A APPENDIX

A.1 ABLATION STUDY

Here, we perform ablation experiments on the two hyperparameters we use in UMA method, number
of steps and step size. All experiments are done using discriminative models on CIFAR10 dataset.
SalUn (Fan et al.,|[2024) is chosen as the baseline learning algorithm. All ablation experiments on
step sizes have a fixed number of steps of 100, and all ablations on iteration numbers have a fixed
step size of 1/255. Attack strength is set to 16/255 across all ablations.

As the results shown in Figure ] the attack efficacy generally increases as the number of steps goes
up. However, higher iteration numbers result in greater computation costs, which forms a trade-off
that the attacker needs to make. On the other hand, as shown in Figure[3] the attack step size reaches
its best performance, around 0.7/255 to 1/255. A larger step size will cause the attack to find an
incorrect direction, reducing the attack efficacy, while a smaller step size will generally cause a slow
convergence speed, requiring a larger iteration step to reach equivalent performance.

A.2 EXTENSIVE STUDY ON MITIGATING UMA

The robust unlearning implementation in Section 5.3 can increase model robustness against Un-
learning Mapping Attack while maintaining clean test accuracy. However, robust unlearning re-
quires extra computation costs and may not scale well with large machine learning models. Here,
we propose another baseline solution for mitigating UMA method. As UMA operates by craft-
ing adversarial noise added to query samples during inference, applying UMA-targeted purifiers
to all queries before they are passed to the unlearned model might remove this adversarial noise
and prevent forgotten knowledge from resurfacing. Preliminary studies are done implementing an
autoencoder-based purification method using a variational autoencoder(VAE). We verify the purifi-
cation system on CIFAR-10 dataset using both FT (Warnecke et al.| [2021) and SalUn (Fan et al.,
2024) as our baseline unlearning methods.

Table[5)and[6|represent results of whether the attacker has full knowledge of the purification. Gener-
ally, the results show increases in robustness in both cases, with strong robustness when the attacker
has no knowledge of the purification, though the system’s test accuracy is slightly impacted due to
the VAE’s limited reconstruction ability.
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Figure 4: Ablation on attack iteration numbers. The experiments are done on CIFAR10 using
SalUn (Fan et al.| [2024) as the baseline unlearning algorithm. All experiments have a fixed step
size of 1/255 and an attack strength of 16/255.
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Figure 5: Ablation on attack step size. The experiments are done on CIFAR10 using SalUn (Fan
et al [2024) as the baseline unlearning algorithm. All experiments have a fixed number of steps of
100 and an attack strength of 16/255.

No Atk 8/255 16/255
UA MIA UA MIA UA MIA

FT+vae 486 0.0142 490 0.0142 540 0.0152
SalUn+vae 0 0 0 0 0 0

Table 5: Autoencoder-based UMA purification experiments on CIFAR-10. The attack has no knowl-
edge of the purification.

No Atk 8/255 16/255
UA MIA UA MIA UA MIA

FT+vae 4.86 0.0142 9998 09922 100 0.9970
SalUn+vae 0 0 0.66 0.0026 10.38 0.0584

Table 6: Autoencoder-based UMA purification experiments on CIFAR-10. The attack has full
knowledge of the purification.
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ISI (Li et al.,[2024)  SalUn (Fan et al., [2024)
No Attack  8/255 No Attack 8/255

Retain set 64,619 42,410 214,596 114,089
Forget set 1,140,778 48,317 2,790,552 242,029

L1 per image

Table 7: L1 norm between the outputs of the generative model before and after unlearning. The
values under no attack are calculated by L1(I5, I1) and the value under the attack strength 8/255 are
computed by L1(I3, I1).

A.3 DETAILED INFORMATION AND RESULTS ON THE GENERATIVE UNLEARNING
EXPERIMENTS

In the experiments on generative unlearning models, we evaluate if our UMA attacks could explore
the residue information left in the model after unlearning and resurface the "forgotten" knowledge.
To this end, we follow the previous arts in 12 where the generative model is used to recover the
masked region in a query image. To ease the discussion, let’s first clarify the data flow and pipeline
of the generative model experiment. In our experiments, the generative unlearning pipeline involves
the following steps:

* Jy: The ground truth image from the forget set.
* [,,: The masked version of the image I, which serves as the input to the generative model.

e ];: The output of the original generative model (before unlearning), where the masked
regions in I,,, are reconstructed.

e J5: The output of the unlearned generative model, which cannot reconstruct the masked
regions for the forget set and instead generates gray or noisy outputs.

* I3: The output of the unlearned generative model when attacked with UMA, which aims to
resurface the forgotten information and reconstruct the masked regions as I;.

By design, I1, I>, and I3 are naturally different from the masked input I,,,, as the goal of the gener-
ative model is to reconstruct the missing regions. Additionally, for the forget set, I differs signifi-
cantly from /7, as the unlearned model is intended to "forget" the knowledge and cannot recover [
from I,,,. UMA’s goal is to probe whether the unlearned model can generate I3 that closely resem-
bles I1, thereby bypassing the unlearning mechanism. Based on the above context, UMA’s efficacy
is evaluated by how closely I3 (the UMA output) resembles I; (the output of the original generative
model before unlearning). This indicates whether the unlearned model retains residual knowledge
of the forget set, effectively failing to fully "forget."

To verify UMA’s impact, we directly computed the L1 distance between I3 and I; per image. As
shown in the Table[/] the L1 differences between I; and I3 are very small after the attack (e.g. for
the 224x224x3 image, average 0.3 intensity difference per pixel for the forget set with I2I (L1 et al.,
2024)) and 1.6 intensity difference per pixel for the SalUn (Fan et al., |2024)), indicating that UMA
can prompt the unlearned model to output information it was supposed to forget. This provides
strong evidence that UMA effectively bypasses the unlearning process.

In addition, we include multiple visual examples in Figure[6]and [7] These examples present images
for Iy, I, I1, I2, and I3, providing a clear comparison of the reconstruction results across all stages
of the pipeline. These visualizations demonstrate how UMA successfully recovers information that
should have been forgotten, illustrating its effectiveness in attacking the unlearning mechanism.
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Figure 6: Examples of the generated images using 121 (Li et al}[2024) unlearning methods. Ground
truth, Iy, Masked Input, I,,,, Output before Unlearning, I;, Output after Unlearning, I,, UMA
Attacked Output, I3, are represented here as discussed in Section A.3
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Figure 7: Examples of the generated images using SalUn [2024) unlearning methods.
Ground truth, Iy, Masked Input, I,,,, Output before Unlearning, 71, Output after Unlearning, I,
UMA Attacked Output, I3, are represented here as discussed in Section A.3
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