A Proof of Theorem 4.1

Theorem (formal) Let # be the set of linear classifiers h(x) = Winy(t)Tiny + Wep(t)Tsp.
Consider any task that satisfies all the constraints in Section 3.1. in [2]. Consider a dataset S drawn
from D such that the empirical distribution of 2;,,, given 4, - y > 0 (denoted as (Ziny, ¥) ~ Diny)
is identical to the empirical distribution of 2;y, given x4, - y < 0. ¢ is the optimal perturbation
obtained by optimizing object (7)) or (9). ¢ can be seen as a random variable.

Let Winy(t)Tiny + wsp(t)zsp be initialized to the origin, and trained with MAT/LDAT with an
infinitesimal learning rate to minimize the exponential loss on S. Then, for any (z,y) € S, we have:

5+15y In| ;fi(ﬂ));+E] wep(1)B
Q(E,, ~D, catps U-p)° aid 12
((mu,y) Dznv[Mhl(t+ 1)]) — |winv(t)xinv‘7 ()
Sy - . 22M(1+6)-1) — 2(2M(1448)—1)
where € = 55 is a real number ?lose to 0, 1 : 7(%@)2 , Co : (inﬁ)%%@_éy)%ﬁ.
M = max w - x denotes the maximum value of the margin of the max-margin classifier @ on

res
S. Q) is the lower bound of a given function within a constant factor. Therefore, the lower
bound of the convergence rate does not increase monotonically with p under the condition that
2601+62+%+%6<0-

Proof. For brevity, we use w. and w, to represent w;,, and w,, respectively. Also, we use . to
represent T;,,. We use x. to represent x, since the spurious feature is correlated to the environment
E.. Let Sy, and S5 denote the subset of datapoints in S where z. -y < Oand z, -y > 0
respectively. Let D;,,,, denote the distribution over (z., y) induced by drawing (z, y) uniformly from
Smin. The corresponding marginal distribution of y is denoted as D,,. By the assumption of the
theorem, this distribution would be the same if 2 was drawn uniformly from S;,,.;. Then, the loss
function that is being minimized in this setting corresponds to:

L), y] = Bz, y)~Din,

[e=f @]
=E(.,y)~Din, [e
[

—[wezctwsze+(Wetws)5]y}

= E(s, y)~Din [P [weme+ws fy+(wetws)dly | (1—pe *[wcwrwsﬁer(waers)ﬂy]

= E (g, y)pin, 6 FeT WY [peOuFBIws 4 (1 pye(A=du)ws)]

The update on w, can be written as:
Ao, = _OLL(@).4]
ow,
= —E(a, gy, € TN [pem VTR (Gy 4 B) 4 (1 - p)ell O (5 — by)]

Proof of bounds on w,(t)x.. Using the result of [19]] and [2], we get
|we(t)ze| € [0.5In(1 4+ t),2M In(1 + t)]
for a sufficiently large ¢ and for all z € S.

Proof of the upper bound on w;. To calculate the lower bound of wg, we prove the upper bound
as auxiliary first. Note that Aw, decreases monotonically with ws. Assume that 5 > |J]| (this is
reasonable since the perturbation radius is usually smaller than the scale of the spurious feature). Let

Aw,; = 0, we get
1 p B+dy
(2= (28] = w.

260 "1—-p B—20y
Since Aw, decrease monotonically with w,, (which can be inferred from aaAwa =
e (wetolwey[_pe=(UtBw: (5y 4 §)2 + (1 — p)eP=oWw=(8 — 6y)?] < 0), when w, < wy,
Aw, > 0 and when w, > wp, Aw, < 0. As a result, for any system that is initialized at 0, w4 can

never cross the point wg. Thus, we get the upper bound of w;(t):

[p (B + oy
p B—dy

Wg = —

Ws (t) <wo =

%)

14

Proof of the lower bound on w,. We lower bound w; via the upper bound on wj as:

p(B+0y) s
(1—p)(B—dy)
e~ Ay [p(gy 4 B BUEe — [p(8 + oy)|E (1 - p)(B - dy)),
Next, using the upper bound on |w,(t)z.|, we get:
e~ 2M 1n(1+t)e—2Mdln(1+t)[p(5y+5)e—(5y+ﬁ)ws

Aws > E(xc y)NDML'u (zc+6)wcy [p((sy + 5)67(6:‘/+ﬂ)w5 - (]‘ - p) (ﬁ - 5y)[

=E@,,y)~Din,

A'LUS >]E(zcvy)ND

inv

— [p(B + 6y)]2 (1 — p)(8 — 5y)]*F 3]
1
= B, y)~Din, W[ﬁ?wy

— [p(B + 6y)]F 3 [(1 — p)(B — oy)]E T .

+ 5)6—(5y+,8)ws

For brevity, we denote the term p(dy + 3)e~ (9¥+#)ws as T and denote the term [p(5 + 6y))] ER [(1—

p)(B — 0y)]? 5435 a5 L. And in the following proof, we omit the expectation marker E also for
simplicity. It is clear that both 7" and L > 0. Here, T' — L > 0 since ws; < wp. Note that

Aw, = —W a“jf , rearranging this and integrating, we get:
Ws 1 t 1
dws > — .,
/0 p(B+ dy)e- Brovw. — 1 /0 (t + 1)2M(1+9)
In[p(B + 8y) — L] — In[p(8 + dy) — elFHov)w- L] N 1 1 1 |
(B+dy)L IM(1+6)—1 (1+¢)2MQ+e)-1"
Since for a sufficiently large ¢, 1 — W > 1, we have:
p(B +0y) — (B+dy)L

p(B + by) — 6(6+6y)wsL] ” 22M (1 +0) —1)’
we can further lower bound the right hand side by applying the inequality = > In(z + 1) for positive

xZ.
p(B + 0y) — (B+dy)L
ln[p(ﬁ + 0y) — e<ﬁ+6y)wsL] > ln[2(2M(1 +4)—1) +11.
Thus,
p(B + dy) — 14 (B+dy)L
p(B + dy) — eBronws T, 22M (1 +6) —1)°

Note that the denominator on the left side of the inequality is greater than O since 7' — L > 0.
Rearrange this inequality:
+ (B+5y)2p
eWs(B+0y) < 2(2M(1+4)—1)
1 + (B+dy)L
2(2M(1+9)—1)

Putting L = [p(8 + 6y)]%7% [(1—p)(B— 5y)]%+§—}; back into the inequality,
(B+5y)°p
Gwa(B+54) < L+ senareo-1

1oy 1,0y
1 4 BHp@E+oy) 2 [a-p)(s-sy)]* 3
2(2M(1+8)—1)
2(2M (146)—1)
P+ T GrenT

piH(1-p)iH p 22O
(Sy+8)2 2 (B—sy) Bt 2H

2M(1+8)-1) |, . 2(2M (146)—1) ¢ .— Sy
(B+oy)? 2 (5y+@)%—6(5_5y)%+6’ 2B

Letc; =
Put the expectation mark back into this inequality, finally, we get the lower bound on wy:

1 c1+p
S 1
Ws = (e, y)~Dinw [6 + é’y n Cs +p%76(1 _ p)%+6

15

To show that the lower bound on the dependency on spurious correlations induced by MAT and LDAT
does not increase monotonically with p under some conditions, we take the derivative of the obtained
lower bound g(p) in Theorem 4.1] with respect to p:

b < , c1+p :)
dg(p) _ cotpE “(l_p)2te
op Ip

Since the denominator of a%—;”) is positive, we pick out the numerator: co + (% + e)p% ~<(1-p) 3te

als - p 2 (1 —p)ate+ als+ e)p2 (1 —p) 2T+ (3 + €)p2 (1 — p)~27¢. In order to
study the positive and negative change of the numerator, we continue to derive it with respect to p
and obtain

P —p) L @t

4
; 9(p) d9(p) . :
Since we assume § > [6] and ¢; > 0, apz > 0and =5 increase with p monotonically.The
minimum of 6%7(;) is reached when p = % This minimum equals to 2ec; + co + % + %e. When

2ec; +co + % + %e < 0, the lower bound does not increase with p monotonically when p is within a
certain range (€ (0.5,1)).

O

B Detailed Statement of Theorem 2 in Work of Nagarajan, et al.

We now introduce the Theorem 2 in [2]]. Before introducing it, we first introduce the concept of the
easy-to-learn tasks in [2]), i.e. tasks with a set of constraints. The motivation of restricting ourselves
to the constrained set of tasks is that it prevents us from designing complex examples where ERM
is forced to rely on spurious features due to a not-so-fundamental factor. Each constraint forbids a
specific failure mode of ERM in OOD scenarios. The Theorem 2 in [2]] shows that even under such
favorable conditions for ERM, this classical method can also be perturbed by the spurious features.

Notations. For convenience, we will give some notations here again. Consider an input space
X and a label space Y € {—1,1}. Let D € D denote a distribution over X x). pp denotes
the probability density function (PDF) of D. Let H denote a class of classifiers h : X — R.
Consider a dataset .S drawn from D. Let Lp(h) := E(, ,)~p[h(z) - y < 0] the loss of h on D. Let
h* = arg minheHmaXDGDLD(h) denote the optimal classifier in the worst case. With an abuse of
notation, we also denote the PDF of the distribution over &j,, x X, as pp(+). Let Dyin denote the
distribution of the pooled training data. Assume that there exists a mapping ® : Xy, x Xp -+ X
such that each D € D is induced by a distribution over &y X Xp.

Definition B.1. Easy-to-learn tasks. Tasks that satisfy the following constraints are easy-to-learn.
1. Fully predictive invariant features. For all D € D, Lp(h*) = 0.
2. Identical invariant distribution. Across all D € D, pp(ziyy) is identical.
3. Conditional independence. For all D € D, zy, L Zjpny.
4

. Two-valued spurious features. We set x5, = R and the support of xg, in Dy is
5. Identity mapping. @ is the identity mapping i.e., & = (Zinv, Zsp).

Theorem B.2. (The Theorem 2 in [2]) Let H be the set of linear classifiers h(z) = Wiy - Timy +WepTsp.
Then, for any easy-to-learn task, continuous-time gradient descent training of Wiy, ()T, + Wyp (t)xsp
to minimize the exponential loss, satisfies:

lp —ctp p
/(s p(t n5
(+4/p(1 p)) < U?.p()/6 < (#) (13)
Mln(t + 1) |wmv : xmv| hl(t + 1)
where M = max;c swx where W is the max-margin classifier on S. ¢ := 2(2%71)-

16

Table 4: Hyperparameter setting of the experiment of Table[I] Figure[T] Figure[5] Table[7]and Table|[3]

Parameter Value
learning rate r 0.00005
batch size b 64
weight decay 0.001
drop out 0.1

AT perturbation radius € (excluding Figure 0.1
FGSM step size y (excluding Figure 1) 0.1

perturbation weight « learning rate n (MAT) 0.001
factor matrix A (B) learning rate p (LDAT) 0.01

C Experiment Details and Supplementary Experimental Results

C.1 Settings of the Toy Experiments

For the experiment in Table[T] Figure[I] Figure[5] Table[7] and Table[S] we use a fixed set of hyperpa-
rameters (see Table) instead of conducting a random search of 20 trials over the hyperparameter
distribution (the setting in [9]) for efficiency. We report the average across three independent runs.
For model selection method, training-domain validation [9]] is used for PACS, OfficeHome, and
VLCS. For NICO, an OOD validation set is adopted following [21]].

C.2 Experiment Setting and Additional Results of Table 2

Overall setup. We conduct a random search of 8 trials for PACS, OfficeHome, VLCS and 6 random
trials for NICO and Colored MNIST in the hyperparameter search space, instead of 20 trials adopted
in [9] for feasibility. We then average the best results for each hyperparameter combination and
dataset (according to each model selection criterion) across test domains (except for Colored MNIST
where we test on one biased domain only). Finally, we report the average of this number across three
independent runs, and its corresponding standard error. We run all datasets for 8000 epochs during
the training process.

Hyperparameter Search Space. We use a smaller hyperparameter search space than that in [9]. The
search space for PACS, OfficeHome, VLCS, NICO and Colored MNIST is shown in Table E} To
determine the search space of a hyperparameter for benchmark running, we first fix other parameters
and conduct a grid search to determine the approximate range of the better performances. Take the
learning rate n of the MAT matrices as an example, we fix k¥ = 20 and try different values of 1 on
PACS. We find that the results of n = 0.01 (82.2 &+ 0.4%) and n = 0.001 (82.3 4 0.5%) are better
than that of n = 0.1 (81.6 & 0.2%), so we adopt the random search space of {0.01,0.001}. The same
is true for the other parameters.

In practical applications, as for the choice of the optimal parameter, we find that through experiments
that for MAT and LDAT, the value of the rank k£ (MAT) and [(LDAT) with good test accuracy
(outperforms ERM) on one data set also has good one on other datasets, as shown in the Table[6] In
Table[6] £ = 10 for MAT and | = 15 for LDAT outperform ERM on all three datasets, as marked in
bold. Thus, we could find an optimal set of parameters with the model selection methods and then
apply them to other datasets.

Model Selection Stategy. For PACS, OfficeHome and VLCS datasets, we use training-domain
validation proposed in [9]. This model selection method first randomly collect 20% of each training
domain to form a validation set. Then, it chooses the hyperparameter maximizing the accuracy on the
validation set. For NICO, we adopt the OOD validation proposed in [21]]. This method chooses the
model maximizing the accuracy on a validation set that follows neither the distribution of the training
domain or the distribution of the test domain. For Colored MNIST, we use test-domain validation, i.e.,
using a validation set that follows the distribution of the test domain. This is because it can enlarge the
gaps in OOD performance among the algorithms while the gap induced by training-domain validation
on Colored MNIST is marginal.

17

Table 5: Hyperparameter setting of the experiment on PACS, OfficeHome, VLCS, NICO and Colored

MNIST of Table[2]
Dataset Parameter Value
learning rate r 0.00005
batch size b 64
weight decay (ERM, AT) 1QUniform(—4,—3)
weight decay (MAT, LDAT) 0.001

PACS, OfficeHome,
VLCS

drop out (ERM, AT)
drop out (MAT, LDAT)
perturbation number k (MAT)

perturbation weight « learning rate 7 (MAT)

perturbation rank [(LDAT)

factor matrix A (B) learning rate p (LDAT)

RandomChoice([0,0.1,0.5])
0.1
RandomChoice([5,10,15,20])
RandomChoice([0.01,0.001])
RandomChoice([5,10,15,20])
RandomChoice([0.1,0.01])

learning rate r
batch size b

0.00005
64

weight decay 1QUniform(—4,-3)

NICO drop out RandomChoice([0,0.1,0.5])
perturbation number £ (MAT) Uniform(10, 20)
perturbation weight o learning rate n (MAT) 0.001
perturbation rank [(LDAT) Uniform(10, 20)
factor matrix A (B) learning rate p (LDAT) 0.01
learning rate r 1(Uniform(—4.5,=3.5)
batch size b Uniform(3,9)
weight decay 0
drop out RandomChoice([0,0.1,0.5])
perturbation number & (MAT) Uniform(5, 20)

Colored MNIST perturbation weight o learning rate 7 (MAT) ~ 1QUniform(=3,-2)
perturbation rank [(LDAT) Uniform(10, 20)
factor matrix A (B) learning rate p (LDAT) 0.01
AT perturbation radius ¢ (MAT, LDAT) 1(Uniform(—1,2)
FGSM step size v (MAT) 1QUniform(—2,1)
FGSM step size y (AT) 0.1

All except Colored AT perturbation radius e 0.1

MNIST FGSM step size v (AT, MAT) 0.1

Table 6: The test accuracy (%) on PACS, VLCS and NICO with different k and [. The ERM baseline
on these datasets is 79.7 &= 0.4, 74.2 £ 1.0, 69.7 £ 1.0 respectively.

Dataset Algorithm korl=5 korl=10 korl=15 korl=20 korl=25 korl=30
PACS MAT 80.6 08 809+02 81.6+03 823+05 808=£01 809+04
LDAT 794+05 822+06 80.1+04 799+04 800+05 812404
VLCS MAT 7424+08 74.6+£05 744+£06 744+£02 7294+03 744406
LDAT 740+03 744+£01 753£05 750£05 741+04 742407
NICO MAT 69.8+13 705+12 71.1+13 695+27 718+15 693+0.7
LDAT 662+17 67.7+£03 70.0+11 678+20 680+13 672+15

Backbone Network. We use ResNet-18 [20] pretrained on ImageNet [35] for PACS, OfficeHome
and VLCS. We use unpretrained ResNet-18 for NICO since it contains images largely overlapped
with ImageNet classes. As for Colored MNIST, We use a small CNN-architecture following [9].

Impact of Learning Rate. We further investigate the impact on OOD performances of the learning
rate for the perturbation weights in MAT and the learning rate for the decomposed factors in LDAT.
We use the experimental setting introduced in Appendix [C.I] The results of MAT and LDAT are
shown in Table [7] and [§] respectively. In Table [7] and [8] we observe that the learning rate for the

18

Table 7: The test accuracy (%) on PACS of MAT when the learning rate (1) for the perturbation
weights takes different values. We set the number of perturbations & = 20. The other hyperparameters
take value in Table

MAT
ERM AT n=0.1 n=001 7 =0.001
797400 815+04 81.6+02 822404 823405

Table 8: The test accuracy (%) on PACS of LDAT when the learning rate (p) for the decomposed
factors takes different values. We set the rank of perturbations [= 10. The other hyperparameters
take value in Table 4]

LDAT
ERM AT p=0.1 p=0.01
797+00 815+04 822406 82.6+02

perturbations has a marginal effect on the OOD accuracy. Both MAT and LDAT outperform ERM
and AT on PACS when using different values of learning rate.

C.3 Comparing to Existing Data Augmentation Baseline

To better verify the improvement of our proposed method on the existing adversarial augmentation
methods for OOD, we reproduce the algorithm in [5]]. [S]] proposed a minimax iterative training
procedure to generate adversarial data that follows fictitious target distributions (GUT). As discussed
in Section [2] their work is restricted in the framework of using Wasserstein distance to measure the
distribution shift, which is less practical for the real-world OOD setting where domain shifts are
diverse. Additionally, They focus only on sample-wise operations and ignore the use of common
features within a domain. The experimental results on NICO dataset is in Table 0] The unique
hyperparameters of GUT follow the Settings in [5] except we set the T},,,, to be 5 instead of 15 for
efficiency. We can see that both our proposed method outperform GUT.

C.4 Comparing to Existing Data Augmentation Baseline under Single-training Domain
Generalization Setting

We conduct experiments to further verify the effectiveness of MAT and LDAT under single-training
domain generalization setting, i.e., using only one training domain and generalize on the others. We
compare our work with Neuron Coverage-Guided Domain Generalization (NCDG) [36]. The results
are in Table[I0} Both MAT and LDAT outperform NCDG under the scenario of single-source domain
generalization.

D Detailed Description of LDAT

In this section, we describe the detailed training procedure of LDAT (see Algorithm[2). We conduct a
single-step gradient ascent for the inner maximization for the perturbations LDAT. We adopt [norm
for the perturbations.

19

Table 9: The test accuracy (%) on NICO.

ERM MAT LDAT GUT
732+19 742+15 744+£16 666=£1.7

Table 10: The test accuracy (%) of single-training domain generalization on PACS. Each line

represents a case when we train on one domain and test on the other domains. ‘-> means we train on
this domain, and test on the other three domains.

Algorithm A C P S avg
73.8 941 74 80.6

78.5

S 942 759 829
MAT 809 737 - 766 77.1
804 763 933 - 833
~ 748 942 758 816
772 - 939 756 823
LDAT 785 779 - 804 79
743 764 947 - 818
~ 686 950 664 766
716 - 858 719 764
NCDG 688 298 - 486 49.0
456 658 479 - 531

Algorithm 2 Detailed Training Procedure of LDAT
Require:
Labeled training data of m domains Ej, ..., E,,, whereE, := {(z5,yf)
rank of the perturbations [, factor A, B learning rate p,
FGSM step size y, perturbation radius e,
number of training epochs T, learning rate for model parameters r, batch size b.
Ensure:
Updated model fy with parameter 6.
1: Randomly initiate 6, perturbation §¢, factor A¢, B¢ such that ||§¢||2 < ¢, Ve € {1,...,m}.
2: for iterations in 1,2, ...,7 do
3: foreinl,2,...,mdo

Ne
i=1°

4: Randomly select batch B¢ = {(x¢, y¢)}°_, from domain E..

5: Compute the adversarial sample: xf‘; =x¢ + A°B°, Yu € {1,...,b}

6: Update A° by A° + A°® + pi 22:1 Ve L(fo(x€),ye), Yu € {1, ..., b}.

7: Update B¢ by B® « B¢ + pL S0 _ Ve L(fo(22), yS), Yu € {1,...,b}.

8: Project 65 to the 3 ball of radius e.

9: Compute the adversarial sample: ¢ = z¢ + A°B°,Vu € {1,...,b}
10: Update model parameter: 6 < 6 — r 22:1 VoL (fo(zS),y5), Yu € {1, ..., b}.
11: end for
12: end for

20

