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ABSTRACT

Computing the optimal transport distance between statistical distributions is a fun-
damental task in machine learning. One remarkable recent advancement is en-
tropic regularization and the Sinkhorn algorithm, which utilizes only matrix scal-
ing and guarantees an approximated solution with near-linear runtime. Despite
the success of the Sinkhorn algorithm, its runtime may still be slow due to the po-
tentially large number of iterations needed for convergence. To achieve possibly
super-exponential convergence, we present Sinkhorn-Newton-Sparse (SNS), an
extension to the Sinkhorn algorithm, by introducing early stopping for the matrix
scaling steps and a second stage featuring a Newton-type subroutine. Adopting
the variational viewpoint that the Sinkhorn algorithm maximizes a concave Lya-
punov potential, we offer the insight that the Hessian matrix of the potential func-
tion is approximately sparse. Sparsification of the Hessian results in a fast O(n2)
per-iteration complexity, the same as the Sinkhorn algorithm. In terms of total
iteration count, we observe that the SNS algorithm converges orders of magni-
tude faster across a wide range of practical cases, including optimal transportation
between empirical distributions and calculating the Wasserstein W1,W2 distance
of discretized densities. The empirical performance is corroborated by a rigorous
bound on the approximate sparsity of the Hessian matrix.

1 INTRODUCTION

Optimal transport (OT) calculates the best transportation plan from an ensemble of sources to targets
(Villani et al., 2009; Linial et al., 1998; Peyré et al., 2017) and is becoming increasingly an important
task in machine learning (Sandler & Lindenbaum, 2011; Jitkrittum et al., 2016; Arjovsky et al., 2017;
Salimans et al., 2018; Genevay et al., 2018; Chen et al., 2020; Fatras et al., 2021). In this work, we
focus on optimal transportation problem with entropic regularization:

min
P :P1=r,P⊤1=c

C · P +
1

η
H(P ), (1)

where η > 0 is the entropy regularization parameter, C ∈ Rn×n is the cost matrix, c, r ∈ Rn are
respectively the source and target density, and H(P ) :=

∑
ij pij log pij is the entropy of P . The

insight of using the Sinkhorn algorithm is that entropy-regularized optimal transport is equivalent to
an instance of matrix scaling (Linial et al., 1998; Cuturi, 2013; Garg et al., 2020):

Find diagonal matrix X,Y so that P = X exp(−ηC)Y satisfies P1 = r, P⊤1 = c.1

The Sinkhorn algorithm (Yule, 1912) alternates between scaling the rows and columns of a matrix
to a target vector, and its convergence property was first proved in Sinkhorn (1964). Theoretical
results show that the Sinkhorn algorithm converges at a relatively slow rate. While the Sinkhorn al-
gorithm satisfies exponential convergence (Franklin & Lorenz, 1989; Carlier, 2022), its best proven

1The symbol exp(−ηC) denotes entry-wise exponential.
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exponential convergence rate is often too close to one for practical use (see Section 2 for detailed
discussions) and in practice it behaves more like a polynomially converging method (Altschuler
et al., 2017; Ghosal & Nutz, 2022). Therefore, to reach within a sub-optimality gap ϵ, the tightest
bound of iteration complexity in practice tends to be O(poly(ϵ−1)) in early stages.

We introduce a new algorithm that greatly accelerates convergence by reducing the required iteration
counts. Utilizing a well-established variational perspective for the Sinkhorn algorithm (Altschuler
et al., 2017), we consider the Lyapunov potential f : Rn × Rn → R associated with the entropic
optimal transport problem in equation 1:

f(x, y) := −1

η

∑
ij

exp(η(−cij + xi + yj)− 1) +
∑
i

rixi +
∑
j

cjyj . (2)

In particular, the discussion in Section 3 shows that solving equation 1 is equivalent to obtaining
(x⋆, y⋆) = argmaxx,y f(x, y). We emphasize that f is concave, allowing routine convex optimiza-
tion techniques to be used. Under this framework, the matrix scaling step in the Sinkhorn algorithm
can be seen as an alternating maximization algorithm{

x← argmaxx f(x, y),

y ← argmaxy f(x, y).
(3)

The formula in equation 3 provides surprisingly clear guidance and justification for our approach to
accelerate the Sinkhorn algorithm. First, one can only achieve a substantially reduced iteration count
by jointly optimizing (x, y). Second, no first-order method can be used, as they achieve polynomial
convergence at best, reaching an iteration complexity of O(ϵ−1) in the case of gradient descent
for a sub-optimality of ϵ (Boyd & Vandenberghe, 2004), or O(ϵ−1/2) in the case of accelerated
gradient descent (Nesterov, 1983). In conclusion, one can only hope to achieve better convergence
with second-order methods, which enjoy super-exponential convergence (Boyd & Vandenberghe,
2004). The use of Newton’s method for the Sinkhorn algorithm has been introduced in Brauer et al.
(2017). However, even a single Newton step has an O(n3) cost, which violates the goal of having a
near-linear time algorithm with O(n2) total complexity. This naturally leads to the question:

Is there an algorithm that reaches the optimality gap ϵ with an iteration complexity of
Newton’s algorithm and an O(n2) per-iteration complexity of the Sinkhorn algorithm?

Practical Newton’s algorithm via Hessian sparsification We answer the question in the affirma-
tive by introducing the Sinkhorn-Newton-Sparse (SNS) algorithm, which achieves fast convergence
and an O(n2) per-iteration complexity. The main technical novelty is to solve the Hessian system
(∇2f)v = −∇f in Newton’s algorithm efficiently with sparse approximation. In particular, we
show that the Hessian matrix of the Lyapunov potential is approximately sparse in the following
sense:
Definition 1. (Sparsity and approximate sparsity) Let ∥·∥0 denote the l0 norm. The sparsity of a
matrix M ∈ Rm×n is defined by τ(M) := ∥M∥0

mn . Furthermore, a matrix M ∈ Rm×n is (λ, ϵ)-
sparse if there exists a matrix M̃ so that τ(M̃) ≤ λ and ∥M − M̃∥1 ≤ ϵ.

In Section 5, we prove a rigorous bound on the approximate sparsity of the Hessian matrix. We
highlight our result by providing an informal version of our sparsity analysis:

Theorem. (Informal version of Theorem 1) Assume minP :P1=r,P⊤1=c C ·P admits a unique
solution. Then, if t, η are sufficiently large, the Hessian matrix after t Sinkhorn matrix
scaling step is ( 3

2n , 12n
2 exp (−pη) + q√

t
)-sparse for some parameter p, q.

As ∇2f is approximately sparse, one can approximate ∇2f with a relaxed target sparsity λ =
O(1/n) > 3

2n . The cost for solving the sparsified linear system thus reduces to O(λn3) = O(n2).

Contributions The contribution of this paper is threefold. First, we point out the sparsification
technique, and the resultant SNS algorithm reduces the per-iteration cost of Newton step to O(n2).
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While a related idea has been discussed with the name of the Sinkhorn-Newton algorithm in Brauer
et al. (2017), the O(n3) complexity of Sinkhorn-Newton makes the algorithm prohibitively expen-
sive to work with. Second, we give a non-asymptotic analysis, showing that one can expect sparse
Hessian generically. Third, we fully adapt our sparsity argument to the case of non-unique solutions.
We introduce a novel argument that shows an O( 1√

n
) sparsity. Moreover, the provided numerical

analysis directly treats the case of non-unique solutions.

Notation For n ∈ N, we denote [n] := {1, . . . , n}. We use shorthand for several matrix operations
for the sake of notational compactness. The · operation between matrices is defined by C · P =∑n

i,j=1 cijpij . For a matrix M , the notation logM stands for entry-wise logarithm, and similarly
exp(M) denotes entry-wise exponential. The symbol 1 stands for the all-one vector in Rn. Finally,
we use the symbol ∥M∥1 to denote the entry-wise l1 norm, i.e. ∥M∥1 := ∥vec(M)∥ =

∑
ij |mij |.

2 RELATED LITERATURE

Convergence of Sinkhorn We give an overview of the convergence of the Sinkhorn algorithm and
discuss the iteration complexity to reach within an error tolerance α on the marginal KL divergence,
which is defined by L(P ) := KL(r||P1) + KL(c||P⊤1). The Sinkhorn algorithm has a sub-
optimality gap of O

((
1− e−24∥C∥∞η

)t)
after t steps (Carlier, 2022), which implies an iteration

complexity of O(e24∥C∥∞η log(1/α)). The analysis by Altschuler et al. (2017) proves an iteration
complexity of O(α−1), and it has been refined to O(α−1/2) in special cases (Ghosal & Nutz, 2022).
We refer the readers to Peyré et al. (2017); Carlier (2022) for a more comprehensive review of
the convergence of the Sinkhorn algorithm. The analysis in (Mallasto et al., 2020; Weed, 2018)
considers the convergence of the entropic optimal transport solution to the true transport plan, which
further connects the Sinkhorn solution to the ground-truth optimal transport plan.

Sparsification in Sinkhorn Sparsification techniques have been extensively explored to improve
the efficiency of the Sinkhorn algorithm. Sparsification has been considered during matrix scal-
ing (Li et al., 2023), and a 2-norm or group lasso penalty function has been considered to boost
sparsity in the transport plan (Blondel et al., 2018). Unlike the methods discussed, which modify
the optimization task, our work retains the original formulation while introducing enhancement via
sparsification inside the optimization step. Our approach uses Newton’s algorithm, and the sparsity
is applied to the Hessian matrix for the Lyapunov function. The numerical analysis in our work
lends further support to a sparse transportation plan in the entropic case.

Acceleration for Sinkhorn There is considerable research interest in speeding up the runtime of
the Sinkhorn algorithm. There are a few strategies related to our work, including randomized or
greedy row/column scaling (Genevay et al., 2016; Altschuler et al., 2017), dynamic schedule of
entropic regularization (Chen et al., 2023). These works complement our work, as both strategies
can be naturally used in our Newton-type algorithm. Although both techniques can potentially
boost the convergence speed of SNS, we focus on the case with fixed entropy strength and joint
optimization over all variables to show that a sparse approximation to the Hessian can reach rapid
convergence on its own. Another notable line of acceleration technique considers acceleration using
an approximation of the kernel K = exp(−Cη) (Deriche, 1993; Solomon et al., 2015; Bonneel
et al., 2016; Altschuler et al., 2019; Scetbon & Cuturi, 2020; Huguet et al., 2023) or by exploring
low-rankness of the transport plan(Scetbon et al., 2021).

Variational methods in Entropic OT Furthermore, a stream of research focuses on jointly op-
timizing the potential f using accelerated first-order method (Dvurechensky et al., 2018; Thibault
et al., 2021; Kemertas et al., 2023). The SNS algorithm can be extended by replacing Sinkhorn ma-
trix scaling steps with iteration schemes based on first-order methods. As a variational interpretation
of the Sinkhorn algorithm, it can also be viewed as mirror descent (Mishchenko, 2019; Léger, 2021).

OT in Machine Learning A rich body of literature exists on the applications of optimal transport
in various machine-learning domains. Research such as Kolouri et al. (2017); Vayer et al. (2018);
Genevay et al. (2019); Luise et al. (2018); Oneto et al. (2020); Huynh et al. (2020) studies statistical
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learning with optimal transport. Studies like Genevay et al. (2017); Bousquet et al. (2017); Sanjabi
et al. (2018); Deshpande et al. (2019); Lei et al. (2019); Patrini et al. (2020); Onken et al. (2021)
utilize optimal transport distance as a metric for improving the performance and robustness of un-
supervised learning algorithms. The Sinkhorn algorithm, featured in works such as Fernando et al.
(2013); Redko et al. (2017); Courty et al. (2017); Alvarez-Melis et al. (2018); Nguyen et al. (2022;
2021); Xu et al. (2022); Turrisi et al. (2022), is commonly used in robust domain adaptation, partic-
ularly in addressing distribution shift. Additionally, various approaches employ neural networks to
learn the optimal transport map, as seen in (Seguy et al., 2017; Damodaran et al., 2018; Makkuva
et al., 2020; Mokrov et al., 2021; Daniels et al., 2021).

3 VARIATIONAL FORM OF THE SINKHORN ALGORITHM

This section summarizes the variational form of the Sinkhorn algorithm, a mathematical representa-
tion crucial for understanding our proposed algorithm’s theoretical underpinnings. As pointed out,
the Sinkhorn algorithm performs alternating maximization for the Lyapunov potential. By introduc-
ing the Lagrangian variable and using the minimax theorem (for a detailed derivation, see Appendix
A), we formulate the associated primal-dual problem to equation 1 as:

max
x,y

min
P

L(P, x, y) :=
1

η
P · logP + C · P − x · (P1− r)− y · (P⊤1− c).

The Lyapunov function f , as described in equation 2, comes from eliminating P (see Appendix A):
f(x, y) = min

P
L(P, x, y).

Maximizing over f is equivalent to solving the problem defined in equation 1: As a consequence of
the minimax theorem, (x⋆, y⋆) = argmaxx,y f(x, y) effectively solves equation 1, as the following
equation shows:

argmin
P :P1=r,P⊤1=c

C · P +
1

η
H(P ) =: P ⋆ = exp

(
η(−C + x⋆1⊤ + 1 (y⋆)

⊤
)− 1

)
.

Let P be defined as exp
(
η(−C + x1⊤ + 1y⊤)− 1

)
, where it serves the intermediate matrix corre-

sponding to dual variables x, y. As f is concave, the first-order condition is equivalent to optimality.
Upon direct calculation, one has

∂xi
f(x, y) = ri −

∑
k

Pik, ∂yj
f(x, y) = cj −

∑
k

Pkj .

As a consequence, maximizing x with fixed y corresponds to scaling the rows of P so that P1 =
r. Likewise, maximizing y with fixed x corresponds to scaling the column of matrix P so that
P⊤1 = c. Thus, the Sinkhorn matrix scaling algorithm corresponds to an alternating coordinate
ascent approach to the Lyapunov function, as illustrated in equation 3. For the reader’s convenience,
we write down the first and second derivatives of the Lyapunov function f :

∇xf(x, y) = r−P1, ∇yf(x, y) = c−P⊤1, ∇2f(x, y) = η

[
diag(P1) P

P⊤ diag(P⊤1)

]
(4)

4 MAIN ALGORITHM

We introduce Algorithm 1, herein referred to as Sinkhorn-Newton-Sparse (SNS). This algorithm
extends the Sinkhorn algorithm with a second stage featuring a Newton-type subroutine. In short,
Algorithm 1 starts with running the Sinkhorn algorithm for N1 steps, then switches to a sparsified
Newton algorithm for fast convergence. Algorithm 1 employs a straightforward thresholding rule
for the sparsification step. Specifically, any entry in the Hessian matrix smaller than a constant ρ is
truncated to zero, and the resulting sparsified matrix is stored in a sparse data structure. The trun-
cation procedure preserves symmetry and diagonal dominance of the Hessian matrix (as a simple
consequence of equation 4), which justifies the use of conjugate gradient for linear system solving
(Golub & Van Loan, 2013). The obtained search direction ∆z is an approximation to the exact New-
ton step search direction, i.e., the solution to the linear system (∇2f)v = −∇f . In other words,
removing sparse approximation will recover the Newton algorithm, and the Newton algorithm with-
out sparsification is considered in Appendix D. In Appendix C, we introduce additional techniques
used for improving the numerical stability of SNS.
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Algorithm 1 Sinkhorn-Newton-Sparse (SNS)

Require: f, xinit ∈ Rn, yinit ∈ Rn, N1, N2, ρ, i = 0
1: # Sinkhorn stage
2: (x, y)← (xinit, yinit) ▷ Initialize dual variable
3: while i < N1 do
4: P ← exp

(
η(−C + x1⊤ + 1y⊤)− 1

)
5: x← x+ (log(r)− log(P1)) /η
6: P ← exp

(
η(−C + x1⊤ + 1y⊤)− 1

)
7: y ← y +

(
log(c)− log(P⊤1)

)
/η

8: i← i+ 1
9: end while

10: # Newton stage
11: z ← (x, y)
12: while i < N1 +N2 do
13: M ← Sparsify(∇2f(z), ρ) ▷ Truncate with threshold ρ
14: ∆z ← Conjugate Gradient(M,−∇f(z)) ▷ Solve sparse linear system
15: α← Line search(f, z,∆z) ▷ Line search for step size
16: z ← z + α∆z
17: i← i+ 1
18: end while
19: Output dual variables (x, y)← z.

Complexity analysis of Algorithm 1 Inside the Newton stage, the conjugate gradient method in-
volves O(n) left multiplications by M := Sparsify(∇2f(z), ρ). Furthermore, left multiplication
by M involves O(τ(M)n2) arithmetic operations, where τ(·) is the sparsity defined in Definition
1. Thus, obtaining ∆z is of complexity O(τ(M)n3). To maintain an upper bound for per-iteration
complexity, in practice, one sets a target sparsity λ and picks ρ dynamically to be the ⌈λn2⌉-largest
entry of ∇2f(z), which ensures τ(M) ≤ λ. For the forthcoming numerical experiments, whenever
the transport problem has unique solutions, we have found setting λ = 2/n suffices for a conver-
gence performance quite indistinguishable from a full Newton step, which is corroborated by the
approximate sparsity results mentioned in Theorem 1.

Necessity of Sinkhorn steps We remark that the Sinkhorn stage in SNS has two purposes. The
first purpose is warm initialization. Using the Sinkhorn steps, we bring the intermediate dual variable
(x, y) closer to the optimizer so that the subsequent Newton step has a good convergence speed.
Secondly, this proximity ensures that the intermediate matrix P satisfies approximate sparsity. While
the number of Sinkhorn steps is written as a fixed parameter in Algorithm 1, one can alternatively
switch to the Newton stage dynamically. In particular, we switch to a sparsified Newton step when
the two following conditions hold: First, the intermediate matrix P should admit a good sparse
approximation, and secondly, the Newton step should improve the Lyapunov potential more than
the Sinkhorn algorithm. Our analysis in Section 5 demonstrates that it requires at most O(1/ϵ2)
Sinkhorn steps for the sparsification to be within an error of ϵ.

5 SPARSITY ANALYSIS OF SNS

This section gives a complete theoretical analysis of the approximate sparsity throughout the SNS
algorithm: Theorem 1 analyzes the approximate sparsity of the Hessian after the N1 Sinkhorn step;
Theorem 2 analyzes the approximate sparsity within the N2 Newton steps and proves monotonic im-
provement on the approximate sparsity guarantee. Three symbols are heavily referenced throughout
this analysis, which we list out for the reader’s convenience:

• Pt,η : The result of Sinkhorn algorithm after t iterations.

• F : The set of optimal transport plan in the original problem

• P ⋆
η : The entropy-regularized optimal solution,
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where F , P ⋆
η satisfy the following equation:

F := argmin
P :P1=r,P⊤1=c

C · P, P ⋆
η := argmin

P :P1=r,P⊤1=c

C · P +
1

η
H(P ). (5)

Approximate sparsity in the Sinkhorn stage We first prove the main theorem on the approximate
sparsity of Pt,η , which in particular gives an approximate sparsity bound for the Hessian matrix
when one initiates the sparsified Newton step in Algorithm 1. We generalize to allow for the setting
where potentially multiple solutions exist to the optimal transport problem. Definition 2 lists the
main concepts in the analysis. For concepts such as a polyhedron, face, and vertex solution, the
readers can consult Cook et al. (1998) for detailed definitions.
Definition 2. Define P as the feasible set polyhedron, i.e. P := {P | P1 = r, P⊤1 = c, P ≥ 0}.
The symbol V denotes the set of vertices of P . The symbol O stands for the set of optimal vertex
solution, i.e.

O := argmin
P∈V

C · P. (6)

The symbol ∆ denotes the vertex optimality gap

∆ = min
Q∈V−O

Q · C − min
P∈O

P · C.

We use F = Conv(O) to denote the optimal face to the optimal transport problem, and
τ(F) := maxM∈F τ(M) is defined to be the sparsity of F . We define a distance function to F
by dist(F , P ) = argminM∈F∥M − P∥1.

We move on to prove the theorem for approximate sparsity of Pt,η:
Theorem 1. Assume ∥r∥1 = ∥c∥1 = 1, and let ∆ be as in Definition 2. There exists constant q, t1
such that, for η > 1+2 logn

∆ , t > t1, one has

dist(F , Pt,η) ≤ 6n2 exp (−η∆) +

√
q
√
t
.

Therefore, for λ⋆ = τ(F), it follows that Pt,η is (λ⋆, ϵt,η)-sparse, whereby

ϵt,η := 6n2 exp (−η∆) +

√
q
√
t
.

As a result, the Hessian matrix in Algorithm 1 after N1 Sinkhorn steps is (λ
⋆

2 + 1
2n , 2ϵN1,η)-sparse.

Define the subset S ⊂ Rn×n so that C ∈ S if C is a cost matrix for which minP :P1=r,P⊤1=c C ·
P has non-unique solutions. Then, S is of Lebesgue measure zero, and so the optimal transport
minP :P1=r,P⊤1=c C · P has unique solution generically. The generic condition C ̸∈ S leads to
λ⋆ ≤ 2/n. If one further assumes r = c = 1

n1, then λ⋆ = 1/n.

Proof. It suffices to construct a sparse approximation to Pt,η that matches the requirement in
Definition 1. We choose the sparse approximation to be the matrix P ⋆ ∈ F which satisfies
P ⋆ = argminM∈F ∥P ⋆

η −M∥1. By triangle inequality, one has

∥Pt,η − P ⋆∥ ≤ ϵ := ∥Pt,η − P ⋆
η ∥1 + dist(F , P ⋆

η ).

Thus Pt,η is (τ(F), ϵ)-sparse. Existence of a sparse approximation to the Hessian matrix ∇2f is
shown by the following construction:

M̃ =

[
diag(Pt,η1) P ⋆

(P ⋆)
⊤

diag(P⊤
t,η1)

]
.

One can directly count that the number of nonzero entries of M̃ is upper bounded by 2n + 2λ⋆n2.
Moreover, direct computation shows ∥M̃ −∇2f∥1 = 2∥Pt,η −P ⋆∥1 ≤ 2ϵ. Thus, we show that the
Hessian matrix is (λ

⋆

2 + 1
2n , 2ϵ)-sparse.

Thus, the proof reduces to proving ϵ < ϵt,η . By Corollary 9 in (Weed, 2018), if η > 1+2 logn
∆ , it

follows
dist(F , P ⋆

η ) ≤ 2n2 exp (−η∆+ 1) ≤ 6n2 exp (−η∆) . (7)
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By Pinsker inequality (Pinsker, 1964) and Theorem 4.4 in Ghosal & Nutz (2022), there exists con-
stants q, t1 such that, for any t > t1, one has

∥Pt,η − P ⋆
η ∥21 ≤ KL(Pη,t||P ⋆

η ) + KL(P ⋆
η ||Pη,t) ≤

q

t
, (8)

and thus ∥Pt,η − P ⋆
η ∥1 ≤

√
q√
t
. Combining equation 7 and equation 8, one has ϵ < ϵt,η, as desired.

One has C ∈ S ∈ Rn×n if and only if there exist two distinct permutation matrices P1, P2 so that
C · P1 = C · P2. For each P1, P2, the condition that C · P1 = C · P2 is on a subset of measure
zero on Rn×n. As there are only a finite number of choices for P1, P2, it follows that S is a finite
union of sets of measure zero, and thus in particular S is of measure zero. Thus, one has C ̸∈ S
generically.

When minP :P1=r,P⊤1=c C · P has a unique solution P⋆, it must be an extremal point of the poly-
hedron P , which has 2n − 1 non-zero entries (Peyré et al., 2017), and therefore τ(F) = τ(P⋆) ≤
2n−1
n2 ≤ 2

n . In the case where r = c = 1
n1, it follows from Birkhoff–von Neumann theorem that

nP ⋆ is a permutation matrix, and therefore τ(F) = τ(P⋆) = 1
n .

As Theorem 1 shows, taking a target sparsity λ = O(1/n) > 3n/2 in Algorithm 1 leads to a
good sparse approximation, which leads to a O(n2) per-iteration cost. It is worth pointing out that
the exp (−∆η) term in ϵt,η shows the appealing property that the matrix Pt,η has a better sparse
approximation guarantee in the challenging case where η is very large.

Approximate sparsity in the Newton stage We consider next the approximate sparsity inside the
N2 Newton loops. We show that approximate sparsity is monotonically improving as the Newton
step converges to the optimal solution:

Theorem 2. Let zk = (xk, yk) denote the dual variable at the k-th Newton step, and let ϵk =
maxz f(z)− f(zk) be the sub-optimality gap for zk. For the sake of normalizing the transport plan
formed by zk, take yk,⋆ = argmaxy f(xk, y) and define Pk to be the transport plan formed after
column normalization, i.e.,

Pk = exp
(
η(−C + xk1

⊤ + 1 (yk,⋆)
⊤
)− 1

)
.

Then, for the same constant q in Theorem 1, for ϵk < 1 and η > 1+2 logn
∆ , the matrix Pk is (λ⋆, ζk)-

sparse, where

ζk = 6n2 exp (−η∆) +
√
q (ϵk)

1/4
.

The proof is similar to that of Theorem 1, and we defer it to Appendix B. We remark that the ϵ
1/4
k

term in Theorem 2 becomes insignificant if ϵk decreases at a super-exponential rate. Moreover, the
statement in Theorem 2 would have shown monotonically improving approximate sparsity if one
were to add a column scaling step inside the Newton inner loop in Algorithm 1. For clarity, we do
not include any matrix scaling in the Newton stage of Algorithm 1. However, combining different
techniques in the second step might aid convergence and is worth investigating.

Sparsity under non-uniqueness We explore sparsity guarantees when the optimal transport prob-
lem lacks a unique solution. Although these cases are rare in practice, we point out the somewhat
surprising result: There exist conditions for which one can derive sparsity properties of the optimal
face using tools from extremal combinatorics on bipartite graphs (Erdős & Spencer, 1974; Jukna,
2011). On a high level, the optimality of P ⋆ ∈ F forbids certain substructures from forming in an
associated bipartite graph, which in turn gives an upper bound on the number of nonzero entries of
P ⋆. We defer the proof to Appendix B.

Theorem 3. For a cost matrix C = [cij ]
n
i,j=1 ∈ Rn×n, suppose that cij + ci′j′ = ci′j + cij′ if and

only if i = i′ or j = j′. Then one has τ(F) ≤ 1+o(1)√
n

.
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(a) Entropic random linear assignment
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(b) Optimal transport on the MNIST dataset under transportation cost ∥x− y∥22
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(c) Optimal transport on the MNIST dataset under transportation cost ∥x− y∥1

Figure 1: Performance comparison between Algorithm 1 and the Sinkhorn algorithm.

6 NUMERICAL RESULT

We conduct numerical experiments to compare the original Sinkhorn and SNS algorithms. We use
the following settings: We obtained the runtime data on a 2021 Macbook Pro laptop with an Apple
M1 Pro chip. The linear system solving is done through the conjugate gradient step as mentioned in
Algorithm 1. To set a challenging case, we use an entropic regularization with η = 1200 throughout
the experiments. We refer the reader to Appendix F for the performance of SNS under different
entropy parameter η. We defer a comparison of SNS with the Sinkhorn-Newton algorithm (Brauer
et al., 2017) to Appendix D, where we show that removing sparsification from SNS results in a
prohibitively expensive algorithm due to its O(n3) runtime complexity. Additionally, we perform
experiments on the numerical performance of quasi-Newton methods (Nocedal & Wright, 1999).

In the first numerical test, we consider the random assignment problem with entropic regularization
(Mézard & Parisi, 1987; Steele, 1997; Aldous, 2001), considered a hard instance of optimal trans-
port. The cost matrix C = [cij ]

n
ij=1 ∈ Rn×n with n = 500 is generated by cij ∼ Unif([0, 1]). The

source and target vectors are c = r = 1
n1. We run Algorithm 1 with N1 = 20 and a target sparsity

of λ = 2/n. Figure 1a shows that SNS drastically outperforms Sinkhorn in iteration and runtime.
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Table 1: Performance comparison between SNS and Sinkhorn. Both algorithms are run until they
reach machine accuracy.

Case Method Stage Time (s) Iterations

Random
SNS

Sinkhorn 0.12 20
Newton 0.22 9

Total 0.34 29
Sinkhorn Total 233.36 56 199

MNIST L2
SNS

Sinkhorn 0.17 20
Newton 2.16 33

Total 2.33 53
Sinkhorn Total 18.84 2041

MNIST L1
SNS

Sinkhorn 6.28 700
Newton 5.94 77

Total 12.22 777
Sinkhorn Total 45.75 5748

In the second numerical experiment, similar to the experiment setting in Cuturi (2013), we consider
the more practical case of optimal transport on the MNIST dataset. In particular, two images are
respectively converted to a vector of intensities on the 28 × 28 pixel grid, which are then normal-
ized to sum to 1. The entry corresponding to the (i1, i2)-th pixel is conceptualized as the point
(i1/28, i2/28) ∈ R2, and the transport cost is the Euclidean distance cost ∥x − y∥2. Similarly,
we pick N1 = 20 in Algorithm 1 with a target sparsity of λ = 2/n. Figure 1b shows a similar
performance boost to the Sinkhorn algorithm.

As the approximate sparsity analysis underlying Section 5 mainly focuses on the situation of unique
solutions, it is of interest to test problems with many optimal transport solutions, as it is a case where
the SNS algorithm might potentially break in practice. For this purpose, we consider the MNIST
example under the l1 transport cost ∥x − y∥1, which is known to have non-unique solutions due to
the lack of convexity in the ∥·∥1 norm (Villani et al., 2009). As the Sinkhorn algorithm converges
quite slowly, we pick N1 = 700 before switching to the Newton stage. Choosing a target sparsity of
λ = 15/n is sufficient for convergence to the ground truth, which shows that SNS runs quite well
even without a uniqueness guarantee.

In Table 1, we benchmark the runtime for Sinkhorn versus SNS to reach machine accuracy, which
shows that SNS has an overall runtime advantage for convergence. In particular, we list the per-
formance of SNS in the Newton stage, which shows that early stopping of Sinkhorn matrix scaling
steps and switching to the Newton stage results in an order of magnitude speedup in iteration counts.
While we cannot prove the conjectured super-exponential convergence, the low iteration count in the
Newton stage shows strong numerical support.

7 CONCLUSION

We propose the Sinkhorn-Newton-Sparse algorithm, demonstrating its empirical super-exponential
convergence at a O(n2) per-iteration cost through numerical validation. We prove several novel
bounds on approximate sparsity underlying the algorithm. For problems with non-unique solutions,
we elucidate a novel relationship between approximate sparsity and extremal combinatorics. We
contend that this new method significantly advances the field of high-precision computational opti-
mal transport and complements the existing Sinkhorn algorithm.

For future work, it may be interesting to study how the approximation accuracy of the sparsification
step affects the algorithm’s convergence and how to devise more sophisticated sparse approximation
techniques beyond simple thresholding. Moreover, it is an exciting direction to incorporate existing
optimal transport techniques with the SNS algorithm, including greedy row/column optimization,
dynamic regularization scheduling, and hardware-based parallel accelerations. Theoretically, an-
alytic properties on the Lyapunov potential might provide more insight into the region where the
sparsified Newton algorithm achieves the super-exponential convergence we empirically observe.
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Martin Arjovsky, Soumith Chintala, and Léon Bottou. Wasserstein generative adversarial networks.
In International conference on machine learning, pp. 214–223. PMLR, 2017.

Mathieu Blondel, Vivien Seguy, and Antoine Rolet. Smooth and sparse optimal transport. In Inter-
national conference on artificial intelligence and statistics, pp. 880–889. PMLR, 2018.
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Marc Mézard and Giorgio Parisi. On the solution of the random link matching problems. Journal
de Physique, 48(9):1451–1459, 1987.

Konstantin Mishchenko. Sinkhorn algorithm as a special case of stochastic mirror descent. arXiv
preprint arXiv:1909.06918, 2019.

Petr Mokrov, Alexander Korotin, Lingxiao Li, Aude Genevay, Justin M Solomon, and Evgeny Bur-
naev. Large-scale wasserstein gradient flows. Advances in Neural Information Processing Sys-
tems, 34:15243–15256, 2021.

Yurii Evgen’evich Nesterov. A method of solving a convex programming problem with convergence
rate o\bigl(kˆ2\bigr). In Doklady Akademii Nauk, volume 269, pp. 543–547. Russian Academy
of Sciences, 1983.

Khai Nguyen, Dang Nguyen, Tung Pham, Nhat Ho, et al. Improving mini-batch optimal transport
via partial transportation. In International Conference on Machine Learning, pp. 16656–16690.
PMLR, 2022.

Tuan Nguyen, Trung Le, He Zhao, Quan Hung Tran, Truyen Nguyen, and Dinh Phung. Most:
Multi-source domain adaptation via optimal transport for student-teacher learning. In Uncertainty
in Artificial Intelligence, pp. 225–235. PMLR, 2021.

Jorge Nocedal and Stephen J Wright. Numerical optimization. Springer, 1999.

Luca Oneto, Michele Donini, Giulia Luise, Carlo Ciliberto, Andreas Maurer, and Massimiliano
Pontil. Exploiting mmd and sinkhorn divergences for fair and transferable representation learning.
Advances in Neural Information Processing Systems, 33:15360–15370, 2020.

Derek Onken, Samy Wu Fung, Xingjian Li, and Lars Ruthotto. Ot-flow: Fast and accurate continu-
ous normalizing flows via optimal transport. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 35, pp. 9223–9232, 2021.

Giorgio Patrini, Rianne Van den Berg, Patrick Forre, Marcello Carioni, Samarth Bhargav, Max
Welling, Tim Genewein, and Frank Nielsen. Sinkhorn autoencoders. In Uncertainty in Artificial
Intelligence, pp. 733–743. PMLR, 2020.

12



Published as a conference paper at ICLR 2024
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A EQUIVALENCE OF PRIMAL AND PRIMAL-DUAL FORM

We now show that the primal form in equation 1 can be obtained from the primal-dual form by
eliminating the dual variables.
Proposition 1. Define

L(P, x, y) =
1

η
P · logP + C · P − x · (P1− r)− y · (P⊤1− c),

and then the following equation holds:

max
x,y

min
P

L(P, x, y) = min
P :P1=r,P⊤1=c

1

η
P · logP + C · P (9)

Moreover, for the Lyapunov potential function f in equation 2, one has

f(x, y) = min
P

L(P, x, y). (10)

Proof. The use of Lagrange multiplier implies the following equality:

min
P

max
x,y

L(P, x, y) = min
P :P1=r,P⊤1=c

1

η
P · logP + C · P.

As L is concave in x, y and convex in P , one can invoke the minimax theorem to interchange the
operations of maximization and minimization. Therefore,

max
x,y

min
P

L(P, x, y) = min
P :P1=r,P⊤1=c

1

η
P · logP + C · P (11)

In terms of entries, one writes L(P, x, y) as follows:

max
xi,yj

min
pij

1

η

∑
ij

pij log pij +
∑
ij

cijpij −
∑
i

xi(
∑
j

pij − ri)−
∑
j

yj(
∑
i

pij − cj). (12)

We then solve the inner min problem explicitly by taking the derivative of pij to zero, from which
one obtains

pij = exp(η(−cij + xi + yj)− 1).

Plugging in the formula for pij , one has

min
P

L(P, x, y) = −1

η

∑
ij

exp(η(−cij + xi + yj)− 1) +
∑
i

rixi +
∑
j

cjyj = f(x, y).

B PROOF OF THEOREM 2 AND THEOREM 3

We present the proof as follows:

Proof. (of Theorem 2) Same as Theorem 1, we use the proof strategy that the approximate sparsity
guarantee monotonically improves as Pk converges to P ⋆

η . By Lemma 3.2 in Ghosal & Nutz (2022)
and Pinsker’s inequality, for αk = KL(r||Pk1), one has

∥Pk − P ⋆
η ∥21 ≤ KL(Pk||P ⋆

η ) + KL(P ⋆
η ||Pk) ≤ qmin (αk,

√
αk) .

By Lemma 2 in Altschuler et al. (2017), one has

αk ≤ max
z

f(z)− f(xk, yk,⋆) ≤ max
z

f(z)− f(xk, yk) = ϵk,

where the second inequality comes from the definition of yk,⋆. From the proof in Theorem 1, there
exists P⋆ ∈ F such that

∥Pk − P ⋆∥1 ≤ 6n2 exp (−η∆) +
√
qmin

(
(ϵk)

1/2
, (ϵk)

1/4
)
.

Therefore, the statement in the theorem specializes to the more relevant case where ϵk < 1.
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Proof. (of Theorem 3)

We begin by constructing the bipartite graph associated with an optimal transport plan P ⋆. Let A,B
be two index sets with A ∩ B = ∅ and |A| = |B| = n. For an optimal transport plan P ⋆ ∈ Rn×n,
we define its associated bipartite graph GP⋆ = (A∪B,EP⋆), where (i, j) ∈ EP⋆ if and only if the
(i, j)-th entry of P ⋆ is non-zero.

Suppose that there exists i, i′ ∈ A and j, j′ ∈ B with i ̸= i′, j ̸= j′, such that P ⋆ is nonzero on the
(i, j), (i, j′), (i′, j), (i′, j′) entries. Then, one can consider a perturbation E to P ⋆. Specifically, E
is +1 on entries (i, j), (i′, j′), and is −1 on entries (i, j′), (i′, j), and is zero everywhere else. As
E1 = E⊤1 = 0, for sufficiently small ϵ, it follows that P ⋆ ± ϵE is still feasible.

We note that one must have C · E = 0, otherwise one would contradict the optimality of P ⋆, but
this would mean cij + ci′j′ = cij′ + ci′j , which contradicts the assumption on C. Thus, P ⋆ cannot
be simultaneously nonzero on the (i, j), (i, j′), (i′, j), (i′, j′) entries. By the definition of EP⋆ , it
would mean that GP⋆ cannot simultaneously contain the edges (i, j), (i, j′), (i′, j), (i′, j′). Thus, in
terms of graph-theoretic properties, we have shown that GP⋆ is C2,2 free, whereby C2,2 is the 2× 2
clique. Then, by the C2,2 free property in Theorem 2.10 in (Jukna, 2011) shows EP⋆ cannot have
more than n

√
n+ n edges. Thus τ(P ⋆) ≤ 1+o(1)√

n
, as desired.

C SINKHORN-NEWTON-SPARSE FOR AUGMENTED LYAPUNOV FUNCTION

Since the Lyapunov function f satisfies f(x, y) = f(x+ γ1, y − γ1) for any scalar γ, this implies

that f has a degenerate direction of v =

[
1
−1

]
. Thus, to maintain numerical stability, we use in

practice an augmented Lyapunov potential

faug(x, y) := f(x, y)− 1

2
(
∑
i

xi −
∑
j

yj)
2.

Switching to the augmented Lyapunov potential does not change the task, as (x⋆, y⋆) =
argmaxx,y faug(x, y) is simply the unique maximizer of f which satisfies

∑
i x

⋆
i =

∑
j y

⋆
j . More-

over, as ∇2faug = ∇2f − vv⊤, one can adapt the Hessian approximation to a superposition of
rank-1 and sparse matrix (Candès et al., 2011), which will likewise lead to O(n2) complexity.

We introduce Algorithm 2, a variation of Algorithm 1. This altered version uses the augmented

Lyapunov potential faug to accommodate the degenerate direction v =

[
1
−1

]
:

faug(x, y) := f(x, y)− 1

2
(
∑
i

xi −
∑
j

yj)
2.

As the discussion in Section 4 shows, optimizing for faug is equivalent to optimizing for f . Algo-
rithm 2 differs from the original algorithm in two respects. First, the initialization of z is through the
output of the Sinkhorn stage after projection into the orthogonal complement of v. Second, in the
Newton stage, one obtains the Hessian approximation term M with the superposition of a sparse ma-
trix Sparsify(∇2f(z), ρ) and a rank-1 matrix vv⊤. Importantly, for λ = τ(Sparsify(∇2f(z), ρ)),
the cost of left multiplication of M is O(λn2)+O(n). As the O(n) term is dominated by the O(λn2)
term, the conjugate gradient step still has O(λn3) scaling. Overall, the computational complexity of
Algorithm 2 is nearly identical to Algorithm 1.
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Algorithm 2 Sinkhorn-Newton-Sparse (SNS) with augmented Lyapunov potential

Require: faug, xinit ∈ Rn, yinit ∈ Rn, N1, N2, ρ, i = 0
1: # Sinkhorn stage

2: v ←
[
1
−1

]
▷ Initialize degenerate direction

3: (x, y)← (xinit, yinit) ▷ Initialize dual variable
4: while i < N1 do
5: P ← exp

(
η(−C + x1⊤ + 1y⊤)− 1

)
6: x← x+ (log(r)− log(P1)) /η
7: P ← exp

(
η(−C + x1⊤ + 1y⊤)− 1

)
8: y ← y +

(
log(c)− log(P⊤1)

)
/η

9: i← i+ 1
10: end while
11: # Newton stage
12: z ← Projv⊥((x, y)) ▷ Project into non-degenerate direction of f
13: while i < N1 +N2 do
14: M ← Sparsify(∇2f(z), ρ)− vv⊤ ▷ Truncate with threshold ρ.
15: ∆z ← Conjugate Gradient(M,−∇faug(z)) ▷ Solve sparse linear system
16: α← Line search(faug, z,∆z) ▷ Line search for step size
17: z ← z + α∆z
18: i← i+ 1
19: end while
20: Output dual variables (x, y)← z.

D SINKHORN-NEWTON WITHOUT SPARSITY

In this section, we show that the Sinkhorn-Newton algorithm (Brauer et al., 2017) without account-
ing for Hessian sparsity would be prohibitively slower than the SNS Algorithm. We remark that the
Sinkhorn-Newton algorithm can be obtained from SNS by removing the Sparsify step in Algorithm
1. In this case, one solves for the descent direction by directly using the Hessian, i.e., changing to

∆z = −
(
∇2f(z)

)−1∇f(z).

Theoretically, this leads to a O(n3) per-iteration complexity, which is considerably costlier than our
best-scenario complexity of O(n2) under O(1/n) sparsity.

To empirically verify the impracticality of this method, we repeat the entropic random linear assign-
ment problem experiment in Section 6 with n = 2000, N1 = 20 and η = 5000. Table 2 summarizes
our findings. As expected, we observe that the Sinkhorn-Newton method is significantly slower than
SNS, especially in terms of per-iteration complexity. For larger n, the Sinkhorn-Newton algorithm
will be even more unfavorable.

Table 2: Performance comparison between SNS and Sinkhorn-Newton during the Newton stage.
Both algorithms are run until they reach machine accuracy.

Method Time (s) Iterations Time per iteration (s)
SNS 3.26 11 0.30
Sinkhorn-Newton 118.56 10 11.86

E COMPARISON BETWEEN SINKHORN-NEWTON-SPARSE WITH
QUASI-NEWTON METHODS

This section presents the result of quasi-Newton algorithms (Nocedal & Wright, 1999) applied to
entropic optimal transport problems. We show that, while being a reasonable proposal for solv-
ing entropic optimal transport with second-order information, traditional quasi-Newton algorithms
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work poorly in practice. In short, a Quasi-Newton algorithm can be obtained from SNS by re-
placing the Hessian approximation step in Algorithm 1. Specifically, instead of sparse approxima-
tion, a quasi-Newton method approximates the Hessian M through the history of gradient informa-
tion. In particular, we consider the Broyden–Fletcher–Goldfarb–Shanno (BFGS) algorithm and the
limited-memory Broyden–Fletcher–Goldfarb–Shanno (L-BFGS) algorithm, which are two of the
most widely used quasi-Newton methods.

We repeat the three experiment settings in Section 6, and the result is shown in Figure 2. To ensure
a fair comparison, the quasi-Newton candidate algorithms are given the same Sinkhorn initializa-
tion as in the SNS algorithm. As the plot shows, quasi-Newton algorithms do not show significant
improvement over the Sinkhorn algorithm. Moreover, in the two experiments based on the MNIST
dataset, both quasi-Newton candidates perform worse than the Sinkhorn algorithm in terms of run-
time efficiency. As the iteration complexity of the quasi-Newton candidates does not exhibit the nu-
merical super-exponential convergence shown in SNS, we conclude that noisy Hessian estimation
from gradient history accumulation is inferior to direct sparse approximation on the true Hessian
matrix.

F SINKHORN-NEWTON-SPARSE UNDER DIFFERENT ENTROPY
REGULARIZATION PARAMETER

In this section, we show an acceleration of SNS over the Sinkhorn algorithm under a wider range for
the entropy regularization parameter η. In particular, we focus on the setting of MNIST image under
l1 and l2 costs. Importantly, it is common practice to pixel distance is used to form the cost matrix.
For example, the Earth-Mover distance (EMD) considered in (Altschuler et al., 2017) is defined by

dpixel ((i, j), (i
′, j′)) := |i− i′|+ |j − j′| .

In our work, a pixel (i, j) is embedded to the point (i/28, j/28) ∈ R2 before the distance function
is applied. Thus, this text uses the normalized distance function

d ((i, j), (i′, j′)) :=

∣∣∣∣ i− i′

28

∣∣∣∣+ ∣∣∣∣j − j′

28

∣∣∣∣ .
As d = 1

28dpixel, our choice of η = 1200 in Section 6 is equivalent to choosing η = 1200/28 ≈
42. As the range used in Altschuler et al. (2017) is η ∈ [1, 9], our η is similar to the range of
entropy regularization commonly used. To show the performance of SNS is robust under different
η, we benchmark the performance of SNS under an extended practical choice of η = 28k for
k = {1, 3, 5, 7, 9, 11}. For the Sinkhorn stage warm initialization, we take N1 = 10k+100 for each
η = 28k, and the target sparsity is taken to be λ = 15/n. In Table 3, we show the performance of
SNS compared with the Sinkhorn algorithm to reach machine accuracy. One can see that the SNS
algorithm consistently outperforms the Sinkhorn algorithm, and the improvement is more significant
under larger choices of η.

For further validation, in Figure 3a we plot the Wasserstein W1 transport distance for the entropy
regularized optimal solution P ⋆

η under different η, which shows indeed that η ≈ 150 is sufficient for
the practical goal of obtaining transport plan with relatively low transport cost.

For the case of squared l2 distance, as the squared l2 distance is scaled by a factor of 576, we bench-
mark the performance of SNS under η = 576k for k = {1, 3, 5, 7, 9, 11}. As can be seen in Figure
3, one needs η ≈ 1000 to reach within 1% accuracy of the ground-truth transport cost, which is why
the range of η considered is a reasonable choice. For the Sinkhorn stage warm initialization, we take
N1 = 10k for each η = 576k, and the target sparsity is taken to be λ = 4/n. In Table 4, we show
the performance of SNS compared with the Sinkhorn algorithm to reach machine accuracy. One can
see that the SNS algorithm consistently outperforms the Sinkhorn algorithm, and the improvement
is more significant under larger choices of η. Moreover, for the case of η = 576, even though the
presence of entropy regularization is strong, the numerical result shows that λ = 4/n in the sparse
Hessian approximation is sufficient to reach machine accuracy rapidly.
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(a) Entropic random linear assignment
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(b) Optimal transport on the MNIST dataset under transportation cost ∥x− y∥22
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(c) Optimal transport on the MNIST dataset under transportation cost ∥x− y∥1

Figure 2: Performance of Quasi-Newton methods, compared against the Sinkhorn-Newton-Sparse
algorithm and the Sinkhorn algorithm.
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Table 3: Performance comparison between SNS and Sinkhorn for different η under the transporta-
tion cost ∥x−y∥1. Both algorithms are run until they reach machine accuracy. The time and iteration
of the SNS method refers to the combined time and iteration of the two stages combined.

Entropy Method Time (s) Iterations

η = 28
SNS 1.45 110

Sinkhorn 1.96 173

η = 84
SNS 5.32 147

Sinkhorn 9.63 899

η = 140
SNS 5.41 167

Sinkhorn 14.53 1399

η = 196
SNS 6.10 189

Sinkhorn 15.56 1499

η = 252
SNS 7.78 216

Sinkhorn 17.81 1699

η = 308
SNS 8.08 236

Sinkhorn 19.76 1899

Table 4: Performance comparison between SNS and Sinkhorn for different η under the transporta-
tion cost ∥x−y∥22. Both algorithms are run until they reach machine accuracy. The time and iteration
of the SNS method refers to the combined time and iteration of the two stages combined.

Entropy Method Time (s) Iterations

η = 576
SNS 3.40 33

Sinkhorn 9.95 946

η = 1728
SNS 5.10 64

Sinkhorn 32.92 3072

η = 2880
SNS 7.08 96

Sinkhorn 62.96 6083

η = 4032
SNS 9.70 134

Sinkhorn 108.24 10 596

η = 5184
SNS 12.83 177

Sinkhorn 166.97 16 299

η = 6336
SNS 22.30 259

Sinkhorn 248.43 23 498
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(a) MNIST dataset under transportation cost ∥x− y∥1

(b) MNIST dataset under transportation cost ∥x− y∥22

Figure 3: Optimal transport cost of the obtained entropic regularized solution for different η.
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