A Properties of the nonconvex lower bound example ()

We enumerate all relevant properties of ® and ¥ used in the analysis in the following lemma.
Lemma 6 ([5, Lemma 1]). The functions ® and ¥ satisfy

i. Forallz <1/2andk € N, U*) (z) = 0.
ii. Forallz > 1and |yl <1, ¥(z)®'(y) > 1.

iii. Both UV and ® are infinitely differentiable. For all k € N, we have
3k

k k
sup [UF) ()| < exp (5210g(4k)> and  sup |®®) (z)| < exp <310 2).

iv. The functions and derivatives U, W', ®, ®' are non-negative and bounded, with

0<T<e <V </54/e,0 <P <V2me,0 <P < e

Note that U'(0) = ¥’(0) = 0 by Lemma@i. Then it is easy to verify that %z(f) =0ifz; =2 =
0. Therefore, if supp(x) C {1,...,i — 1}, i.e., z; = 0 forall j > 4, we have afT,(jm) = ( for all
j > i+ 1. Hence, supp(V f™) C {1,...,i}, which implies f™ is a zero-chain. Define zo = 1 for

simplicity. As long as the algorithm has not reached the end of the chain, there must be a phase
transition point 1 < k < T such that || < 1 and |zj_1| > 1. Using Lemma [6]ii, one can bound

HVf“C(azt) H2 > ‘ or@| o g, By appropriately rescaling f™ so that it meets the requirement of

Bmk

the function class of interest, Carmon et al. [5] derived a lower bound of T, := (2 (1 / 62) gradient
oracles.

B A Useful lemma

We first present a lemma useful for analyzing the quadratic components in our examples.

Lemma 7. Denote & = - and let B = (al, + A)~" where A is the matrix defined in (7). If
n > 10, we have forall 1 <1 < n,

0.1n < B;; < 20n.

Proof of Lemmal7} Let M be the cofactor matrix of of,, + A. We have
MT
= det (al, + A)’

So we only need to compute det («l,, + A) and My ; for all 1 < ¢ < n. Note that all of them are
determinants of tridiagonal matrices which can be computed using a three-term recurrence relation

[12]. Let
1+ %4 fat @ 1+ 3
= — o —_— = - — -
p 5 T 4= Vot

be the solutions of the following characteristic equation
??—(2+a)z+1=0.
By standard calculations, we have

B e e ()
\/i
4
iy = §0m T =) ot ) .
2
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Define D =p"~ !, E =D — &, and F = D + 5. We have

0 S pn—i _ qn—i S E and 2 S pn—i 4 qn—i S F.

(a—|—°‘;)E—|—o¢\/a—|—%2F
2\/a+ %
2B+ \Ja+LF
1<My <M ; <M= .
2\/a+ %

Therefore

det(al, + A) =

. 1
Noting o = -5, we have

n—1

1 1 1

D=p" l=|1+_——=+44/1+-— .
p <+2n2+n Jr4712>

We can bound 2 < D < 8if n > 10. Then it is straightforward to upper and lower bound
det(al,, + A) and M; ; and then obtain the bound of B; 1. If n > 10, we have

0.1n <B;; <20n,V1 <i < n.

C Proofs for the lower bound in the deterministic setting

Proof of Lemma[] Let B = (51, + A) ~! where A is the matrix defined in (7). By symmetry, we
have By 1 = B,, , and By, = By 1. Then we have

C B
h(z,2) = o (B171x2 — B2z + 2122> .

Let a; = By,1/nand ag = By 1/n. By Lemmawe know 0.1 < aq, a2 < 20 and complete the
proof. O

To prove the main theorem, we need several additional lemmas. The following lemma gives a lower
bound of the gradient norm when the algorithm hasn’t reached the end of the chain.

Lemma 8. If |z;| < 1 for some i < T, then vagg-w(m, z)H2 > 1

, we are able to find

Proof of Lemmal8} We define z; = 1 for simplicity. Since |z;| < 1 and |z1| > 1
1. We can compute

some 1 < j < i to be the smallest j for which |z;| < 1. So we know |z;_;

OF(x, 2)

al'j,1

| >
| >

== U(—zj_1) @ (—j-1) — U(z-1) Q' (2-1) + 12 (%‘—1 - ;Z])

1
:p($]—17ZJ*1)+12 ,’L‘j71 — 5’2] ,

Of*(2.2)

G =W ()R ) W (2)0(;) 6 <xj_1 ~ 1Zj>

2

1
=:q(xj,2;) — 6| xj_1 — 3% |-

Note that Lemma [6]iv implies forall 2 <4 < T,
-5 < p(z;,2) <0, —20<g(x;,z2;)<O.

There are two possible cases
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1. If |zj_1| < 1, we have p(z;_1, zj—1) < —1 by Lemmal6]ii. Then

ofs(wz) , Ofi(@,2)
2.
8xj_1 + aZj

=p(wj-1,2j-1) + 2q(xj, 2;) < 1.

.
3

2. Otherwise if |2;_1| > 1, we have 12 |z;_1 — 2z;| > 6. Since |p(z;_1,2;—1)| < 5, we
must have

Therefore we can bound

Of > (x, )

8$j_1

HVﬁ?%azm2>nmxﬂ waﬁ?%%z)

8zj

Of(x, 2)

> 1.
890]-_1

V<o 2l 2|

Now we verify the smoothness and boundedness requirements of the function class we consider.
Lemma 9. " and f"¢° satisfy the following.

i f17(0,0) — infepr sepro (2, 2) < 12T.

ii. f"e5¢is by-smooth for some numerical constant (.

Proof of Lemma (9
i. First note that f2%¢(0,0) = —®(1)®(0) < 0. Also, by Lemma @iv, we have for all x €
RT, z ¢ RT-1,
T
e (,2) > —U(1) () — Y U(z)D(x;) > —12T.
i=2

Therefore f7¢°¢(0,0) — infyepr sepr—1 fo™(w, z) < 127.

ii. Let v = (x, 2, y) be the variable of f"*, We know gjf"{;; # 0 only if ¢ = j or v; and

v; are directly connected in the chain shown in Figure |1|(c). Therefore the Hessian of f"*
is tridiagonal if we rearranging the coordinates of v according to the order of the chain. By
Lemma@iii and the expression of f"*°, it is straightforward to verify that each tridiaognal entry
of the Hessian is O(1). Therefore the ¢ norm of the Hessian is O(1), which means ™ is
O(1)-smooth.

O
With all the above properties of f7°*¢ and f2*¢, we are ready to show Theorem

Proof of Theorem[I} As in [5]], we construct the hard instance "¢ by appropriately rescaling fresse
defined in (),

nc-sc — L/\2 £nc-sc r z g
f (maz7y)_70f ()\,)\’)\>7

where A > 0 is some parameter to be determined later and ¢ is the smoothness parameter defined in
Lemma[9lii. Note that we can show

L)% T z L)% _ T z
nc-sc — nc-sc ca7) — nc-sc . — nc-sc =
fo (@, z) = max fUN(@zy) = max o -f (/\, A,u) o Im (A, /\),
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which means the order of maximization and rescaling can be interchanged. After the rescaling, "¢
is still a zero-chain. Also, if zr = 0 for some (z, z; y), Lemma shows that

o= (591, > 5

Therefore

nc-sc _ LA fcsc (L 2 LA
1V @2l = 7 |V (5 5)], > 50

Choosing A = 22¢ garautees ||V £ (z, 2) |, > €.

Now we check f"*¢ € F(L, u, A). Note that

_ L = T z Y
2 fre-se . — /2 fhe-se .2
S @z y) 4o / </\’)\’/\)'

Therefore we know the smoothness parameter of "¢ is L and the strong concavity parameter is
ZO%. Therefore we should choose
L
n = —
wlo
to make "¢ y-strongly concave in y.
Then it suffices to verify f5°°(0,0) — infg . fi(2, z) < A. By Lemmal9)

LAQ _ _ 12LT)\2
F55(0,0) — inf f2 (a, 2) = 2 (flif‘“(O,O) — inf fre(a, z)) <=
z.2 EO x,z EO

T LA | | LA
| 120X2 | | 1084ge? |

Since 24 = 0if ¢ < n(T — 1), we conclude that ||V f2¢(xt, z")||, > € whenever

C()LA\/E
2

€

which is less than A if choosing

t<n(T-1)=

for some numerical constant cg. O

D Proofs for the lower bound in the stochastic setting
Lemma 10. Ler h$8(x,z) = maxyecr, h8(xz, z;y). If Re > 30Ry, for every x, z such that
||, 2| < Ry, we have

hiE(x,2) = hp(z, 2),

where h., is the quadratic function defined in ().

Proof of Lemma(I0] Note that
R (x, 2; )—ng L ra _1b = hy(z,2)
'!%?R% ‘I?Z?y - 2n X,z n2 n T,z — m .’E,Z M
It suffices to verify that

max h%(z,z;y) = max h*®(z, z; y),
yECﬁR2 yeR™

ie.,
y*(z,2) == argmax h*¥(z, z;9) € Cpp,-

yeRn
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We can compute that
1 -1
y*(x,2) = (nQIn + A) b,.=B-b, .,

where B = ( I, + A) " is the matrix defined in Lemma Let y; (z, z) be the i-th coordinate of
y*(z, z) for some 1 < ¢ < n. By symmetry of B and Lemma' we have

1
$Bi71 — 7ZBi,n

97 (2,2)] = ;

1
=|zBi1 — §ZBn—i71

§30’FLR1 S TLRQ.
Therefore y*(z, z) € C}},, and we complete the proof. O

Now we analyze the properties of f°55¢ and fp, >,

Lemma 11. ¢ and 158 satisfy the following.

i fresess(0,0) — infeer Lect- fresess (g, z) < 12T.
1 1

ii. freIes8 s Lg-smooth for some numerical constant £.

iii. fleSes8 s £,,-smooth for some numerical constant {,,, > 1.

iv. Forall x,z,q, ||V f8(x, z;9) Hoo < G for some numerical constant G.

Proof of Lemmal(I]] Note that C X CT !¢ RT x RT-!. Then i and ii are direct corollaries
of Lemma (9] We can prove iii in the same way as ii. Itis also straightforward to verify iv given
Lemma [6]iii and iv and noting the infinity norms of x, z, and ¥ are all bounded. O

The lemma below shows we cannot find a good solution unless the end of the chain is reached.
Lemma 12. If |z;| < 1 for some i < T, then (x, z) is not a 1/3-stationary point of fm<5¢s.

Proof of Lemmal[I2] Let1 < j < i to be the smallest j for which |z;| < 1. Similar to the proof of
Lemma noting f1%¢ = fi, "™, we have

OF (@, 2) 1
T @) 12w g )

8fnc sc- sg( ) 1
T =a(zj,25) =6 2j-1 - 5% |,

=5 <p(xj_1,2-1) <0, —20<q(zj,2;)<0.
There are two possible cases

where

1. If |xj_1] < 1, we know p(z;j_1,2j-1) < —1 by Lemma@ii. Then
) Fne-sc-sg o Fnc-sc-sg
Frt@z) |, OFEa,2)

833j,1 (92:]‘

=p(Tj-1,2j-1) + 2q(z;,2;) < -1

< 1
3
W‘ > 1/3. We also know |u| < 1. Let
{,7, be the smoothness parameter of fn; "% defined in Lemmall 1}iii. Define
, 1 afnc SC- Sg(m’z)

=t - — . 12
W= ™ 12)

Therefore we can bound

max{’afncscsg( )

8‘%],1

OF = (x, 2)
82]-

)

Suppose w is one of x;_1 and z; such that ‘
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i. If |u’| < Ry, we have

afnc SC- sg( )

5 >1/3.

Em‘Pc}__{ (u')—u’zém lu —u| = ‘
1

ii. If [u'| > Ry, we know that ‘PC}% («/)| = Ry. Then we have
1

O ‘Pc}h (W) — u‘ > ln(Ry—1) > 1.

2. Ifzj_ > 1, we have 12(z;_1 — 32;) > 6. Since —5 < p(x;_1,zj—1) < 0, we must have

6fnC SC( )

> 1.
5:10],1

Similar to case 1, we use u to denote x;_; and define v’ as in (I2). We know u’ < w.
Therefore
i. If |u’| < Ry, we have

afnc sc- sg( )
ou -

ii. If ' < —Ry, we know that Pey (u') = —Ry. Then we have
1

Em‘PC}al (u') —u’ ’

U ‘PC}% (W) — u‘ > (R +1) > 1.
1

3. If x;_1 < —1, we have we have 12(z;_; — 52;) < —6. Since —5 < p(rj_1,2j-1) <0,
we must have
8 nc-sc
Ui@2) gy,
8%,1

Then similar to case 2, we can show £,, ‘PC}% (u) — u‘ >lp(R1+1)2>1
1

To sum up, we have

1 £NC-SC-S;
Peg wrt ((@9)— -V (@2)) - (2.2

b,
b,

>l ‘P% (W) —u| > 1/3,
2 1

ie., (x, z) is not a 1/3-stationary point of fp, .

With all the lemmas above, we are ready to prove Theorem 2]

Proof of Theorem[Z] Similar to the proof of Theorem[I} we show the lower bound by appropriately
rescaling f"¢¢ as well as its domain. Formally, define f"¢5s¢ : (C}:Rl X C/\TR 1) x CMT-D R

)\’I’LRQ
as
s L)\? T z Y
nc-sc-sg = Fnc-sc-sg
Pestazg) = e (5,57,

where A > 0 is some parameter to be determined later and ¢, is the smoothness parameter defined in
Lemmal [I1lii. Note that we can show

M) = s P )
YECxnRr,

e presest (2, 200)

Lo ue?w;;—l) AT
nRy
_L/\2 £NC-SC-Sg (m Z)
T AT A
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which means the order of maximization and rescaling can be interchanged. After the rescaling,
fresese is still a zero-chain. Note that fr, * ¢ is £,, L/€o-smooth. When z7 = 0, by Lemma

b L Co nc-sc-sg N
i ‘PcT weT-1 ((m,z) ™ LVf (x, z)) (x,z)

ARy ““AR;
b L ‘

::4?2;7

2

Peg etz (A1) -2 v (53) 2 (53))

et (53) -7 (3:3) - 3,

LA
::444—£7n
Ly

L
3l

6@06

Choosing A = guarantees such (x, z) is not a 2e-stationary point of f7¢5¢¢,

Now we check f“° s8¢ ¢ F(L, u, A). Note that

v2fnc—sc—sg (.’13, z; ,g) vanc sc-sg (m z y)

4y AT A

We know the smoothness parameter of f"°*“*¢ is [ and the strong concavity parameter is EL

.
Therefore we should choose .
1\ 1/3
n= —
{ (/Mo ) J

to make f"°2 y-strongly concave in 4. Then it suffices to show fr, ~ 2(0,0) —
infg, fm = t(x,z) < A. By Lemma@,

L)\?

f>8(0,0) — inf [ (@, 2) =
T,z KO

2
<f“““g(0 0) — mffmmg(m z)) < 12T

AT A Lo

which is no greater than A if choosing

| A | LA

CO[12LA2 ] [4320e? |
Now we construct the stochastic gradient oracle in the same way as [3]. We perturb the gradient
only on the next coordinate to discover, so that we reveal its value with probability p. Let i*(x, z; y)

denote the next coordinate to discover in the zero-chain in Figure[T|c). Precisely, we set the stochastic
gradient to be

L, fresese(g, z: ) ifi = i* (@, 2;§)
. o b i s ,y ) ay
g(iL’; zZY; f)z { Vifnc_sc_Sg(fL'u z; ,g) otherwise,

where £ ~ Bernoulli(p). By Lemma f15¢%8 is a probability-p zero-chain with this oracle which

has variance bounded by
s GLA\*1 - 1-
E [Ilg(w,Z;ﬂ;ﬁ) - Vf“““g(w,zm)llﬂ < (z) —P 362?12
0

Hence, the variance is no greater than o if p = min{1, 36322G2 }. By Lemma with probability
1—6, 2L = 0forall

L < n(T—1)— log(l/é).
< 5

Then taking § = 1/2 yields that whenever

< n(T—1)—1 JdnTo? c¢yLAc?k/3
b= 936e2G2 T Teq? T ! ’
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for some constant ¢’, ¢y > 0, we have

émL ne-sc-s
E |: KO ‘ xcT~1 ((a},z) - ﬁvan g( )) - (.’B,Z)

P.r
Cxr; XCiR,

1
]> -2¢ = €.
2

. . . . . 2,1/
That is, (x?, z*) is not an e-stationary point. So far we have derived a lower bound of Q(Miif”)

Note that the deterministic lower bound is £( LA‘F) which is a special case of the stochastic setting.
Therefore we derive a lower bound of

1/3 52 1/3,.2
Q<LAmaX{\/f,” 7 }) _Q(LA <‘/§+” Z ))
€ € € €
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