwartz we
conclude that under the same event

M∑
n=1

um . c21(δ) + c2(δ) +

M∑
m=1

Um
def
= R(M, δ). (59)

Lemma 6 (Decreasing Uncertainty). For every n it holds that

un+1 ≤ un.

Proof. By linear algebra, we must have

Σn+1 � Σn −→ Σ−1
n+1 � Σ−1

n

Using the definitions we have:

un+1 = Es∼µ max
a∼As

‖φ(s, a)‖Σ−1
n+1

(60)

≤ Es∼µ max
a∼As

‖φ(s, a)‖Σ−1
n

(61)

= un. (62)

Lemma 7 (Sum of Observed Uncertainties). If λreg ≥ 1 and and α ≤ 1 then

D
def
=

M∑
n=1

Um .

√
M

α
d ln

(
dλreg +M

d

)
. (63)

Proof. Let {φm} be the feature vectors experienced during the offline phase; we have

M∑
m=1

Um =

M∑
m=1

‖φm‖Σ−1
m

(64)

=

M∑
m=1

‖φm‖(α∑m
j=1 φjφj+λregI)

−1 (65)

≤

√√√√M

M∑
m=1

‖φm‖2
(α

∑m
j=1 φjφj+λregI)

−1 (66)
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=

√√√√M

α

M∑
m=1

‖
√
αφm‖2

(
∑m
j=1

√
αφj
√
αφj+λregI)

−1 (67)

≤

√√√√√√√M

α
× 3× ln

det
(∑M

j=1

√
αφj
√
αφ>j + λregI

)
det (λregI)︸ ︷︷ ︸

def
= I

(68)

where the first inequality follows from Cauchy-Schwartz. The second inequality follows from
Lemma 8 (Elliptical Potential Argument Lemma with Doubling), where the precondition for
Lemma 8 (Elliptical Potential Argument Lemma with Doubling) is satisfied by Lemma 9 (Maxi-
mum Determinant Ratio) since α ≤ 1. Finally, to bound the information gain I, note ||

√
αφi||2 ≤ 1

since α ≤ 1. Then (Abbasi-Yadkori et al., 2011)’s Lemma 11

ln det

 M∑
j=1

√
αφj
√
αφTj + λregI

− ln det (λregI))

≤ d ln((Tr(λregI) +M)/d)− ln det(λregI)

Since

ln det (λregI) = d ln (λreg) ≥ 1. (69)

Then

ln det

 M∑
j=1

√
αφj
√
αφ>j + λregI

 ≤ d ln

(
dλreg +M

d

)
(70)

Lemma 8 (Elliptical Potential Argument Lemma with Doubling). (see (Zanette et al., 2021,
Lemma 36)) Let x1, · · · , xM be a sequence of vectors such that ‖xi‖2 ≤ 1. Define Σm =

λregI +
∑m−1
i=1 xix

>
i . Suppose m ≤ m satisfies det(Σm) ≤ 4 det(Σm). Then we have

M∑
m=1

‖xi‖Σ−1
m
≤ 3 ln

det(ΣM+1)

det(λregI)
. (71)

Lemma 9 (Maximum Determinant Ratio). (see (Zanette et al., 2021, Lemma 34)) Let x1, · · · , xM
be a sequence of vectors such that ‖xi‖2 ≤ 1. and assume λ ≥ 1. Define Σm = λregI +∑m−1
i=1 xix

>
i . Then for m ≤ m we have det(Σm) ≤ 4 det(Σm).

E Matrix Concentration Inequalities

In this section we present matrix concentration inequalities used in our proof.

E.1 Known Matrix Concentration Inequalities

The following result about eigenvalues lower and upper bounds is well known.
Lemma 10 (Theorem 1.1 of Tropp (2012)). LetX1, · · · , Xn be a sequence of independent, positive
semi-definite, self-adjoint matrices with dimension d. Suppose λmax(Xk) ≤ R almost surely. Define
µmin = λmin(

∑
k EXk) and µmax = λmax(

∑
k EXk). Then

Pr

(
λmin

(
n∑
k=1

Xk

)
≤ (1− δ)µmin

)
≤ d
(

e−δ

(1− δ)1−δ

)µmin/R

for δ ∈ [0, 1), (72)

Pr

(
λmax

(
n∑
k=1

Xk

)
≥ (1 + δ)µmax

)
≤ d
(

eδ

(1 + δ)1+δ

)µmax/R

for δ ≥ 0. (73)
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We loosen the above inequalities to make them more amenable to a direct use.
Corollary 1. In the setting of Lemma 10, with δ ∈ [0, 1]

Pr

(
λmin

(
n∑
k=1

Xk

)
≤ (1− δ)µmin

)
≤ d
(

1− δ2

2

)µmin/R

, (74)

Pr

(
λmax

(
n∑
k=1

Xk

)
≥ (1 + δ)µmax

)
≤ d
(

1− δ2

4

)µmax/R

. (75)

In addition, for any µ ≥ µmax,

Pr

(
λmax

(
n∑
k=1

Xk

)
≥ 2µ

)
≤ d exp (−µ/(4R)). (76)

Proof. The first two inequalities follows from the fact that ∀δ ∈ [0, 1]

eδ

(1 + δ)1+δ
≤ 1− δ2

4
(77)

e−δ

(1− δ)1−δ ≤ 1− δ2

2
. (78)

Now we prove Eq. (76). Let r = µ/µmax. Since r ≥ 1 we have

Pr

(
λmax

(
n∑
k=1

Xk

)
≥ (1 + δ)µ

)
= Pr

(
λmax

(
n∑
k=1

Xk

)
≥ (r + rδ)µmax

)
(79)

≤ Pr

(
λmax

(
n∑
k=1

Xk

)
≥ (1 + rδ)µmax

)
≤ d
(

erδ

(1 + rδ)1+rδ

)µmax/R

, (80)

where the last inequality is due to Lemma 10.

By basic algebra we have ex

(1+x)1+x ≤ e
−x/4 for all x ≥ 1. As a result, let δ = 1 we have

d

(
er

(1 + r)1+r

)µmax/R

≤ d exp
(
−rµmax

4R

)
= d exp

(
− µ

4R

)
. (81)

Therefore,

Pr

(
λmax

(
n∑
k=1

Xk

)
≥ 2µ

)
≤ d exp

(
− µ

4R

)
. (82)

which completes the proof.

E.2 Matrix Concentration Inequalities in All Directions

In the following development we need to ‘sandwich’ the cumulative matrix around its expectation;
as a step towards this, we first derive concentration inequalities as a function of the minimum eigen-
value.

For the following lemma, see also Lemma 20 (Ruan et al., 2020).
Lemma 11 (Matrix Upper and Lower Bound with Minimum Eigenvalue). Let X1, · · · , Xn ∼ D be
i.i.d. samples from D where Xk ∈ Rd×d. Suppose Xk is positive semi-definite for all k ∈ [n] and
λmax(Xk) ≤ 1 almost surely. Let λ = λmin(EX∼DX) > 0. Then for δ ∈ [0, 1] we have

Pr

(
1

n

n∑
k=1

Xk 4 (1 + δ)E[X]

)
≥ 1− d

(
1− δ2

4

)nλ
(83)

Pr

(
1

n

n∑
k=1

Xk < (1− δ)E[X]

)
≥ 1− d

(
1− δ2

2

)nλ
. (84)
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Proof. We prove the first inequality first. Let Σ = E[X] and define Y = Σ−1/2XΣ−1/2. Then
using linearity of expectation we have

E[Yk] = E[Σ−1/2XkΣ−1/2] = Σ−1/2 (EXk) Σ−1/2 = Σ−1/2ΣΣ−1/2 = I. (85)

In addition,
‖Yk‖op ≤

∥∥∥Σ−1/2
∥∥∥

op
‖Xk‖op

∥∥∥Σ−1/2
∥∥∥

op
≤ 1/λ

almost surely. As a result, λmax(Y >k ) ≤ 1/λ. Now corollary 1 gives (with µmax = µmin = n)

Pr

(
λmax

(
n∑
k=1

Yk

)
≤ (1− δ)n

)
≤ d

(
1− δ2

2

)nλ
, (86)

Pr

(
λmax

(
n∑
k=1

Yk

)
≥ (1 + δ)n

)
≤ d

(
1− δ2

4

)nλ
. (87)

Now, to derive the result for δ ∈ [0, 1] consider

Pr

(
1

n

n∑
k=1

Xk 4 (1 + δ)E[X]

)
= Pr

(
1

n

n∑
k=1

Yk 4 (1 + δ)I

)
(By Eq.(85))

= Pr

(
λmax

(
n∑
k=1

Yk

)
≤ (1 + δ)n

)

=1− Pr

(
λmax

(
n∑
k=1

Yk

)
> (1 + δ)n

)

≥1− d
(

1− δ2

4

)nλ
. (By Eq. (86))

Finally, to derive the other statement we proceed similarly. We have

Pr

(
1

n

n∑
k=1

Xk < (1− δ)E[X]

)
= Pr

(
1

n

n∑
k=1

Yk < (1− δ)I

)
(By Eq.(85))

= Pr

(
λmax

(
n∑
k=1

Yk

)
≥ (1− δ)n

)

=1− Pr

(
λmax

(
n∑
k=1

Yk

)
< (1− δ)n

)

≥1− d
(

1− δ2

2

)nλ
. (By Eq. (87))

Using the lemma just derived, we can derive a matrix upper bound (in all directions) that does not
depend on the minimum eigenvalue.

Lemma 12 (Matrix Upper Bound). Let X1, · · · , Xn be i.i.d. samples from D where Xk ∈ Rd×d.
Suppose Xk is positive semi-definite and ‖Xk‖op ≤ 1 for all k ∈ [n] almost surely. For any fixed
λ > 0,

Pr

(
1

n

n∑
k=1

Xk 4 10λI + 3EX∼D[X]

)
≥ 1− 2d exp

(
−nλ

4

)
. (88)

Proof. Let Σ = Ex∼D[X]. Consider the spectrum decomposition of Σ, denoted by Σ =∑d
k=1 λkvkv

>
k . Without loss of generality, we assume λ1 ≥ λ2 ≥ · · · ≥ λd. Let R = sup{k :

22



λk ≥ λ}. Define P+ =
∑R
k=1 vkv

>
k , P− =

∑d
k=R+1 vkv

>
k and Q =

∑R
k=1 vke

>
k ∈ Rd×R where

ek ∈ RR is the k-th basis for R-dimensional space.

Since {vk} is a set of orthogonal basis, we have P+ + P− = I. By algebraic manipulation we get

1

n

n∑
k=1

Xk = (P+ + P−)>

(
1

n

n∑
k=1

Xk

)
(P+ + P−) (89)

=
5

4n

n∑
k=1

P>+XkP+ −
1

n

n∑
k=1

(
1

2
P+ − 2P−

)>
Xk

(
1

2
P+ − 2P−

)
+

5

n

n∑
k=1

P>−XkP−. (90)

Note that for any u ∈ RR we have u>Q>ΣQu =
∑R
k=1 λk 〈u, ek〉

2 ≥ λ ‖u‖22 . As a result,
λmin(Q>ΣQ) = λmin(Ex∼D Q>XQ) ≥ λ. Consequently, applying Lemma 11 we get

Pr

(
1

n

n∑
k=1

P>+XkP+ 4 2EX∼D[P>+XP+]

)

= Pr

(
1

n

n∑
k=1

QQ>XkQQ
> 4 2EX∼D[QQ>XQQ>]

)
(By the definition of Q.)

≥ Pr

(
1

n

n∑
k=1

Q>XkQ 4 2EX∼D[Q>XQ]

)

≥ 1− d
(

1− 1

4

)nλ
≥ 1− d exp

(
−nλ

4

)
.

[Note we cannot directly apply Lemma 11 to the top of the above sequence because that lemma
requires a minimum eigenvalue greater than 0 and P>+XkP+ is not full rank.]

Next, by the linearity of expectation we get EX∼D[P+XP
>
+ ] = P+(EX∼D[X])P>+ = P+ΣP>+ .

Recall that the spectrum decomposition gives Σ =
∑d
k=1 λkvkv

>
k , where 〈vk, vj〉 = I [j = k]. As

a result,

P>+ ΣP+ =

(
R∑
k=1

vkv
>
k

)(
d∑
k=1

λkvkv
>
k

)(
R∑
k=1

vkv
>
k

)
(91)

=

(
R∑
k=1

λkvkv
>
k

)
4

(
d∑
k=1

λkvkv
>
k

)
= Σ. (92)

Consequently we get EX∼D[P+X
>P+] = P>+ ΣP+ 4 Σ = EX∼D[X]. Therefore we have

Pr

(
1

n

n∑
k=1

P>+XkP+ 4 2EX∼D[X]

)
≥ 1− d exp

(
−nλ

4

)
. (93)

On the other hand, we upper bound the third term in Eq. (90) by Lemma 10. Let Yk = P>−XkP−.
Then we have ‖Yk‖op ≤ ‖Xk‖op ≤ 1. In addition,

E[Yk] = P−ΣP>− . (94)

We claim that λmax(E[Yk]) ≤ λ. Indeed, for any v ∈ Sd−1 we have

v> E[Yk]v = v>P−ΣP>− v. (95)

Recall that P− =
∑d
k=1 I [λk < λ] vkv

>
k where {λk}, {vk} are the eigen-vectors and eigen-values

of Σ. For any v ∈ Sd−1, P>− v lies in the linear space spanned by {vi : λi < λ}. As a result,∥∥ΣP>− v
∥∥

2
≤ λ ‖v‖2 . Consequently,

v> E[Yk]v ≤
∥∥P>− v∥∥2

∥∥ΣP>− v
∥∥

2
≤ λ ‖v‖22 . (96)
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for all v ∈ Sd−1. Therefore we prove λmax(E[Yk]) ≤ λ.
Now apply corollary 1 on Yk and we get

Pr

(
1

n

n∑
k=1

Yk 4 2λI

)
≥ 1− d exp

(
−λn

4

)
. (97)

Under the high probability events described by Eq. (93) and Eq. (97), with probability at least
1− 2d exp(−λn/4) we get

1

n

n∑
k=1

Xk (98)

=
5

4n

n∑
k=1

P>+XkP+ −
1

n

n∑
k=1

(
1

2
P+ − 2P−

)>
Xk

(
1

2
P+ − 2P−

)
+

5

n

n∑
k=1

P>−XkP− (99)

4
5

4n

n∑
k=1

P>+XkP+ +
5

n

n∑
k=1

P>−XkP− (100)

4
5

2
EX∼D[X] + 10λI. (101)

Likewise, we can easily obtain the following matrix lower bound without any dependence on the
minimum eigenvalue (see also Lemma 21 from (Ruan et al., 2020)).
Lemma 13 (Matrix Lower Bound). Let X1, · · · , Xn be i.i.d. samples from D where Xk ∈ Rd×d.
Suppose Xk is positive semi-definite and rank one and ‖Xk‖op ≤ 1 for all k ∈ [n] almost surely.
For any fixed λ ≥ 0

Pr

(
3λI +

1

n

n∑
k=1

Xk <
1

8
EX∼D[X]

)
≥ 1− 2d exp

(
−nλ

8

)
. (102)

Corollary 2. Let X1, · · · , Xn be i.i.d. samples from D where Xk ∈ Rd×d. Suppose Xk is positive
semi-definite, and ‖Xk‖op ≤ 1 for all k ∈ [n] almost surely. For any fixed t > 0 we have

Pr

(
∀m ≤ n,

m∑
k=1

Xk 4 10tI + 3mEX∼D[X]

)
≥ 1− 2nd exp (−t/4). (103)

(104)

Proof. For any fixed m ≤ n, applying lemma 12 with λ = t/m we get

Pr

(
m∑
k=1

Xk 4 10tI + 3mEX∼D[X]

)
= Pr

(
1

m

m∑
k=1

Xk 4 10
t

m
I + 3EX∼D[X]

)
(105)

≤ 1− 2d exp (−t/4). (106)

By union bound over m ∈ [n] we prove Eq. (103).

E.3 Relation Between Offline and Online Covariance Matrices

Notation: Let nk be the expected number of samples in the online phase allocated to policy πk.
Lemma 14 (Matrix Upper Bound Offline Phase). algorithm 1 produces a comulative covariance
matrix ΣM that satisfies

P
(
ΣM 4 3Σ

)
≥ 1− δ

4
(107)

as long as

M ≥ 160KN

λreg
ln

320dNK

λregδ
. (108)
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Proof. From Lemma 16 (Number of Switches) we know that at mostK distinct policies are produced
during the execution of algorithm 1 where K is defined in that lemma.

Let φ(k)
i be the i sampled feature during phase k. Let mk be the values that m takes on during

phase k. Note that although mk is a random variable, we have mk ≤ M almost surely. As a result,
applying corollary 2 with t =

λreg
10αK we get

P

(
mk∑
i=1

φ
(k)
i φ

(k),>
i 4

(λreg
αK

I + 2mk Eφ∼d(k) [φφ>]
))
≥ 1− 2dM exp

(
− λreg

40αK

)
. (109)

Now multiplying the event inside the probability by α = nk
mk

= N
M we get

Σ(k) def= α

mk∑
i=1

φ
(k)
i φ

(k),>
i 4

λreg
K

I + 2nk Eφ∼d(k) [φφ>]. (110)

After a union bound on the number of phases we can write

P

(
ΣM

def
=

K∑
k=1

Σ(k) + λregI 4 2λregI + 2

K∑
k=1

nk Eφ∼d(k) [φφ>]
def
= 2Σ

)
(111)

≥ 1− 2dMK exp

(
− λreg

40αK

)
. (112)

and substituting the value of α on the right hand side now gives

P
(
ΣM 4 3Σ

)
≥ 1− 2dMK exp

(
−λregM

40KN

)
. (113)

The final result follows from basic algebra.

Lemma 15 (Matrix Upper Bound Online Phase). Recall that

Σ′n =

n−1∑
j=1

φ(s′j , a
′
j)φ(s′j , a

′
j)
> + λregI, Σ = α

M∑
i=1

Eφ∼di φφ> + λregI. (114)

Algorithm 2 produces a cumulative covariance matrix Σ′N that satisfies

P
(
9Σ′N < Σ

)
≥ 1− δ

4
(115)

as long as λreg ≥ 24 ln 8d
δ .

Proof. Notice that conditioned on the run of algorithm 1, the distributions d(1), . . . , d(K) of the fea-
tures φ corresponding to the policies π(1), . . . , π(K) are fixed (non-random), hence Σ =

∑K
k=1 Σ(k)

is non-random. Also, let φ′i be the i feature vector collected during the online phase. Notice that
conditioned on all the random variables during the offline portion we can write

EΣ′N = λregI + E
N∑
i=1

(φ′i)(φ
′
i)
> (116)

= λregI +

K∑
k=1

E
n′k∑
i=1

Eφ∼d(k) φφ> (117)

where n′k is the number of times that policy π(k) is sampled during the online phase. Continuing,

= λregI +

K∑
k=1

En′k Eφ∼d(k) φφ> (118)

= λregI +

K∑
k=1

nk Eφ∼d(k) φφ> (119)
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def
= Σ. (120)

Now, apply Lemma 13 (Matrix Lower Bound) with λ = λreg/(3N) we get

P

(
8

(
3NλI +

N∑
i=1

(φ′i)(φ
′
i)
>

)
<

K∑
k=1

nk Eφ∼d(k) φφ>
)

(121)

≥ 1− 2d exp

(
−Nλ

8

)
= 1− 2d exp

(
−λreg

24

)
. (122)

Recall that Σ′N = λregI +
∑N
i=1(φ′i)(φ

′
i)
> and Σ = λregI +

∑K
k=1 nk Eφ∼d(k) φφ>. Eq. (121)

implies that

P

3NλI + 8

3Nλ︸︷︷︸
λreg

I +

N∑
i=1

(φ′i)(φ
′
i)
>

︸ ︷︷ ︸
Σ′N

 < 3NλI +

K∑
k=1

nk Eφ∼d(k) φφ>︸ ︷︷ ︸
Σ

 (123)

≥ 1− 2d exp

(
−λreg

24

)
. (124)

By setting λreg ≥ 24 ln 8d
δ we have

P
(
9Σ′N < Σ

)
≥ 1− δ/4. (125)

F Scalar Concentration Inequalities for Martingales

F.1 Bernstein Inequality for Martingales

The following lemma is the same as Theorem 1 from Beygelzimer et al. (2011) as is reported here
for completeness.
Theorem 2 (Bernstein’s Inequality for Martingales). Consider the stochastic process {Xt} adapted
to the filtration {Ft}. Assume Xt ≤ 1 almost surely. Then

∀λ ∈ (0, 1], P

(
T∑
t=1

Xt ≤ λ
T∑
t=1

EtX2
t +

1

λ
ln

1

δ

)
≥ 1− δ, (126)

which implies

P

 T∑
t=1

Xt ≤ 2

√√√√( T∑
t=1

EtX2
t

)
ln

1

δ
+ 2 ln

1

δ

 ≥ 1− δ. (127)

For completeness, we reprove the theorem below:

Proof. Define the random variable Mt as

Mt = Mt−1 exp(λXt − λ2 EtX2
t ) (128)

where in particular M0 = 1. Recall the inequality ex ≤ 1 + x+ x2 for x ≤ 1 and 1 + x ≤ ex:

EtMt = Mt−1 Et exp(λXt − λ2 EtX2
t ) (129)

≤Mt−1 Et
[
(1 + λXt + λ2X2

t )
]

exp(−λ2 EtX2
t ) (130)

≤Mt−1 exp(λ2 EtX2
t ) exp(−λ2 EtX2

t ) (131)
= Mt−1. (132)
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Thus {Mt} is a supermartingale sequence adapted to {Ft}. In particular, EMt ≤ M0 = 1 using
the tower property. Now by the Markov inequality

P

λ
T∑
t=1

Xt − λ2
T∑
t=1

EtX2
t︸ ︷︷ ︸

lnMt

> ln
1

δ

 = P

(
Mt >

1

δ

)
≤ EMt

1
δ

≤ δ (133)

This implies that with probability at least 1− δ the following event holds:

λ

T∑
t=1

Xt − λ2
T∑
t=1

EtX2
t = lnMt ≤ ln

1

δ
(134)

which is the first part of the thesis. Now, we choose λ. If
∑T
t=1 EtX2

t ≤ ln 1
δ then under the above

event we obtain with λ = 1 (the largest possible value)

T∑
t=1

Xt ≤
T∑
t=1

EtX2
t + ln

1

δ
≤ 2 ln

1

δ
. (135)

If conversely
∑T
t=1 EtX2

t ≥ ln 1
δ then let λ =

√
ln 1
δ∑T

t=1 EtX2
t

≤ 1 to obtain (still under the same

event)

T∑
t=1

Xt ≤ 2

√√√√( T∑
t=1

EtX2
t

)
ln

1

δ
. (136)

Therefore, summing the rhs of eqs. (135) and (136) to cover both cases we obtain the second part of
the thesis.

F.2 Reverse Bernstein Inequality for Martingales

Bernstein’s inequality bounds the sum a random variable
∑
tXt using second moment information∑

t VartXt; in our case (positive random variables in [0, 1]), the sum of the conditional variances∑
t VartXt is upper bounded by the sum of the means

∑
t EtXt.

This section provides the ‘reverse’ inequality: Assuming a bound on the sum a random variable∑
tXt, it bounds the conditional sum of the means

∑
t EtXt.

Theorem 3 (Reverse Bernstein for Martingales). Let (Σ,F ,P) be a probability space and consider

the stochastic process {Xt} adapted to the filtration {Ft}. Let EtXt
def
= E[Xt | Ft−1] be the

conditional expectation of Xt given Ft. If 0 ≤ Xt ≤ 1 then it holds that

P

 T∑
t=1

EtXt ≥
1

4

c1 +

√√√√c21 + 4

(
T∑
t=1

Xt + c2

)2 ≤ δ, c1 = 2

√
ln

1

δ
, c2 = 2 ln

1

δ

(137)

Proof. Consider the random ‘noise’

ξt
def
= EtXt −Xt (138)

which allows us to write

T∑
t=1

EtXt =

T∑
t

(ξt +Xt) (139)
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Then Theorem 2 (Bernstein’s Inequality for Martingales) ensures the following high probability

statement for appropriate c1 = 2
√

ln 1
δ , c2 = 2 ln 1

δ :

P

 T∑
t=1

ξt ≤ c1

√√√√ T∑
t=1

Etξ2
t + c2

 ≥ 1− δ. (140)

Notice that since 0 ≤ Xt ≤ 1 we have

Et ξ2
t = Et(Xt − EtXt)

2 (141)

= EtX2
t − (EtXt)

2 (142)

≤ EtX2
t (143)

≤ EtXt. (144)

Plugging back into the above display and using eq. (139) gives

P

 T∑
t=1

ξt =

T∑
t=1

(EtXt −Xt) ≤ c1

√√√√ T∑
t=1

EtXt + c2

 ≥ 1− δ (145)

or equivalently

P

 T∑
t=1

EtXt ≤
T∑
t=1

Xt + c1

√√√√ T∑
t=1

EtXt + c2

 ≥ 1− δ. (146)

Solving for
∑T
t=1 EtXt gives under such event

T∑
t=1

EtXt ≤
1

4

c1 +

√√√√c21 + 4

(
T∑
t=1

Xt + c2

)2

. (147)

G Additional Remarks

G.1 Hard Instance that Requires Exploration

Even with a fixed context, uniform exploration ignores the structure of the reward function, and is
therefore suboptimal. Consider the case where d = 2 and φ(1, 1) = (1, 0) and φ(1, i) = (0, 1) for
2 ≤ i ≤ A. The context is fixed and there are A actions. A uniform exploration requires Ω(A/ε2)
samples to estimate the reward for action 1. In contrast, the optimal exploration policy is

π(1) =

{
1, w.p. 1/2,
2, w.p. 1/2.

And the corresponding sample complexity is Õ(1/ε2).

On the other hand, the policy that ignores context is also suboptimal. Consider the policy πG(s)
that returns the G-optimal design on the action set As. The policy πG explores optimally for a fixed
context. Ruan et al. (2020)’s Lemma 4 implies that this policy achieves an online sample complexity
Õ(d3/ε2). For completeness, we also include a hard instance for πG. Let S = {s1, · · · , sk} and
As = {a1, · · · , ak+1}. Assume a uniform distribution over the state space S. The feature vector is
defined as follows.

φ(si, aj) =

{
ej , when j ≤ k,
ei+k, when j = k + 1.

(148)

Note that in this case, the dimension of the feature vector is d = 2k. For a fixed s ∈ S, the G-
optimal design returns the uniform exploration policy. As a result, the expected covariance matrix is
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Σ = Es∼S,a∼A φ(s, a)φ(s, a)> = diag(1/(k + 1), · · · , 1/(k + 1), 1/k(k + 1), · · · , 1/k(k + 1)).
It follows that

Es∼S max
a∈As

φ(s, a)>Σ−1φ(s, a) ≥ Es∼S φ(s, ak+1)>Σ−1φ(s, ak+1) = k(k + 1) = Ω(d2).

In contrast, the optimal exploration policy is

π(si) =

{
U({a1, · · · , ak}), w.p. 1/2,

ak+1, w.p. 1/2,
(149)

where U(·) denotes the uniform distribution. Correspondingly, we have Σ =
diag(1/2k, · · · , 1/2k), and

Es∼S max
a∈As

φ(s, a)>Σ−1φ(s, a) ≤ O(d). (150)

G.2 Remarks Regarding Ruan et al. (2020)

Section 6 of Ruan et al. (2020) argues that when λreg < 1/d, the covariance matrix doesn’t con-
centrate. Their construction works as follows. Consider a fixed offline dataset C with size M . The
context space is S = [d]. The action space isA1 = {1} andAs = {1, 2} for 2 ≤ s ≤ d. The feature
vector is defined as

φ(1, 1) = e1, φ(s, 1) = es, φ(s, 2) =

√
1− d

M
es +

√
d

M
e1. (151)

The context distribution µ is

µ(1) =
1

dM
, µ(s) =

1

d− 1

(
1− 1

dM

)
,∀s ≥ 2. (152)

Then with probability at least 1/d, C contains a single occurrence of context 1. Ruan et al. (2020)
argues that in this case, there exits a policy π such that the covariance on C deviates from the
population one when λreg < 1

d .

The policy is π(s) = 1. Let Σ̂ = λregI +
∑
si∈C φ(si, π(si))φ(si, π(si))

>. We can compute that

Es∼C max
a∈As

φ(s, a)>Σ̂−1φ(s, a) ≤ O(d/M). (153)

Now consider the true distribution µ. Let Σ = λregI + M Es∼µ φ(s, π(s))φ(s, π(s))>. By basic
algebra we get Σ = λregI +Mdiag(1/(dM), µ(2), · · · , µ(d)). As a result, we can compute

Es∼µ max
a∈As

φ(s, a)>Σ−1φ(s, a)

= µ(1)
d

2
+

d∑
s=2

µ(s) max

(
1

λreg +Mµ(s)
,

(
1− d

M

)
1

λreg +Mµ(s)
+

d

M

1

λreg + 1/d

)
≥ Ω(d2/M).

Note the inequality follows due to the rightmost term and substituting in λreg < 1
d . Comparing the

estimate of the empirical covariance with the true expectation, we observe the covariance matrix
doesn’t concentrate. Indeed, in the setting where λreg < 1, the concentration events E1, E2, E3
in the proof of Theorem 1 fail with constant probability. Since Ruan et al. (2020) focus on small
regularization setting, their algorithm first finds a “core” of the contexts. This procedure makes their
algorithm much more complex compared with ours, and increases the number of offline samples
required.

Now if we set λreg = 1, by the same computation we get

Es∼µ max
a∈As

φ(s, a)>Σ−1φ(s, a) ≤ Ω(d/M).

Hence, the concentration events hold and Theorem 1 gives a much tighter offline sample complexity.
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H Helper Lemmas

Lemma 16 (Number of Switches). Algorithm 1 generates at most K distinct policies:

K ≤ d ln2

(
1 +

M

dλreg

)
= Õ(d) (154)

Proof. Notice that det(Σ1) = λdreg and det(ΣM ) ≤ (λ+ M
d )d (see proof of lemma 11 in (Abbasi-

Yadkori et al., 2011)). Every time the policy changes the determinant of Σm at least doubles. Let K
denote the number of times the policy is updated. By induction,(

λreg +
M

d

)d
≥ det(ΣM ) ≥ 2K det(Σ1) ≥ 2Kλdreg (155)

Solving for K concludes.

I Additional Experiments and Information

I.1 Synthetic Dataset

Here we describe how the covariance matrices were defined for the synthetic experiment based
on the categories and actions. Recall that this applies for action a ∈ {1, 2, 3} and cate-
gory i ∈ {1, 2, 3}. Recall also that all covariance matrices Σa,i are diagonal of the form
diag(10−9, . . . , 10−9, 1, 10−9, . . . , 10−9) an differ only by the placement of the coordinate that is
equal to 1.

1. For category i = 1: (Σ1,1)11 = 1, (Σ2,1)22 = 1, (Σ3,1)33 = 1.
2. For category i = 2: (Σ1,2)44 = 1, (Σ2,2)11 = 1, (Σ3,2)55 = 1.
3. For category i = 3: (Σ1,3)66 = 1, (Σ2,3)77 = 1, (Σ3,3)11 = 1.

I.2 Yahoo! Learning to Rank Dataset

The Yahoo! dataset is available freely for research purposes through Yahoo! Webscope. Use of the
dataset required accepting an agreement not to share the original in a way that the dataset could be
reconstructed. The dataset is available at the following link:

https://webscope.sandbox.yahoo.com/catalog.php?datatype=c

The data consists entirely of numerical feature vectors and does not contain any identifiable or
offensive information. To run the experiments, we used a standard Amazon Web Services EC2
c5.xlarge instance with 4 vCPUs and 8gb of memory.

For the subsampling to create 300-dimensional feature vectors, we selected coordinates randomly
by sampling with replacement to include out of the full 700.

I.3 Additional Plots

In addition to the three choices of regularization shown in Figure 3 for the real-world dataset, we ran
additional more extreme values, but omitted them for clarity in the plot. In Figure 4, we see the same
algorithms plotted with both large values of regularization (≥ 1) and small values of regularization
(≤ 1).
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Figure 4: The left figure shows the sampler-planner (S-P) compared to the random algorithm with small regu-
larization λ ∈ {0.01, 0.1, 1.0}. The right shows the same for λ ∈ {1.0, 10.0, 100.0}.
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